Advertisement

Cellular Oncology

, Volume 39, Issue 5, pp 435–447 | Cite as

MGMT DNA repair gene promoter/enhancer haplotypes alter transcription factor binding and gene expression

  • Meixiang Xu
  • Courtney E. Cross
  • Jordan T. Speidel
  • Sherif Z. Abdel-Rahman
Original Paper

Abstract

Background

The O6-methylguanine-DNA methyltransferase (MGMT) protein removes O6-alkyl-guanine adducts from DNA. MGMT expression can thus alter the sensitivity of cells and tissues to environmental and chemotherapeutic alkylating agents. Previously, we defined the haplotype structure encompassing single nucleotide polymorphisms (SNPs) in the MGMT promoter/enhancer (P/E) region and found that haplotypes, rather than individual SNPs, alter MGMT promoter activity. The exact mechanism(s) by which these haplotypes exert their effect on MGMT promoter activity is currently unknown, but we noted that many of the SNPs comprising the MGMT P/E haplotypes are located within or in close proximity to putative transcription factor binding sites. Thus, these haplotypes could potentially affect transcription factor binding and, subsequently, alter MGMT promoter activity.

Methods

In this study, we test the hypothesis that MGMT P/E haplotypes affect MGMT promoter activity by altering transcription factor (TF) binding to the P/E region. We used a promoter binding TF profiling array and a reporter assay to evaluate the effect of different P/E haplotypes on TF binding and MGMT expression, respectively.

Results

Our data revealed a significant difference in TF binding profiles between the different haplotypes evaluated. We identified TFs that consistently showed significant haplotype-dependent binding alterations (p ≤ 0.01) and revealed their role in regulating MGMT expression using siRNAs and a dual-luciferase reporter assay system.

Conclusions

The data generated support our hypothesis that promoter haplotypes alter the binding of TFs to the MGMT P/E and, subsequently, affect their regulatory function on MGMT promoter activity and expression level.

Keyword

MGMT P/E haplotypes Transcription factor binding siRNA regulation Promoter activity 

Notes

Acknowledgments

This work was supported by grants from the National Institutes of Health (R03 NS065392-01 to S.A.R.; T-32-ES007254 to C.C. and J.S.) and the John Sealy Memorial Endowment fund for Biomedical Research (to S.A.R.). Additional partial support was provided by the NIEHS Center in Environmental Toxicology at the University of Texas Medical Branch funded through P30 ES006676, The Molecular Genomics Core (GMC) at the University of Texas Medical Branch, the Institute for Translational Sciences at the University of Texas Medical Branch, supported in part by a Clinical and Translational Science Award (8UL1TR000071) from the National Center for Research Resources, now the National Center for Advancing Translational Sciences, as well as the National Institutes of Health, R01 DA 030998-01 (to GDH/TN) and 2 U54 HD047891 (to GDH).

Compliance with ethical standards

Conflict of interest

None declared.

Supplementary material

13402_2016_286_MOESM1_ESM.pdf (189 kb)
ESM 1 (PDF 189 kb)
13402_2016_286_MOESM2_ESM.pdf (301 kb)
ESM 2 (PDF 300 kb)

References

  1. 1.
    R. A. Becker, R. Montesano, Repair of O 4-methyldeoxythymidine residues in DNA by mammalian liver extracts. Carcinogenesis 6, 313–317 (1985)CrossRefPubMedGoogle Scholar
  2. 2.
    M. Christmann, B. Verbeek, W. P. Roos, B. Kaina, O(6)-methylguanine-DNA methyltransferase (MGMT) in normal tissues and tumors: enzyme activity, promoter methylation and immunohistochemistry. Biochim. Biophys. Acta 1816, 179–190 (2011)Google Scholar
  3. 3.
    D. S. Daniels, T. T. Woo, K. X. Luu, D. M. Noll, N. D. Clarke, A. E. Pegg, J. A. Tainer, DNA binding and nucleotide flipping by the human DNA repair protein AGT. Nat. Struct. Mol. Biol. 11, 714–720 (2004)Google Scholar
  4. 4.
    A. E. Pegg, Mammalian O 6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents. Cancer Res. 50, 6119–6129 (1990)Google Scholar
  5. 5.
    P. E. Jackson, C. N. Hall, A. F. Badawi, P. J. O’Connor, D. P. Cooper, A. C. Povey, Frequency of Ki-ras mutations and DNA alkylation in colourectal tissue from individuals living in Manchester. Mol. Carcinog. 16, 12–19 (1996)Google Scholar
  6. 6.
    A. E. Pegg, Repair of O(6)-alkylguanine by alkyltransferases. Mutat. Res. 462, 83–100 (2000)Google Scholar
  7. 7.
    S. L. Gerson, Clinical relevance of MGMT in the treatment of cancer. J. Clin. Oncol. 20, 2388–2399 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    S. L. Gerson, MGMT: its role in cancer aetiology and cancer therapeutics. Nat. Rev. Cancer 4, 296–307 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    G. P. Margison, M. F. Santibáñez Koref, A. C. Povey, Mechanisms of carcinogenicity/chemotherapy by O6-methylguanine. Mutagenesis 17, 483–487 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    G. P. Margison, A. C. Povey, B. Kaina, M. F. Santibáñez Koref, Variability and regulation of O 6-alkylguanine-DNA alkyltransferase. Carcinogenesis 24, 625–635 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    J. R. Silber, M. S. Bobola, A. Blank, M. C. Chamberlain, O(6)-methylguanine-DNA methyltransferase in glioma therapy: promise and problems. Biochim. Biophys. Acta 1826, 71–82 (2012)PubMedPubMedCentralGoogle Scholar
  12. 12.
    W. Wick, M. Weller, M. van den Bent, M. Sanson, M. Weiler, A. von Deimling, C. Plass, M. Hegi, M. Platten, G. Reifenberger, MGMT testing–the challenges for biomarker-based glioma treatment. Nat. Rev. Neurol. 10(7), 372–385 (2014)CrossRefPubMedGoogle Scholar
  13. 13.
    B. Kaina, M. Christmann, S. Naumann, W. P. Roos, MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair 6, 1079–1099 (2007)Google Scholar
  14. 14.
    A. E. Pegg, Q. Fang, N. A. Loktionova, Human variants of O6-alkylguanine-DNA alkyltransferase. DNA Repair 6, 1071–1078 (2007)Google Scholar
  15. 15.
    K. K. Bhakat, S. Mitra, CpG methylation-dependent repression of the human O6-methylguanine-DNA methyltransferase gene linked to chromatin structure alteration. Carcinogenesis 24, 1337–1345 (2003)CrossRefPubMedGoogle Scholar
  16. 16.
    R. P. Danam, S. R. Howell, T. P. Brent, L. C. Harris, Epigenetic regulation of O 6-methylguanine-DNA methyltransferase gene expression by histone acetylation and methyl-CpG binding proteins. Mol. Cancer Ther. 4, 61–69 (2005)PubMedGoogle Scholar
  17. 17.
    M. Krześniak, D. Butkiewicz, A. Samojedny, M. Chorazy, M. Rusin, Polymorphisms in TDG and MGMT genes - epidemiological and functional study in lung cancer patients from Poland. Ann. Hum. Genet. 68, 300–312 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    S. Ogino, A. Hazra, G. J. Tranah, G. J. Kirkner, T. Kawasaki, K. Nosho, M. Ohnishi, Y. Suemoto, J. A. Meyerhardt, D. J. Hunter, et al., MGMT germline polymorphism is associated with somatic MGMT promoter methylation and gene silencing in colourectal cancer. Carcinogenesis 28, 1985–1990 (2007)CrossRefPubMedGoogle Scholar
  19. 19.
    S. Leng, A. M. Bernauer, C. Hong, K. C. Do, C. M. Yingling, K. G. Flores, M. Tessema, C. S. Tellez, R. P. Willink, E. A. Burki, et al., The a/G allele of rs16906252 predicts for MGMT methylation and is selectively silenced in premalignant lesions from smokers and in lung adenocarcinomas. Clin. Cancer Res. 17, 2014–2023 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    K. L. McDonald, R. W. Rapkins, J. Olivier, L. Zhao, K. Nozue, D. Lu, S. Tiwari, J. Kuroiwa-Trzmielina, J. Brewer, H. R. Wheeler, et al., The T genotype of the MGMT C > T (rs16906252) enhancer single-nucleotide polymorphism (SNP) is associated with promoter methylation and longer survival in glioblastoma patients. Eur. J. Cancer 49, 360–368 (2013)CrossRefPubMedGoogle Scholar
  21. 21.
    M. Xu, I. Nekhayeva, C. E. Cross, C. M. Rondelli, J. K. Wickliffe, S. Z. Abdel-Rahman, Influence of promoter/enhancer region haplotypes on MGMT transcriptional regulation: a potential biomarker for human sensitivity to alkylating agents. Carcinogenesis 35(3), 564–571 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    S. E. Johnatty, M. Abdellatif, L. Shimmin, R. B. Clark, E. Boerwinkle, Beta 2 adrenergic receptor 5′ haplotypes influence promoter activity. Br. J. Pharmacol. 137, 1213–1216 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    H. Takane, D. Kobayashi, T. Hirota, J. Kigawa, N. Terakawa, K. Otsubo, I. Ieiri, Haplotype-oriented genetic analysis and functional assessment of promoter variants in the MDR1 (ABCB1) gene. J. Pharmacol. Exp. Ther. 311, 1179–1187 (2004)CrossRefPubMedGoogle Scholar
  24. 24.
    N. J. Hawkins, J. H. Lee, J. J. Wong, C. T. Kwok, R. L. Ward, M. P. Hitchins, MGMT methylation is associated primarily with the germline C > T SNP (rs16906252) in colourectal cancer and normal colonic mucosa. Mod. Pathol. 22, 1588–1599 (2009)CrossRefPubMedGoogle Scholar
  25. 25.
    I. L. Candiloro, A. Dobrovic, Detection of MGMT promoter methylation in normal individuals is strongly associated with the T allele of the rs16906252 MGMT promoter single nucleotide polymorphism. Cancer Prev. Res. 2, 862–867 (2009)CrossRefGoogle Scholar
  26. 26.
    L. S. Kristensen, H. M. Nielsen, H. Hager, L. L. Hansen, Methylation of MGMT in malignant pleural mesothelioma occurs in a subset of patients and is associated with the T allele of the rs16906252 MGMT promoter SNP. Lung Cancer 71, 130–136 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    M. H. Chae, J. S. Jang, H. G. Kang, J. H. Park, J. M. Park, W. K. Lee, S. Kam, E. B. Lee, J. W. Son, J. Y. Park, O6-alkylguanine-DNA alkyltransferase gene polymorphisms and the risk of primary lung cancer. Mol. Carcinog. 45, 239–249 (2006)CrossRefPubMedGoogle Scholar
  28. 28.
    Z. Hu, H. Wang, M. Shao, G. Jin, W. Sun, Y. Wang, H. Liu, Y. Wang, H. Ma, J. Qian, et al., Genetic variants in MGMT and risk of lung cancer in southeastern Chinese: a haplotype-based analysis. Hum. Mutat. 28, 431–440 (2007)CrossRefPubMedGoogle Scholar
  29. 29.
    L. Wang, H. Liu, Z. Zhang, M. R. Spitz, Q. Wei, Association of genetic variants of O 6-methylguanine-DNA methyltransferase with risk of lung cancer in non-Hispanic whites. Cancer Epidemiol. Biomark. Prev. 15, 2364–2369 (2006)Google Scholar
  30. 30.
    J. H. Park, N. S. Kim, J. Y. Park, Y. S. Chae, J. G. Kim, S. K. Sohn, J. H. Moon, B. W. Kang, H. M. Ryoo, S. H. Bae, et al., MGMT -535G > T polymorphism is associated with prognosis for patients with metastatic colourectal cancer treated with oxaliplatin-based chemotherapy. J. Cancer Res. Clin. Oncol. 136, 1135–1142 (2010)Google Scholar
  31. 31.
    I. Zawlik, S. Vaccarella, D. Kita, M. Mittelbronn, S. Franceschi, H. Ohgaki, Promoter methylation and polymorphisms of the MGMT gene in glioblastomas: a population-based study. Neuroepidemiology 32, 21–29 (2009)CrossRefPubMedGoogle Scholar
  32. 32.
    J. Felsberg, M. Rapp, S. Loeser, R. Fimmers, W. Stummer, M. Goeppert, H. J. Steiger, B. Friedensdorf, G. Reifenberger, M. C. Sabel, Prognostic significance of molecular markers and extent of resection in primary glioblastoma patients. Clin. Cancer Res. 15, 6683–6693 (2009)Google Scholar
  33. 33.
    Z. Zhang, L. Wang, S. Wei, Z. Liu, L. E. Wang, E. M. Sturgis, Q. Wei, Polymorphisms of the DNA repair gene MGMT and risk and progression of head and neck cancer. DNA Repair 9, 558–566 (2010)Google Scholar
  34. 34.
    S. B. Gabriel, S. F. Schaffner, H. Nguyen, J. M. Moore, J. Roy, B. Blumenstiel, J. Higgins, M. DeFelice, A. Lochner, M. Faggart, et al., The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002)CrossRefPubMedGoogle Scholar
  35. 35.
    L. C. Harris, P. M. Potter, K. Tano, S. Shiota, S. Mitra, T. P. Brent, Characterization of the promoter region of the human O6-methylguanine-DNA methyltransferase gene. Nucleic Acids Res. 19, 6163–6167 (1991)Google Scholar
  36. 36.
    M. Christmann, B. Kaina, Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res. 41, 8403–8420 (2013)Google Scholar
  37. 37.
    X. Messeguer, R. Escudero, D. Farré, O. Nuñez, J. Martínez, M. M. Albà, PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 18, 333–334 (2002)Google Scholar
  38. 38.
    D. Farré, R. Roset, M. Huerta, J. E. Adsuara, L. Roselló, M. M. Albà, X. Messeguer, Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res. 31, 3651–3653 (2003)Google Scholar
  39. 39.
    A. Yousuf, M. Y. Bhat Arshad, A. Pandith, D. Afroze, N. P. Khan, K. Alam, P. Shah, M. A. Shah, S. Mudassar, MGMT gene silencing by promoter hypermethylation in gastric cancer in a high incidence area. Cell. Oncol. 37, 245–252 (2014)Google Scholar
  40. 40.
    I. Boldogh, C. V. Ramana, Z. Chen, T. Biswas, T. K. Hazra, S. Grösch, T. Grombacher, S. Mitra, B. Kaina, Regulation of expression of the DNA repair gene O6-methylguanine-DNA methyltransferase via protein kinase C-mediated signaling. Cancer Res. 58, 3950–3956 (1998)PubMedGoogle Scholar
  41. 41.
    J. F. Costello, B. W. Futscher, R. A. Kroes, R. O. Pieper, Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltransferase gene in human glioma cell lines. Mol. Cell. Biol. 14, 6515–6521 (1994)Google Scholar
  42. 42.
    I. Lavon, D. Fuchs, D. Zrihan, G. Efroni, B. Zelikovitch, Y. Fellig, T. Siegal, Novel mechanism whereby nuclear factor κB mediates DNA damage repair through regulation of O6-methylguanine-DNA-methyltransferase. Cancer Res. 67, 8952–8959 (2007)CrossRefPubMedGoogle Scholar
  43. 43.
    L. Persano, F. Pistollato, E. Rampazzo, A. Della Puppa, S. Abbadi, C. Frasson, F. Volpin, S. Indraccolo, R. Scienza, G. Basso, BMP2 sensitizes glioblastoma stem-like cells to temozolomide by affecting HIF-1α stability and MGMT expression. Cell Death Dis. 3, e412 (2012)Google Scholar
  44. 44.
    S. Ueda, T. Mineta, Y. Nakahara, H. Okamoto, T. Shiraishi, K. Tabuchi, Induction of the DNA repair gene O6-methylguanine-DNA methyltransferase by dexamethasone in glioblastomas. J. Neurosurg. 101, 659–663 (2004)CrossRefPubMedGoogle Scholar
  45. 45.
    K. K. Bhakat, S. Mitra, Regulation of the human O6-methylguanine-DNA methyltransferase gene by transcriptional coactivators cAMP response element-binding protein-binding protein and p300. J. Biol. Chem. 275, 34197–34204 (2000)Google Scholar
  46. 46.
    K. S. Srivenugopal, J. Shou, S. R. Mullapudi, F. F. Lang Jr., J. S. Rao, F. Ali-Osman, Enforced expression of wild-type p53 curtails the transcription of the O(6)-methylguanine-DNA methyltransferase gene in human tumor cells and enhances their sensitivity to alkylating agents. Clin. Cancer Res. 7, 1398–1409 (2001)Google Scholar
  47. 47.
    A. Natsume, D. Ishii, T. Wakabayashi, T. Tsuno, H. Hatano, M. Mizuno, J. Yoshida, IFN-beta down-regulates the expression of DNA repair gene MGMT and sensitizes resistant glioma cells to temozolomide. Cancer Res. 65, 7573–7579 (2005)Google Scholar
  48. 48.
    A. Reményi, H. R. Schöler, M. Wilmanns, Combinatorial control of gene expression. Nat. Struct. Mol. Biol. 11, 812–815 (2004)Google Scholar
  49. 49.
    R. Pique-Regi, J. F. Degner, A. A. Pai, D. J. Gaffney, Y. Gila, J. K. Pritchard, Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21(3), 447–455 (2011)Google Scholar
  50. 50.
    C. J. Fry, P. J. Farnham, Context-dependent transcriptional regulation. J. Biol. Chem. 274, 29583–29586 (1999)Google Scholar
  51. 51.
    K. Vazquez-Santillan, J. Melendez-Zajgla, L. Jimenez-Hernandez, G. Martínez-Ruiz, V. Maldonado, NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell. Oncol. 38, 327–339 (2015)Google Scholar

Copyright information

© International Society for Cellular Oncology 2016

Authors and Affiliations

  • Meixiang Xu
    • 1
  • Courtney E. Cross
    • 1
    • 2
  • Jordan T. Speidel
    • 1
  • Sherif Z. Abdel-Rahman
    • 1
  1. 1.Department of Obstetrics and Gynecology, Maternal-Fetal Pharmacology and Biodevelopment LaboratoriesUniversity of Texas Medical BranchGalvestonUSA
  2. 2.A.T. Still University School of Osteopathic MedicineMesaUSA

Personalised recommendations