Cellular Oncology

, Volume 39, Issue 1, pp 35–45 | Cite as

HepG2 cells acquire stem cell-like characteristics after immune cell stimulation

  • Hang Wang
  • Miqing Yang
  • Ling Lin
  • Hongzhen Ren
  • Chaotong Lin
  • Suling Lin
  • Guoying Shen
  • Binfeng Ji
  • Chun MengEmail author
Original Paper



The presence of cancer stem cells (CSCs) is currently regarded as one of the main culprits of tumor formation and therapy failure. It is known that chronic inflammation is associated with CSCs, but it is not clear yet how inflammation affects the development of CSCs. In the present study we aimed to examine the relationship between cancer cell stimulation mediated by immune cells and the acquisition of a CSC-like phenotype.


Cancer cells derived from single hepatocarcinoma HepG2 cells were treated with mouse splenic B cells (MSBCs) and mouse peritoneal macrophage cells (MPMCs), respectively. The stem cell-like characteristics of the resulting HepG2 cells (MSBC-HepG2 and MPMC-HepG2) were evaluated using different assays, including biomarker assays, in vitro tumoroid and colony forming assays, in vivo tumor forming assays and signal transduction pathway activation assays.


Various stemness characteristics of HepG2 cells, including self-renewal, proliferation, chemoresistance and tumorigenicity were evaluated. The expression levels of stemness-related genes and its encoded proteins in the MSBC-HepG2 and MPMC-HepG2 cells were assessed using RT-PCR and FACS analyses. We found that MSBC-HepG2 and MPMC-HepG2 cells possess hepatic CSC properties, including persistent self-renewal, extensive proliferation, drug resistance, high tumorigenic capacity and over-expression of CSC-related genes and proteins (i.e., EpCAM, ALDH, CD133 and CD44), compared to the parental cells. We also found that 1x103 MSBC-HepG2 and MPMC-HepG2 cells were able to form tumors in NOD/SCID mice and that the Notch and SHH signaling pathways were highly activated in MSBC-HepG2 cells.


We conclude that the immune system may have a double-edge effect on cancer development. On one hand, immune cells such as B lymphocytes and macrophages may recognize, attack and eliminate cancer cells, whereas on the other hand, they may promote a subset of cancer cells to acquire stem cell-like characteristics.


Cancer stem cells HepG2 cells Splenic B cells Peritoneal macrophage cells 



This study was supported by the Fujian Minfaigaoji foundation (NO. 2014–514), the Fujian Education Office (NO. JA12033) and the Fuzhou University (NO.2013-XQ-27), Fujian province, P.R. China.

Compliance with ethical standards

Competing interests

The authors have declared that no competing interests exist.

Supplementary material

13402_2015_249_MOESM1_ESM.doc (29 kb)
Table S1 (DOC 29 kb)
13402_2015_249_MOESM2_ESM.docx (87 kb)
Figure S1 (DOCX 87 kb)
13402_2015_249_MOESM3_ESM.doc (34.1 mb)
Figure S2 (DOC 34926 kb)


  1. 1.
    C. Geissler, M. Hambek, M. Leinung, M. Diensthuber, D. Gassner, T. Stover, J. Wagenblast, The challenge of tumor heterogeneity--different phenotypes of cancer stem cells in a head and neck squamous cell carcinoma xenograft mouse model. In Vivo 26, 593–598 (2012)PubMedGoogle Scholar
  2. 2.
    L.L. Marotta, K. Polyak, Cancer stem cells: a model in the making. Curr. Opin. Genet. Dev. 19, 44–50 (2009)CrossRefPubMedGoogle Scholar
  3. 3.
    L.H. Broersen, G.W. van Pelt, R.A. Tollenaar, W.E. Mesker, Clinical application of circulating tumor cells in breast cancer. Cell. Oncol. 37, 9–15 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Di, T. Duiveman-de Boer, P.L. Zusterzeel, C.G. Figdor, L.F. Massuger, R. Torensma, The stem cell markers Oct4A, Nanog and c-Myc are expressed in ascites cells and tumor tissue of ovarian cancer patients. Cell. Oncol. 36, 363–374 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell. Oncol. 36, 265–275 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Azvolinsky, Companies hope for rare win with cancer stem cell therapies. Nat. Med. 18, 474 (2012)CrossRefPubMedGoogle Scholar
  7. 7.
    S. Bhattacharyya, K.L. Khanduja, New hope in the horizon: cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 42, 237–242 (2010)CrossRefGoogle Scholar
  8. 8.
    A. Krishnan, K. Reckamp, L. Leong, City of hope cancer center hematology-oncology fellowship and hematopoietic stem cell transplantation fellowship. Am. J. Hematol. 86, 197–198 (2011)CrossRefPubMedGoogle Scholar
  9. 9.
    D.Q. Liu, X.T. Pei, Hope to the cancer therapy: cancer stem cell. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 27, 659–661 (2005)PubMedGoogle Scholar
  10. 10.
    A.K. Saxena, D. Singh, J. Gupta, Role of stem cell research in therapeutic purpose--a hope for new horizon in medical biotechnology. J. Exp. Ther. Oncol. 8, 223–233 (2010)PubMedGoogle Scholar
  11. 11.
    R.C. Zhao, Y.S. Zhu, Y. Shi, New hope for cancer treatment: exploring the distinction between normal adult stem cells and cancer stem cells. Pharmacol. Ther. 119, 74–82 (2008)CrossRefPubMedGoogle Scholar
  12. 12.
    P.B. Gupta, C.L. Chaffer, R.A. Weinberg, Cancer stem cells: mirage or reality? Nat. Med. 15, 1010–1012 (2009)CrossRefPubMedGoogle Scholar
  13. 13.
    D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737 (1997)CrossRefPubMedGoogle Scholar
  14. 14.
    H.C. Hasselbalch, Chronic inflammation as a promotor of mutagenesis in essential thrombocythemia, polycythemia vera and myelofibrosis. A human inflammation model for cancer development? Leuk. Res. 37, 214–220 (2013)CrossRefPubMedGoogle Scholar
  15. 15.
    S. Moossavi, H. Zhang, J. Sun, N. Rezaei, Host-microbiota interaction and intestinal stem cells in chronic inflammation and colorectal cancer. Expert. Rev. Clin. Immunol. 9, 409–422 (2013)CrossRefPubMedGoogle Scholar
  16. 16.
    F. Karimi-Busheri, V. Zadorozhny, D.L. Shawler, H. Fakhrai, The stability of breast cancer progenitor cells during cryopreservation: maintenance of proliferation, self-renewal, and senescence characteristics. Cryobiology 60, 308–314 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    S. Varghese, R. Whipple, S.S. Martin, H.R. Alexander, Multipotent cancer stem cells derived from human malignant peritoneal mesothelioma promote tumorigenesis. PLoS One 7, e52825 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    T. Balog, A. Saric, S. Sobocanec, B. Kusic, T. Marotti, Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages. Neuropeptides 44, 25–29 (2010)CrossRefPubMedGoogle Scholar
  19. 19.
    Y. Chang, Y. Zhao, H. Zhan, X. Wei, T. Liu, B. Zheng, Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells. Tumour Biol. 35, 1075–1082 (2013)CrossRefPubMedGoogle Scholar
  20. 20.
    O. Felthaus, T. Ettl, M. Gosau, O. Driemel, G. Brockhoff, A. Reck, K. Zeitler, M. Hautmann, T.E. Reichert, G. Schmalz, C. Morsczeck, Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines. Biochem. Biophys. Res. Commun. 407, 28–33 (2011)CrossRefPubMedGoogle Scholar
  21. 21.
    M. Hensel, A. Schneeweiss, H.P. Sinn, G. Egerer, M. Kornacker, E. Solomayer, R. Haas, G. Bastert, A.D. Ho, Stem cell dose and tumorbiologic parameters as prognostic markers for patients with metastatic breast cancer undergoing high-dose chemotherapy with autologous blood stem cell support. Stem Cells 20, 32–40 (2002)CrossRefPubMedGoogle Scholar
  22. 22.
    E.D. Hsi, S.H. Jung, R. Lai, J.L. Johnson, J.R. Cook, D. Jones, S. Devos, B.D. Cheson, L.E. Damon, J. Said, Ki67 and PIM1 expression predict outcome in mantle cell lymphoma treated with high dose therapy, stem cell transplantation and rituximab: a cancer and leukemia group B 59909 correlative science study. Leuk. Lymphoma 49, 2081–2090 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    H. Ohata, T. Ishiguro, Y. Aihara, A. Sato, H. Sakai, S. Sekine, H. Taniguchi, T. Akasu, S. Fujita, H. Nakagama, K. Okamoto, Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer Res. 72, 5101–5110 (2012)CrossRefPubMedGoogle Scholar
  24. 24.
    D. Ponti, A. Costa, N. Zaffaroni, G. Pratesi, G. Petrangolini, D. Coradini, S. Pilotti, M.A. Pierotti, M.G. Daidone, Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65, 5506–5511 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    M. Salerno, S. Avnet, G. Bonuccelli, A. Eramo, R. De Maria, M. Gambarotti, G. Gamberi, N. Baldini, Sphere-forming cell subsets with cancer stem cell properties in human musculoskeletal sarcomas. Int. J. Oncol. 43, 95–102 (2013)PubMedGoogle Scholar
  26. 26.
    M.F. Shi, J. Jiao, W.G. Lu, F. Ye, D. Ma, Q.G. Dong, X. Xie, Identification of cancer stem cell-like cells from human epithelial ovarian carcinoma cell line. Cell. Mol. Life Sci. 67, 3915–3925 (2010)CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Chen, D. Yu, H. Zhang, H. He, C. Zhang, W. Zhao, R.G. Shao, CD133(+)EpCAM(+) phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int. J. Biol. Sci. 8, 992–1004 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    V.S. Donnenberg, A.D. Donnenberg, Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J. Clin. Pharmacol. 45, 872–877 (2005)CrossRefPubMedGoogle Scholar
  29. 29.
    F. Jin, H.S. Li, L. Zhao, Y.J. Wei, H. Zhang, Y.J. Guo, R. Pang, X.B. Jiang, H.Y. Zhao, Expression of anti-apoptotic and multi-drug resistance-associated protein genes in cancer stem cell isolated from TJ905 glioblastoma multiforme cell line. Zhonghua Yi Xue Za Zhi 88, 2312–2316 (2008)PubMedGoogle Scholar
  30. 30.
    H. Yi, H.J. Cho, S.M. Cho, K. Jo, J.A. Park, S.H. Lee, B.J. Chang, J.S. Kim, H.C. Shin, Effect of 5-FU and MTX on the expression of drug-resistance related cancer stem cell markers in non-small cell lung cancer cells. Korean J Physiol Pharmacol 16, 11–16 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    E.H. Huang, M.J. Hynes, T. Zhang, C. Ginestier, G. Dontu, H. Appelman, J.Z. Fields, M.S. Wicha, B.M. Boman, Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res. 69, 3382–3389 (2009)PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    M.H. Wright, A.M. Calcagno, C.D. Salcido, M.D. Carlson, S.V. Ambudkar, L. Varticovski, Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10, R10 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    M.R. Garcia Campelo, G. Alonso Curbera, G. Aparicio Gallego, E. Grande Pulido, L.M. Anton Aparicio, Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway. Clin. Transl. Oncol. 13, 77–83 (2011)CrossRefPubMedGoogle Scholar
  34. 34.
    K.A. Hassan, L. Wang, H. Korkaya, G. Chen, I. Maillard, D.G. Beer, G.P. Kalemkerian, M.S. Wicha, Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin. Cancer Res. 19, 1972–1980 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    J. Fu, M. Rodova, S.K. Roy, J. Sharma, K.P. Singh, R.K. Srivastava, S. Shankar, GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft. Cancer Lett. 330, 22–32 (2013)PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    S.N. Tang, J. Fu, D. Nall, M. Rodova, S. Shankar, R.K. Srivastava, Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int. J. Cancer 131, 30–40 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    A.R. Altaba, P. Sanchez, N. Dahmane, Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat. Rev. Cancer 2, 361–372 (2002)CrossRefGoogle Scholar
  38. 38.
    L.L. Liu, D. Fu, Y. Ma, X.Z. Shen, The power and the promise of liver cancer stem cell markers. Stem Cells Dev. 20, 2023–2030 (2011)CrossRefPubMedGoogle Scholar
  39. 39.
    A. Mantovani, A. Sica, Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr. Opin. Immunol. 22, 231–237 (2010)CrossRefPubMedGoogle Scholar
  40. 40.
    M. de Magalhaes-Silverman, L. Hammert, B. Lembersky, J. Lister, W. Rybka, E. Ball, High-dose chemotherapy and autologous stem cell support followed by post-transplant doxorubicin and taxol as initial therapy for metastatic breast cancer: hematopoietic tolerance and efficacy. Bone Marrow Transplant. 21, 1207–1211 (1998)CrossRefGoogle Scholar
  41. 41.
    C.A. Foss, J.J. Fox, G. Feldmann, A. Maitra, C. Iacobuzio-Donohue, S.E. Kern, R. Hruban, M.G. Pomper, Radiolabeled anti-claudin 4 and anti-prostate stem cell antigen: initial imaging in experimental models of pancreatic cancer. Mol. Imaging 6, 131–139 (2007)PubMedGoogle Scholar
  42. 42.
    B. Hennessy, J.A. McCaffrey, P. Daly, P. Browne, M.J. Kennedy, High dose chemotherapy and stem cell support for poor risk and recurrent nonseminomatous germ cell cancer: initial experience with sequential therapy. Ir. J. Med. Sci. 171, 158–160 (2002)CrossRefPubMedGoogle Scholar
  43. 43.
    J.M. Sun, C. Zhang, X.N. Li, Initial screening of binding-peptide of the cell surface marker CD133 of cancer stem cells. Beijing Da Xue Xue Bao 40, 476–479 (2008)PubMedGoogle Scholar
  44. 44.
    J.Y. Wong, G. Somlo, T. Odom-Maryon, L.E. Williams, A. Liu, D. Yamauchi, A.M. Wu, P. Yazaki, S. Wilczynski, J.E. Shively, S. Forman, J.H. Doroshow, A.A. Raubitschek, Initial clinical experience evaluating Yttrium-90-chimeric T84.66 anticarcinoembryonic antigen antibody and autologous hematopoietic stem cell support in patients with carcinoembryonic antigen-producing metastatic breast cancer. Clin. Cancer Res. 5, 3224s–3231s (1999)PubMedGoogle Scholar
  45. 45.
    C. Moncharmont, A. Levy, M. Gilormini, G. Bertrand, C. Chargari, G. Alphonse, D. Ardail, C. Rodriguez-Lafrasse, N. Magne, Targeting a cornerstone of radiation resistance: cancer stem cell. Cancer Lett. 322, 139–147 (2012)CrossRefPubMedGoogle Scholar
  46. 46.
    S. Ma, K.W. Chan, T.K. Lee, K.H. Tang, J.Y. Wo, B.J. Zheng, X.Y. Guan, Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol. Cancer Res. 6, 1146–1153 (2008)CrossRefPubMedGoogle Scholar
  47. 47.
    Y. Liu, Z.P. Han, S.S. Zhang, Y.Y. Jing, X.X. Bu, C.Y. Wang, K. Sun, G.C. Jiang, X. Zhao, R. Li, L. Gao, Q.D. Zhao, M.C. Wu, L.X. Wei, Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J. Biol. Chem. 286, 25007–25015 (2011)PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    S.H. Lee, H.S. Hong, Z.X. Liu, R.H. Kim, M.K. Kang, N.H. Park, K.H. Shin, TNFalpha enhances cancer stem cell-like phenotype via Notch-Hes1 activation in oral squamous cell carcinoma cells. Biochem. Biophys. Res. Commun. 424, 58–64 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  49. 49.
    T.S. Zhu, M.A. Costello, C.E. Talsma, C.G. Flack, J.G. Crowley, L.L. Hamm, X. He, S.L. Hervey-Jumper, J.A. Heth, K.M. Muraszko, F. DiMeco, A.L. Vescovi, X. Fan, Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 71, 6061–6072 (2011)PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2015

Authors and Affiliations

  • Hang Wang
    • 1
  • Miqing Yang
    • 1
  • Ling Lin
    • 1
  • Hongzhen Ren
    • 1
  • Chaotong Lin
    • 1
  • Suling Lin
    • 1
  • Guoying Shen
    • 1
  • Binfeng Ji
    • 1
  • Chun Meng
    • 1
    • 2
    Email author
  1. 1.Institute of Pharmaceutical Biotechnology and Engineering, College of Biological Science and BiotechnologyFuzhou UniversityFuzhouChina
  2. 2.FuzhouPeople’s Republic of China

Personalised recommendations