Cellular Oncology

, Volume 38, Issue 5, pp 353–363 | Cite as

Anti-tumor effect of emodin on gynecological cancer cells

  • Yaoxian Wang
  • Hui Yu
  • Jin Zhang
  • Xin Ge
  • Jing Gao
  • Yunyan Zhang
  • Ge LouEmail author
Original Paper



Although an anti-tumor effect of emodin has been reported before, its effect on human gynecological cancer cells has so far not been studied. Here, we assessed the effect of emodin on cervical cancer-derived (Hela), choriocarcinoma-derived (JAR) and ovarian cancer-derived (HO-8910) cells, and investigated the possible underlying molecular and cellular mechanisms.

Methods and results

The respective cells were treated with 0, 5, 10 or 15 μM emodin for 72 h. Subsequently, MTT and Transwell in vitro migration assays revealed that emodin significantly decreased the viability and invasive capacity of the gynecological cancer-derived cells tested. We found that emodin induced apoptosis and significantly decreased mitochondrial membrane potential and ATP release in these cells. We also found that emodin may exert its apoptotic effects via regulating the activity of caspase-9 and the expression of cleaved-caspase-3. Moreover, we found that emodin induced a cell cycle arrest at the G0/G1 phase, possibly through down-regulating the key cell cycle regulators Cyclin D and Cyclin E. Interestingly, emodin also led to autophagic cell death, as revealed by increased MAP LC3 expression, a marker of the autophagosome, and decreased expression of the autophagy regulators Beclin-1 and Atg12-Atg5. Finally, we found that the protein levels of both VEGF and VEGFR-2 were significantly decreased in emodin-treated cells, suggesting an anti-angiogenic effect of emodin on gynecological cancer-derived cells.


Our results suggest that emodin exhibits an anti-tumor effect on gynecological cancer-derived cells, possibly through multiple mechanisms including the induction of apoptosis and autophagy, the arrest of the cell cycle, and the inhibition of angiogenesis. Our findings may provide a basis for the design of potential emodin-based strategies for the treatment of gynecological tumors.


Emodin Anti-tumor effect Apoptosis Autophagy Cell cycle arrest Angiogenesis Gynecological cancer cells 



This study was supported by funds from the Education Department of Heilongjiang Province (No. 12541274), the Postdoctoral Fund of Heilongjiang Province (No. LBH-Z13150), the Outstanding Youth Science Foundation of Heilongjiang Province (JC201108) and the National Natural Science Foundation (No. 81372786).

Conflict of interests

The authors declare that there is no conflict of interest.


  1. 1.
    G. Srinivas, S. Babykutty, P.P. Sathiadevan, P. Srinivas, Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med. Res. Rev. 27, 591–608 (2007)CrossRefPubMedGoogle Scholar
  2. 2.
    K. Eshun, Q. He, Aloe vera: a valuable ingredient for the food, pharmaceutical and cosmetic industries--a review. Crit. Rev. Food Sci. Nutr. 44, 91–96 (2004)CrossRefPubMedGoogle Scholar
  3. 3.
    E. Harlev, E. Nevo, E.P. Lansky, R. Ofir, A. Bishayee, Anticancer potential of aloes: antioxidant, antiproliferative, and immunostimulatory attributes. Planta Med. 78, 843–852 (2012)CrossRefPubMedGoogle Scholar
  4. 4.
    T. Pecere, F. Sarinella, C. Salata, B. Gatto, A. Bet, F. Dalla Vecchia, A. Diaspro, M. Carli, M. Palumbo, G. Palù, Involvement of p53 in specific anti-neuroectodermal tumor activity of aloe-emodin. Int. J. Cancer 106, 836–847 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    H.Z. Lee, S.L. Hsu, M.C. Liu, C.H. Wu, Effects and mechanisms of aloe-emodin on cell death in human lung squamous cell carcinoma. Eur. J. Pharmacol. 431, 287–295 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    H.Z. Lee, Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell. Br. J. Pharmacol. 134, 1093–1103 (2001)PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    P.L. Kuo, T.C. Lin, C.C. Lin, The antiproliferative activity of aloe-emodin is through p53-dependent and p21-dependent apoptotic pathway in human hepatoma cell lines. Life Sci. 71, 1879–1892 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    M. Acevedo-Duncan, C. Russell, S. Patel, R. Patel, Aloe-emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int. Immunopharmacol. 4, 1775–1784 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    S. Mijatovic, D. Maksimovic-Ivanic, J. Radovic, D. Miljkovic, L. Harhaji, O. Vuckovic, S. Stosic-Grujicic, M. Mostarica Stojkovic, V. Trajkovic, Anti-glioma action of aloe emodin: the role of ERK inhibition. Cell. Mol. Life Sci. 62, 589–598 (2005)CrossRefPubMedGoogle Scholar
  10. 10.
    B.X. Xiao, J. Guo, The anti-proliferation and anti-migration dual effects of aloe-emodin on KB cells and its mechanism. Zhonghua Kou Qiang Yi Xue Za Zhi 44, 50–52 (2009)PubMedGoogle Scholar
  11. 11.
    J. Guo, B. Xiao, Q. Liu, Z. Gong, Y. Le, Suppression of C-myc expression associates with anti-proliferation of aloe-emodin on gastric cancer cells. Cancer Investig. 26, 369–374 (2008)CrossRefGoogle Scholar
  12. 12.
    P. Suboj, S. Babykutty, P. Srinivas, S. Gopala, Aloe emodin induces G2/M cell cycle arrest and apoptosis via activation of caspase-6 in human colon cancer cells. Pharmacology 89, 91–98 (2012)CrossRefPubMedGoogle Scholar
  13. 13.
    J.M. Guo, B.X. Xiao, Q. Liu, S. Zhang, D.H. Liu, Z.H. Gong, Anticancer effect of aloe-emodin on cervical cancer cells involves G2/M arrest and induction of differentiation. Acta Pharmacol. Sin. 28, 1991–1995 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    S.Z. Lin, W.T. Wei, H. Chen, K.J. Chen, H.F. Tong, Z.H. Wang, Z.L. Ni, H.B. Liu, H.C. Guo, D.L. Liu, Antitumor activity of emodin against pancreatic cancer depends on its dual role: promotion of apoptosis and suppression of angiogenesis. PLoS ONE 7, e42146 (2012)PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    A. Liu, H. Chen, W. Wei, S. Ye, W. Liao, J. Gong, Z. Jiang, L. Wang, S. Lin, Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol. Rep. 26, 81–89 (2011)PubMedGoogle Scholar
  16. 16.
    R. Zeng, Z.W. Zhou, C.F. Wu, Y.L. Zhou, Reversal effect of aloe emodin liposomes on cisplatin resistance line A549/DDP human lung adenocarcinoma cells. Zhongguo Zhong Yao Za Zhi 33, 1443–1445 (2008)PubMedGoogle Scholar
  17. 17.
    B.S. Vinod, T.T. Maliekal, R.J. Anto. Phytochemicals as chemosensitizers: from molecular mechanism to clinical significance. Antioxid Redox Signal (2012)Google Scholar
  18. 18.
    G. Srinivas, R.J. Anto, P. Srinivas, S. Vidhyalakshmi, V.P. Senan, D. Karunagaran, Emodin induces apoptosis of human cervical cancer cells through poly(ADP-ribose) polymerase cleavage and activation of caspase-9. Eur. J. Pharmacol. 473, 117–125 (2003)CrossRefPubMedGoogle Scholar
  19. 19.
    J. Li, P. Liu, H. Mao, A. Wanga, X. Zhang, Emodin sensitizes paclitaxel-resistant human ovarian cancer cells to paclitaxel-induced apoptosis in vitro. Oncol. Rep. 21, 1605–1610 (2009)PubMedGoogle Scholar
  20. 20.
    G. Hacker, S.A. Paschen, Therapeutic targets in the mitochondrial apoptotic pathway. Expert Opin. Ther. Targets 11, 515–526 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014)CrossRefGoogle Scholar
  22. 22.
    C.Z. Birsu, M. Unlu, B. Kiran, B.E. Sinem, Y. Baran, B. Cakmakoglu, Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell. Oncol. 38, 195–204 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Shavit, M. Ilouze, T. Feinberg, Y.R. Lawrence, Y. Tzur, N. Peled, Mitochondrial induction as a potential radio-sensitizer in lung cancer cells - a short report. Cell. Oncol. 38, 247–252 (2015)CrossRefGoogle Scholar
  24. 24.
    Z.T. Schafer, S. Kornbluth, The apoptosome: physiological, developmental, and pathological modes of regulation. Dev. Cell 10, 549–561 (2006)CrossRefPubMedGoogle Scholar
  25. 25.
    L.H. Lian, E.J. Park, H.S. Piao, Y.Z. Zhao, D.H. Sohn, Aloe emodin-induced apoptosis in t-HSC/Cl-6 cells involves a mitochondria-mediated pathway. Basic Clin. Pharmacol. Toxicol. 96, 495–502 (2005)CrossRefPubMedGoogle Scholar
  26. 26.
    K. Abbasi, S. Saeid, S. Mohammad, S. Najmaldin, The bone marrow metastasis niche in retinoblastoma. Cell. Oncol. (2015). doi: 10.1007/3 13402-015-0232-x Google Scholar
  27. 27.
    L. Yu, L. Deng, J. Li, Y. Zhang, L. Hu, The prognostic value of vascular endothelial growth factor in ovarian cancer: a systematic review and meta-analysis. Gynecol. Oncol. 128, 391–396 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    Y. Lu, J. Zhang, J. Qian, The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother. Radiopharm. 23, 222–228 (2008)CrossRefPubMedGoogle Scholar
  29. 29.
    J. Bai, Cycloheximide protects HepG2 cells from serum withdrawal-induced apoptosis by decreasing p53 and phosphorylated p53 levels. J. Pharmacol. Exp. Ther. 319, 1435–1443 (2006)CrossRefPubMedGoogle Scholar
  30. 30.
    R. Rodriguez, M. Meuth, Chk1 and p21 Cooperate to Prevent Apoptosis during DNA Replication Fork Stress. Mol. Biol. Cell 17, 402–412 (2006)PubMedCentralCrossRefPubMedGoogle Scholar
  31. 31.
    N.A. Warfel, W.S. El-Deiry, p21 WAF1 and tumourigenesis: 20 years after. Curr. Opin. Oncol. 25, 52–58 (2013)CrossRefPubMedGoogle Scholar
  32. 32.
    M. Radu, G. Semenova, R. Kosoff et al., PAK signalling during the development and progression of cancer. Nat. Rev. Cancer 14, 13–25 (2013)CrossRefGoogle Scholar
  33. 33.
    S.K. Radhakrishnan, C.S. Feliciano, F. Najmabadi et al., Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in Sphase of the cell cycle. Oncogene 23, 4173–4176 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    Q. Cui, S. Tashiro, S. Onodera et al., Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells. Biol. Pharm. Bull. 30, 859–864 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    S. Yousefi, R. Perozzo, I. Schmid et al., Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol. 8, 1124–1132 (2006)CrossRefPubMedGoogle Scholar
  36. 36.
    D.R. Green, J.E. Chipuk, P53 and Metabolism: inside the TIGAR. Cell 126, 30–32 (2006)CrossRefPubMedGoogle Scholar
  37. 37.
    D. Crighton, S. Wilkinson, O, Prey J, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121–134 (2006)CrossRefPubMedGoogle Scholar
  38. 38.
    T. Kanzawa, Y. Kondo, H. Ito et al., Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res. 63, 2103–2108 (2003)PubMedGoogle Scholar
  39. 39.
    H. Yanagisawa, T. Miyashita, Y. Nakano et al., HSpinl, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death. Cell Death Differ. 10, 798–807 (2003)CrossRefPubMedGoogle Scholar
  40. 40.
    K.H. Maclean, F.C. Dorsey, J.L. Cleveland et al., Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J. Clin. Invest. 118, 79–88 (2008)PubMedCentralCrossRefPubMedGoogle Scholar
  41. 41.
    W. Jeon, Y.K. Jeon, M.J. Nam, Apoptosis by aloe-emodin is mediated through down-regulation of calpain-2 and ubiquitin-protein ligase E3A in human hepatoma Huh-7 cells. Cell Biol. Int. 36, 163–167 (2012)CrossRefPubMedGoogle Scholar
  42. 42.
    W.T. Wei, H. Chen, Z.L. Ni, H.B. Liu, H.F. Tong, L. Fan, A. Liu, M.X. Qiu, D.L. Liu, H.C. Guo, Z.H. Wang, S.Z. Lin, Antitumor and apoptosis-promoting properties of emodin, an anthraquinone derivative from Rheum officinale Baill, against pancreatic cancer in mice via inhibition of Akt activation. Int. J. Oncol. 39, 1381–1390 (2011)PubMedGoogle Scholar
  43. 43.
    D.L. Liu, H. Bu, H. Li, H. Chen, H.C. Guo, Z.H. Wang, H.F. Tong, Z.L. Ni, H.B. Liu, S.Z. Lin, Emodin reverses gemcitabine resistance in pancreatic cancer cells via the mitochondrial apoptosis pathway in vitro. Int. J. Oncol. 40, 1049–1057 (2012)PubMedCentralPubMedGoogle Scholar
  44. 44.
    A. Liu, Y.S. Hu, Z.H. Wang, L.L. Tang, P.Y. Ke, S.Z. Lin, Role of nuclear factor-kappaB on emodin-induced sensitization of pancreatic cancer to gemcitabine. Yao Xue Xue Bao 46, 146–152 (2011)PubMedGoogle Scholar
  45. 45.
    A. Liu, H. Chen, H. Tong, S. Ye, M. Qiu, Z. Wang, W. Tan, J. Liu, S. Lin, Emodin potentiates the antitumor effects of gemcitabine in pancreatic cancer cells via inhibition of nuclear factor-kappaB. Mol Med Rep 4, 221–227 (2011)CrossRefPubMedGoogle Scholar
  46. 46.
    M.L. Lin, Y.C. Lu, J.G. Chung, Y.C. Li, N.G.S.H. Wang SG, C.Y. Wu, H.L. Su, S.S. Chen, Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway. Cancer Lett. 291, 46–58 (2010)CrossRefPubMedGoogle Scholar
  47. 47.
    S. Mijatovic, D. Maksimovic-Ivanic, J. Radovic, D. Miljkovic, G.N. Kaludjerovic, T.J. Sabo, V. Trajkovic, Aloe emodin decreases the ERK-dependent anticancer activity of cisplatin. Cell. Mol. Life Sci. 62, 1275–1282 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2015

Authors and Affiliations

  • Yaoxian Wang
    • 1
  • Hui Yu
    • 2
  • Jin Zhang
    • 3
  • Xin Ge
    • 4
  • Jing Gao
    • 1
  • Yunyan Zhang
    • 1
  • Ge Lou
    • 1
    Email author
  1. 1.Department of GynaecologyHarbin Medical University Cancer HospitalHarbinChina
  2. 2.Cardiopulmonary Function RoomHarbin Medical University Cancer HospitalHarbinChina
  3. 3.Department of GynaecologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
  4. 4.Department of General SurgeryThe Provincial Hospital of HeilongjiangHarbinChina

Personalised recommendations