Cellular Oncology

, Volume 36, Issue 2, pp 95–112 | Cite as

Tumour-microenvironment interactions: role of tumour stroma and proteins produced by cancer-associated fibroblasts in chemotherapy response

  • Matthew David Hale
  • Jeremy David Hayden
  • Heike Irmgard Grabsch



Cytotoxic chemotherapy improves survival for some, but not all, cancer patients. Non-responders may experience unnecessary toxicity and cancer progression, thus creating an urgent need for biomarkers that can predict the response to chemotherapy. So far, the search for such biomarkers has primarily been focused on the cancer cells and less on their surrounding stroma. This stroma is known to act as a key regulator of tumour progression and, in addition, has been associated with drug delivery and drug efficacy. Fibroblasts represent the major cell type in cancer-associated stroma and they secrete extracellular matrix proteins as well as growth factors. This Medline-based literature review summarises the results from studies on epithelial cancers and aimed at investigating relationships between the quantity and quality of the intra-tumoral stroma, the cancer-associated fibroblasts, the proteins they produce and the concomitant response to chemotherapy. Biomarkers were selected for review that are known to affect cancer-related characteristics and patient prognosis.


The current literature supports the hypothesis that biomarkers derived from the tumour stroma may be useful to predict response to chemotherapy. This notion appears to be related to the overall quantity and cellularity of the intra-tumoural stroma and the predominant constituents of the extracellular matrix.


Increasing evidence is emerging showing that tumour-stroma interactions may not only affect tumour progression and patient prognosis, but also the response to chemotherapy. The tumour stroma-derived biomarkers that appear to be most appropriate to determine the patient’s response to chemotherapy vary by tumour origin and the availability of pre-treatment tissue. For patients scheduled for adjuvant chemotherapy, the most promising biomarker appears to be the PLAU: SERPINE complex, whereas for patients scheduled for neo-adjuvant chemotherapy the tumour stroma quantity appears to be most relevant.


Tumour-microenvironment Stroma Fibroblasts Chemotherapy response Prognosis Extracellular matrix 



cancer associated fibroblast


cyclophosphamide methotrexate and 5-fluorouracil


connective tissue growth factor


extracellular matrix


fibulin 3


enzyme linked immunosorbent assay


fibulin 1






hepatocyte growth factor


matrix metalloproteinase


protein tyrosine kinase


small cell lung cancer


syndecan 1


serine protease inhibitor type-1


secreted protein, acidic, cysteine-rich


tissue inhibitor of metalloproteinase-1


urokinase-type plasminogen activator


  1. 1.
    D. Hanahan, R.A. Weinberg, S. Francisco, The hallmarks of cancer. Cell. 100, 57–70 (2000)PubMedCrossRefGoogle Scholar
  2. 2.
    G. Chong, D. Cunningham, Oesophageal cancer: preoperative chemotherapy. Ann. Oncol. 15(Suppl 4), iv87–iv91 (2004)PubMedCrossRefGoogle Scholar
  3. 3.
    N. Tamura, T. Hasebe, N. Okada, T. Houjoh, S. Akashi-Tanaka, C. Shimizu, T. Shibata, Y. Sasajima, M. Iwasaki, T. Kinoshita, Tumor histology in lymph vessels and lymph nodes for the accurate prediction of outcome among breast cancer patients treated with neoadjuvant chemotherapy. Cancer Sci. 100, 1823–1833 (2009)PubMedCrossRefGoogle Scholar
  4. 4.
    The Cochrane Collaboration: Advanced Bladder Cancer Meta-analysis Collaboration, Neoadjuvant chemotherapy for invasive bladder cancer (Review). The Cochrane Library. (2008).Google Scholar
  5. 5.
    E. Kent, M. Hussain, Neoadjuvant Therapy for Prostate Cancer: An Oncologist’s Perspective. Rev Urol. 5(Suppl 3), S28–S37 (2003)PubMedGoogle Scholar
  6. 6.
    T. Delaunoit, S.R. Alberts, D.J. Sargent, E. Green, R.M. Goldberg, J. Krook, C. Fuchs, R.K. Ramanathan, S.K. Williamson, R.F. Morton, B.P. Findlay, Chemotherapy permits resection of metastatic colorectal cancer: experience from Intergroup N9741. Ann. Oncol. 16, 425–429 (2005)PubMedCrossRefGoogle Scholar
  7. 7.
    Network National Comprehensive Cancer, Network National Comprehensive Cancer. Clinical practice guidelines in oncology, ovarian cancer including fallopian tube cancer and primary peritoneal cancer version 2. Clinical Practice Guidelines in Oncology. (2011).Google Scholar
  8. 8.
    S. Heinrich, M. Schäfer, A. Weber, T.F. Hany, U. Bhure, B.C. Pestalozzi, P. Clavien, Neoadjuvant chemotherapy generates a significant tumor response in resectable pancreatic cancer without increasing morbidity: results of a prospective phase II trial. Ann. Surg. 248, 1014–1022 (2008)PubMedCrossRefGoogle Scholar
  9. 9.
    S. Burdett, L. Stewart, Rydzewska, Chemotherapy and surgery versus surgery alone in non-small cell lung cancer. Cochrane Database Syst Rev. (2007).Google Scholar
  10. 10.
    J. Neoptolemos, J. Dunn, D. Stocken, J. Almond, K. Link, H. Beger, C. Bassi, M. Falconi, P. Pederzoli, C. Dervenis, L. Fernandez-Cruz, F. Lacaine, A. Pap, D. Spooner, D. Kerr, H. Friess, M. Büchler, Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial. Lancet. 358, 1576–1585 (2001)PubMedCrossRefGoogle Scholar
  11. 11.
    J. Pignon, H. Tribodet, G. Scagliotti, J. Douillard, F. Shepherd, R. Stephens, A. Dunant, V. Torri, R. Rosell, L. Seymour, S.G. Spiro, E. Rolland, R. Fossati, D. Aubert, K. Ding, D. Waller, T. Le Chevalier, Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2008)PubMedCrossRefGoogle Scholar
  12. 12.
    G. Bonadonna, E. Brusamolino, P. Valagussa, A. Rossi, L. Brugnatelli, C. Brambilla, M. De Lena, G. Tancini, E. Bajetta, R. Musumeci, U. Veronesi, Combination chemotherapy as an adjuvant treatment in operable breast cancer. N. Engl. J. Med. 294, 405–410 (1976)PubMedCrossRefGoogle Scholar
  13. 13.
    R. Gray, J. Barnwell, C. McConkey, R. Hills, N. Williams, D. Kerr, Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 370, 2020–2029 (2007)PubMedCrossRefGoogle Scholar
  14. 14.
    S. Wöhrer, M. Raderer, M. Hejna, Palliative chemotherapy for advanced gastric cancer. Ann. Oncol. 15, 1585–1595 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    P. Simmonds, Palliative chemotherapy for advanced colorectal cancer: systematic review and meta-analysis. Colorectal Cancer Collaborative Group. BMJ 321, 531–535 (2000)PubMedCrossRefGoogle Scholar
  16. 16.
    I. Smith, Palliative chemotherapy for advanced non-small cell lung cancer. BMJ. 308, 429–430 (1994)PubMedCrossRefGoogle Scholar
  17. 17.
    T. Petit, C. Borel, J.P. Ghnassia, J.F. Rodier, A. Escande, R. Mors, P. Haegelé, Chemotherapy response of breast cancer depends on HER-2 status and anthracycline dose intensity in the neoadjuvant setting. Clin. Cancer Res. 7, 1577–1581 (2001)PubMedGoogle Scholar
  18. 18.
    F. Penault-Llorca, A. Vincent-Salomon, Roles of the pathologist in neoadjuvant chemotherapy: evaluation of response, prognostic and predictive factors. Ann Pathol. 23, 555–563 (2003)PubMedGoogle Scholar
  19. 19.
    M.G. Daidone, R. Silvestrini, A. Luisi, M. Mastore, E. Benini, S. Veneroni, C. Brambilla, L. Ferrari, M. Greco, S. Andreola, Changes in biological markers after primary chemotherapy for breast cancers. Int. J. Cancer. 61, 301–305 (1995)PubMedCrossRefGoogle Scholar
  20. 20.
    V. Cavaillès, A. Gompel, M.C. Portois, S. Thénot, N. Mabon, F. Vignon, Comparative activity of pulsed or continuous estradiol exposure on gene expression and proliferation of normal and tumoral human breast cells. J. Mol. Endocrinol. 28, 165–175 (2002)PubMedCrossRefGoogle Scholar
  21. 21.
    D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011)PubMedCrossRefGoogle Scholar
  22. 22.
    M. Allen, J. Jones, Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J. Pathol. 223, 162–176 (2011)PubMedGoogle Scholar
  23. 23.
    B. Elenbaas, R.A. Weinberg, Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res. 264, 169–184 (2001)PubMedCrossRefGoogle Scholar
  24. 24.
    T.D. Tlsty, P.W. Hein, Know thy neighbor: stromal cells can contribute oncogenic signals. Curr. Opin. Genet. Dev. 11, 54–59 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    A.F. Olumi, G.D. Grossfeld, S.W. Hayward, P.R. Carroll, T.D. Tlsty, G.R. Cunha, Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999)PubMedGoogle Scholar
  26. 26.
    H. Kiaris, I. Chatzistamou, C. Kalofoutis, H. Koutselini, C. Piperi, A. Kalofoutis, Tumour-stroma interactions in carcinogenesis: basic aspects and perspectives. Mol. Cell. Biochem. 261, 117–122 (2004)PubMedCrossRefGoogle Scholar
  27. 27.
    A. Orimo, P.B. Gupta, D.C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem, V.J. Carey, A.L. Richardson, R A Weinberg, Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 121, 335–348 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    N.P. West, M. Dattani, P. Mcshane, G. Hutchins, J. Grabsch, W. Mueller, D. Treanor, P. Quirke, The proportion of tumour cells is an independent predictor for survival in colorectal cancer patients. Br. J. Cancer. 102, 1519–1523 (2010)PubMedCrossRefGoogle Scholar
  29. 29.
    A. Labiche, N. Heutte, P. Herlin, J. Chasle, P. Gauduchon, N. Elie, Stromal compartment as a survival prognostic factor in advanced ovarian carcinoma. Int. J. Gynecol. Cancer. 20, 28–33 (2010)PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Wu, H. Grabsch, T. Ivanova, I.B. Tan, J. Murray, C.H. Ooi, A.I. Wright, Nicholas P West, G.G.A. Hutchins, J. Wu, M. Lee, J. Lee, J.H. Koo, K.G. Yeoh, N. van Grieken, B. Ylstra, S.Y. Rha, J.A. Ajani, J.H. Cheong, S.H. Noh, et al., Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut. (2012).Google Scholar
  31. 31.
    E.M. De Kruijf, J.G.H. van Nes, C.J.H. van de Velde, H. Putter, V.T.H.B.M. Smi, G.J. Liefers, P.J.K. Kuppen, R.A. Tollenaar, W.E. Mesker, Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res. Treat. 125, 687–696 (2011)PubMedCrossRefGoogle Scholar
  32. 32.
    E.F.W. Courrech Staal, V.T.H.B.M. Smit, M.-L.F. van Velthuysen, J.M.J. Spitzer-Naaykens, M.W.J.M. Wouters, W.E. Mesker, R.A. Tollenaar, J.W. van Sandick, Reproducibility and validation of tumour stroma ratio scoring on oesophageal adenocarcinoma biopsies. Eur. J. Cancer. 47, 375–382 (2011)PubMedCrossRefGoogle Scholar
  33. 33.
    Y. Zhang, H. Tang, J. Cai, T. Zhang, J. Guo, D. Feng, Z. Wang, Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett. 303, 47–55 (2011)PubMedCrossRefGoogle Scholar
  34. 34.
    R. Kalluri, M. Zeisberg, Fibroblasts in cancer. Nat. Rev. Cancer. 6, 392–401 (2006)PubMedCrossRefGoogle Scholar
  35. 35.
    T. Sethi, R.C. Rintoul, S.M. Moore, A.C. MacKinnon, D. Salter, C. Choo, E.R. Chilvers, I. Dransfield, S.C. Donnelly, R. Strieter, C. Haslett, Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 5, 662–668 (1999)PubMedCrossRefGoogle Scholar
  36. 36.
    F. Andre, N. Berrada, C. Desmedt, Implication of tumor microenvironment in the resistance to chemotherapy in breast cancer patients. Curr Opin Oncol. 22, 547–551 (2010)PubMedCrossRefGoogle Scholar
  37. 37.
    A. Ostman, M. Augsten, Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Curr. Opin. Genet. Dev. 19, 67–73 (2009)PubMedCrossRefGoogle Scholar
  38. 38.
    K. Pietras, K. Rubin, T. Sjöblom, T. Sjo, E. Buchdunger, M. Sjo, Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Cancer Res. 62, 5476–5484 (2002)PubMedGoogle Scholar
  39. 39.
    K. Pietras, A. Östman, M. Sjöquist, M. Sjo, O. Arne, E. Buchdunger, R.K. Reed, C. Heldin, K. Rubin, Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res. 61, 2929–2934 (2001)PubMedGoogle Scholar
  40. 40.
    M. Sonnenberg, H. van der Kuip, S. Haubeis, P. Fritz, W. Schroth, G. Friedel, W. Simon, T.E. Mürdter, W.E. Aulitzky, Highly variable response to cytotoxic chemotherapy in carcinoma-associated fibroblasts (CAFs) from lung and breast. BMC cancer. 8, 364 (2008)PubMedCrossRefGoogle Scholar
  41. 41.
    D. Lafkas, G. Trimis, A.G. Papavassiliou, Hippokratis Kiaris, P53 mutations in stromal fibroblasts sensitize tumors against chemotherapy. Int. J. Cancer. 123, 967–971 (2008)PubMedCrossRefGoogle Scholar
  42. 42.
    I. Nakajima, Immunohistochemical study of the extracellular matrix in non-small cell lung cancer: relation to lymph node metastasis and prognosis. Hokkaido Igaku Zasshi. 66, 356–368 (1991)PubMedGoogle Scholar
  43. 43.
    W.E. Mesker, J.M.C. Junggeburt, K. Szuhai, P. de Heer, H. Morreau, H.J. Tanke, R.A. Tollenaar, The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell. Oncol. 29, 387–398 (2007)PubMedGoogle Scholar
  44. 44.
    A.M. Maeshima, T. Niki, A. Maeshima, T. Yamada, H. Kondo, Y. Matsuno, Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer. 95, 2546–2554 (2002)PubMedCrossRefGoogle Scholar
  45. 45.
    E.F.W. Courrech Staal, M.W.J.M. Wouters, J.W. van Sandick, M.M. Takkenberg, V.T.H.B.M. Smit, J.M.C. Junggeburt, J.M.J. Spitzer-Naaykens, T. Karsten, H.H. Hartgrink, W.E. Mesker, R.A. Tollenaar, The stromal part of adenocarcinomas of the oesophagus: does it conceal targets for therapy? Eur. J. Cancer 46, 720–728 (2010)PubMedCrossRefGoogle Scholar
  46. 46.
    N. Yanagisawa, R. Li, D. Rowley, H. Liu, D. Kadmon, B.J. Miles, T.M. Wheeler, G.E. Ayala, Stromogenic prostatic carcinoma pattern (carcinomas with reactive stromal grade 3) in needle biopsies predicts biochemical recurrence-free survival in patients after radical prostatectomy. Human pathology. 39, 282–291 (2008)PubMedCrossRefGoogle Scholar
  47. 47.
    G. Ayala, J.A. Tuxhorn, T.M. Wheeler, A. Frolov, P.T. Scardino, M. Ohori, M. Wheeler, J. Spitler, D.R. Rowley, Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin. Cancer Res. 9, 4792–4801 (2003)PubMedGoogle Scholar
  48. 48.
    F. Xing, J. Saidou, K. Watabe, Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front. Biosci. 15, 166–179 (2010)PubMedCrossRefGoogle Scholar
  49. 49.
    O. De Wever, P. Demetter, M. Mareel, M. Bracke, Stromal myofibroblasts are drivers of invasive cancer growth. Int. J. Cancer. 123, 2229–2238 (2008)PubMedCrossRefGoogle Scholar
  50. 50.
    K. Pietras, A. Ostman, Hallmarks of cancer: interactions with the tumor stroma. Exp. Cell Res. 316, 1324–1331 (2010)PubMedCrossRefGoogle Scholar
  51. 51.
    O.E. Franco, A.K. Shaw, D.W. Strand, S.W. Hayward, Cancer associated fibroblasts in cancer pathogenesis. Semin. Cell Dev. Biol. 21, 33–39 (2010)PubMedCrossRefGoogle Scholar
  52. 52.
    K. Räsänen, A. Vaheri, Activation of fibroblasts in cancer stroma. Exp. Cell Res. 316, 2713–2722 (2010)PubMedCrossRefGoogle Scholar
  53. 53.
    T. Hasebe, S. Sasaki, S. Imoto, A. Ochiai, Highly proliferative fibroblasts forming fibrotic focus govern metastasis of invasive ductal carcinoma of the breast. Mod. Pathol. 14(325–37) (2001)Google Scholar
  54. 54.
    T. Hasebe, H. Tsuda, S. Hirohashi, Y. Shimosato, Y. Tsubono, H. Yamamoto, K. Mukai, Fibrotic focus in infiltrating ductal carcinoma of the breast: a significant histopathological prognostic parameter for predicting the long-term survival of the patients. Breast Cancer Res. Treat. 49(195–208) (1998)Google Scholar
  55. 55.
    T. Hasebe, S. Sasaki, S. Imoto, K. Mukai, T. Yokose, A. Ochiai, Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: a prospective observational study. Mod. Pathol. 15(502–16) (2002)Google Scholar
  56. 56.
    J.P.A. Baak, C.G.A. Colpaert, P.J. van Diest, E. Janssen, B. van Diermen, E. Albernaz, P.B. Vermeulen, E.A. Van Marck, Multivariate prognostic evaluation of the mitotic activity index and fibrotic focus in node-negative invasive breast cancers. Eur. J. Cancer. 41, 2093–2101 (2005)PubMedCrossRefGoogle Scholar
  57. 57.
    C. Colpaert, P. Vermeulen, P. van Beest, G. Goovaerts, J. Weyler, P. Van Dam, L. Dirix, E. Van Marck, Intratumoral hypoxia resulting in the presence of a fibrotic focus is an independent predictor of early distant relapse in lymph node-negative breast cancer patients. Histopathology. 39, 416–425 (2001)PubMedCrossRefGoogle Scholar
  58. 58.
    T. Hasebe, S. Sasaki, S. Imoto, A. Ochiai, Proliferative activity of intratumoral fibroblasts is closely correlated with lymph node and distant organ metastases of invasive ductal carcinoma of the breast. Am. J. Pathol. 156(1701–10) (2000)Google Scholar
  59. 59.
    C. Wenger, V. Ellenrieder, B. Alber, U. Lacher, A. Menke, H. Hameister, M. Wilda, T. Iwamura, H.G. Beger, G. Adler, T.M. Gress, Expression and differential regulation of connective tissue growth factor in pancreatic cancer cells. Oncogene. 18, 1073–1080 (1999)PubMedCrossRefGoogle Scholar
  60. 60.
    L.F. Lau, S.C. Lam, The CCN family of angiogenic regulators: the integrin connection. Exp. Cell Res. 248, 44–57 (1999)PubMedCrossRefGoogle Scholar
  61. 61.
    F. Yang, J.A. Tuxhorn, S.J. Ressler, S.J. McAlhany, T.D. Dang, D.R. Rowley, Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 65, 8887–8895 (2005)PubMedCrossRefGoogle Scholar
  62. 62.
    K.S. Frazier, G.R. Grotendorst, Expression of connective tissue growth factor mRNA in the fibrous stroma of mammary tumors. Int J Biochem Cell Biol. 29, 153–161 (1997)PubMedCrossRefGoogle Scholar
  63. 63.
    A. Koliopanos, Helmut Friess, F.F. di Mola, W.-H. Tang, D. Kubulus, D. Brigstock, A. Zimmermann, M.W. Büchler, Connective tissue growth factor gene expression alters tumor progression in esophageal cancer. World J Surg. 26, 420–427 (2002)PubMedCrossRefGoogle Scholar
  64. 64.
    A.B. Kasaragod, M.S. Lucia, G. Cabirac, G.R. Grotendorst, K.R. Stenmark, Connective tissue growth factor expression in pediatric myofibroblastic tumors. Pediatr. Dev. Pathol. 4, 37–45Google Scholar
  65. 65.
    T. Shakunaga, T. Ozaki, N. Ohara, K. Asaumi, T. Doi, K. Nishida, A. Kawai, T. Nakanishi, M. Takigawa, H. Inoue, Expression of connective tissue growth factor in cartilaginous tumors. Cancer. 89, 1466–1473 (2000)PubMedCrossRefGoogle Scholar
  66. 66.
    M.-Y. Wang, P.-S. Chen, E. Prakash, H.-C. Hsu, H.-Y. Huang, M.-T. Lin, K.-J. Chang, M.-L. Kuo, Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res. 69, 3482–3491 (2009)PubMedCrossRefGoogle Scholar
  67. 67.
    M.P. Alfaro, D.L. Deskins, M. Wallus, J. Dasgupta, J.M. Davidson, L.B. Nanney, M. A Guney, M. Gannon, P.P. Young, A physiological role for connective tissue growth factor in early wound healing. Lab. Invest. [Epub ahead of print] (2012).Google Scholar
  68. 68.
    J. Taylor-Papadimitriou, J. Burchell, J. Hurst, Production of fibronectin by normal and malignant human mammary epithelial cells. Cancer Res. 41, 2491–2500 (1981)PubMedGoogle Scholar
  69. 69.
    C.-W. Pan, Z.-J. Shen, T.-T. Wu, X.-Y. Tang, M. Wang, J. Sun, Y. Shao, Cell adhesion to fibronectin induces mitomycin C resistance in bladder cancer cells. BJU international. 104, 1774–1779 (2009)PubMedCrossRefGoogle Scholar
  70. 70.
    F. Thomas, J.M.P. Holly, R. Persad, A. Bahl, C.M. Perks, Fibronectin confers survival against chemotherapeutic agents but not against radiotherapy in DU145 prostate cancer cells: involvement of the insulin like growth factor-1 receptor. Prostate. 70, 856–865 (2010)PubMedGoogle Scholar
  71. 71.
    P.S. Hodkinson, T. Elliott, W.S. Wong, R.C. Rintoul, A.C. Mackinnon, C. Haslett, T. Sethi, ECM overrides DNA damage-induced cell cycle arrest and apoptosis in small-cell lung cancer cells through beta1 integrin-dependent activation of PI3-kinase. Cell Death Differ. 13, 1776–1788 (2006)PubMedCrossRefGoogle Scholar
  72. 72.
    H. Miyamoto, T. Murakami, K. Tsuchida, H. Sugino, H. Miyake, S. Tashiro, Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins. Pancreas. 28, 38–44 (2004)PubMedCrossRefGoogle Scholar
  73. 73.
    W.S. Argraves, L.M. Greene, M.A. Cooley, W.M. Gallagher, Fibulins: physiological and disease perspectives. EMBO reports. 4, 1127–1131 (2003)PubMedCrossRefGoogle Scholar
  74. 74.
    A.J. Obaya, S. Rua, A. Moncada-Pazos, S. Cal, The dual role of fibulins in tumorigenesis. Cancer letters. 325, 132–138 (2012)PubMedCrossRefGoogle Scholar
  75. 75.
    S.M. Pupa, S. Giuffré, F. Castiglioni, L. Bertola, M. Cantú, I. Bongarzone, P. Baldassari, R. Mortarini, W.S. Argraves, A. Anichini, S. Menard, E. Tagliabue, Regulation of breast cancer response to chemotherapy by fibulin-1. Cancer Res. 67, 4271–4277 (2007)PubMedCrossRefGoogle Scholar
  76. 76.
    A. Sadr-Nabavi, J. Ramser, J. Volkmann, J. Naehrig, F. Wiesmann, B. Betz, H. Hellebrand, S. Engert, S. Seitz, R. Kreutzfeld, T. Sasaki, N. Arnold, R. Schmutzler, M. Kiechle, D. Niederacher, N. Harbeck, E. Dahl, A. Meindl, Decreased expression of angiogenesis antagonist EFEMP1 in sporadic breast cancer is caused by aberrant promoter methylation and points to an impact of EFEMP1 as molecular biomarker. Int. J. Cancer. 124, 1727–1735 (2009)PubMedCrossRefGoogle Scholar
  77. 77.
    E.F. Roark, D.R. Keene, C.C. Haudenschild, S. Godyna, C.D. Little, W S Argraves, The association of human fibulin-1 with elastic fibers: an immunohistological, ultrastructural, and RNA study. J. Histochem. Cytochem. 43, 401–411 (1995)PubMedCrossRefGoogle Scholar
  78. 78.
    A.R. Albig, J.R. Neil, W.P. Schiemann, Fibulins 3 and 5 antagonize tumor angiogenesis in vivo. Cancer Res. 66, 2621–2629 (2006)PubMedCrossRefGoogle Scholar
  79. 79.
    R.K. Sironen, M. Tammi, R. Tammi, P.K. Auvinen, M. Anttila, V.-M. Kosma, Hyaluronan in human malignancies. Exp. Cell Res. 317, 383–391 (2011)PubMedCrossRefGoogle Scholar
  80. 80.
    R.H. Tammi, A. Kultti, Veli-Matti Kosma, R. Pirinen, P. Auvinen, M.I. Tammi, Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromal hyaluronan. Semin. Cancer Biol. 18, 288–295 (2008)PubMedCrossRefGoogle Scholar
  81. 81.
    P. Gibbs, P.R. Clingan, V. Ganju, A.H. Strickland, S.S. Wong, N.C. Tebbutt, C.R. Underhill, R.M. Fox, S.P. Clavant, J. Leung, M. Pho, T.J. Brown, Hyaluronan-Irinotecan improves progression-free survival in 5-fluorouracil refractory patients with metastatic colorectal cancer: a randomized phase II trial. Cancer Chemother. Pharmacol. 67, 153–163 (2011)PubMedCrossRefGoogle Scholar
  82. 82.
    Y. Xie, K.L. Aillon, S. Cai, J.M. Christian, N.M. Davies, C.J. Berkland, M.L. Forrest, Pulmonary delivery of cisplatin-hyaluronan conjugates via endotracheal instillation for the treatment of lung cancer. Int J Pharm. 392, 156–163 (2010)PubMedCrossRefGoogle Scholar
  83. 83.
    S. Misra, S. Ghatak, B.P. Toole, Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2. J. Biol. Chem. 280, 20310–20315 (2005)PubMedCrossRefGoogle Scholar
  84. 84.
    P. Auvinen, R. Tammi, J. Parkkinen, M. Tammi, U. Agren, R. Johansson, P. Hirvikoski, M. Eskelinen, V.M. Kosma, Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am. J. Pathol. 156(529–36) (2000)Google Scholar
  85. 85.
    R. Pirinen, R. Tammi, M. Tammi, P. Hirvikoski, J.J. Parkkinen, R. Johansson, J. Böhm, S. Hollmén, V.M. Kosma, Prognostic value of hyaluronan expression in non-small-cell lung cancer: Increased stromal expression indicates unfavorable outcome in patients with adenocarcinoma. Int. J. Cancer. 95(12–7) (2001)Google Scholar
  86. 86.
    K. Matsumoto, K. Date, H. Ohmichi, T. Nakamura, Hepatocyte growth factor in lung morphogenesis and tumor invasion: role as a mediator in epithelium-mesenchyme and tumor-stroma interactions. Cancer Chemother. Pharmacol. 38(Suppl), S42–S47 (1996)PubMedCrossRefGoogle Scholar
  87. 87.
    J. Yamashita, M. Ogawa, S. Yamashita, K. Nomura, M. Kuramoto, T. Saishoji, Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer. 54, 1630–1633 (1994)Google Scholar
  88. 88.
    Q. Zeng, S. Chen, Z. You, Y. Fan, T.E. Carey, D. Saims, C.-Y. Wang, Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappa. B. J. Biol. Chem 277, 25203–25208 (2002)CrossRefGoogle Scholar
  89. 89.
    S. Fan, J.A. Wang, R.Q. Yuan, S. Rockwell, J. Andres, A. Zlatapolskiy, I.D. Goldberg, E.M. Rosen, Scatter factor protects epithelial and carcinoma cells against apoptosis induced by DNA-damaging agents. Oncogene. 17, 131–141 (1998)PubMedCrossRefGoogle Scholar
  90. 90.
    M. Mildner, L. Eckhart, B. Lengauer, E. Tschachler, Hepatocyte growth factor/scatter factor inhibits UVB-induced apoptosis of human keratinocytes but not of keratinocyte-derived cell lines via the phosphatidylinositol 3-kinase/AKT pathway. J. Biol. Chem. 277, 14146–14152 (2002)PubMedCrossRefGoogle Scholar
  91. 91.
    A. Rasola, Hepatocyte growth factor sensitizes human ovarian carcinoma cell lines to paclitaxel and cisplatin. Cancer Res. 64, 1744–1750 (2004)PubMedCrossRefGoogle Scholar
  92. 92.
    L.A. Shuman Moss, S. Jensen-Taubman, W.G. Stetler-Stevenson, Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am. J. Pathol. 181, 1895–1899 (2012)PubMedCrossRefGoogle Scholar
  93. 93.
    R. Poulsom, M. Pignatelli, W.G. Stetler-Stevenson, L.A. Liotta, P.A. Wright, R.E. Jeffery, J.M. Longcroft, L. Rogers, G.W. Stamp, Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am. J. Pathol. 141(389–96) (1992)Google Scholar
  94. 94.
    C. Pyke, E. Ralfkiaer, K. Tryggvason, K. Danø, Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am. J. Pathol. 142, 359–365 (1993)PubMedGoogle Scholar
  95. 95.
    H. Liu, T. Zhang, X. Li, J. Huang, B. Wu, X. Huang, Y. Zhou, J. Zhu, J. Hou, Predictive value of MMP-7 expression for response to chemotherapy and survival in patients with non-small cell lung cancer. Cancer Sci. 99(2185–92) (2008)Google Scholar
  96. 96.
    G.I. Murray, M.E. Duncan, P. O’Neil, J.A. McKay, W.T. Melvin, J.E. Fothergill, Matrix metalloproteinase-1 is associated with poor prognosis in oesophageal cancer. J. Pathol. 185, 256–261 (1998)PubMedCrossRefGoogle Scholar
  97. 97.
    B. Fingleton, T. Vargo-Gogola, H.C. Crawford, L.M. Matrisian, Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia. 3, 459–68Google Scholar
  98. 98.
    N. Mitsiades, W.H. Yu, V. Poulaki, M. Tsokos, I. Stamenkovic, Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 61, 577–581 (2001)PubMedGoogle Scholar
  99. 99.
    V. Almendro, E. Ametller, S. García-Recio, O. Collazo, I. Casas, J.M. Augé, J. Maurel, P. Gascón, The role of MMP7 and its cross-talk with the FAS/FASL system during the acquisition of chemoresistance to oxaliplatin. PloS ONE. 4, e4728 (2009)PubMedCrossRefGoogle Scholar
  100. 100.
    M. Egeblad, Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nature reviews. Nature reviews. Cancer. 2, 161–174 (2002)PubMedCrossRefGoogle Scholar
  101. 101.
    Y. Jiang, I.D. Goldberg, Y.E. Shi, Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21, 2245–2252 (2002)PubMedCrossRefGoogle Scholar
  102. 102.
    M.N. Holten-Andersen, U. Hansen, N. Brünner, H.J. Nielsen, M. Illemann, B.S. Nielsen, Localization of tissue inhibitor of metalloproteinases 1 (TIMP-1) in human colorectal adenoma and adenocarcinoma. Int. J. Cancer. 113, 198–206 (2005)PubMedCrossRefGoogle Scholar
  103. 103.
    A.-S. Schrohl, M.E. Meijer-van Gelder, M.N. Holten-Andersen, I.J. Christensen, M.P. Look, H.T. Mouridsen, N. Brünner, J.A. Foekens, Primary tumor levels of tissue inhibitor of metalloproteinases-1 are predictive of resistance to chemotherapy in patients with metastatic breast cancer. Clin. Cancer Res. 12, 7054–7058 (2006)PubMedCrossRefGoogle Scholar
  104. 104.
    G.L. Willemoe, P.B. Hertel, A. Bartels, M.-B. Jensen, E. Balslev, B.B. Rasmussen, H. Mouridsen, B. Ejlertsen, N. Brünner, Lack of TIMP-1 tumour cell immunoreactivity predicts effect of adjuvant anthracycline-based chemotherapy in patients (n=647) with primary breast cancer. A Danish Breast Cancer Cooperative Group Study. Eur. J. Cancer. 45, 2528–2536 (2009)PubMedCrossRefGoogle Scholar
  105. 105.
    N.M. Sørensen, P. Byström, I.J. Christensen, A. Berglund, H.J. Nielsen, N. Brünner, B. Glimelius, TIMP-1 is significantly associated with objective response and survival in metastatic colorectal cancer patients receiving combination of irinotecan, 5-fluorouracil, and folinic acid. Clin. Cancer Res 13, 4117–4122 (2007)PubMedCrossRefGoogle Scholar
  106. 106.
    K.D. Steffensen, M. Waldstrøm, R.K. Christensen, A. Bartels, N. Brünner, A. Jakobsen, Lack of relationship between TIMP-1 tumour cell immunoreactivity, treatment efficacy and prognosis in patients with advanced epithelial ovarian cancer. BMC cancer. 10, 185 (2010)PubMedCrossRefGoogle Scholar
  107. 107.
    A.D. Bradshaw, Diverse biological functions of the SPARC family of proteins. The international journal of biochemistry & cell biology. 44, 480–488 (2012)CrossRefGoogle Scholar
  108. 108.
    I.T. Tai, M.J. Tang, SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug resistance updates: reviews and commentaries in antimicrobial and anticancer chemotherapy. 11, 231–246 (2008)Google Scholar
  109. 109.
    M. Rahman, A.P.K. Chan, I.T. Tai, A peptide of SPARC interferes with the interaction between caspase8 and Bcl2 to resensitize chemoresistant tumors and enhance their regression in vivo. PloS ONE. 6, e26390 (2011)PubMedCrossRefGoogle Scholar
  110. 110.
    M.J. Tang, I.T. Tai, A novel interaction between procaspase 8 and SPARC enhances apoptosis and potentiates chemotherapy sensitivity in colorectal cancers. J. Biol. Chem. 282, 34457–34467 (2007)PubMedCrossRefGoogle Scholar
  111. 111.
    J.M. Chan, S.H. Ho, I.T. Tai, Secreted protein acidic and rich in cysteine-induced cellular senescence in colorectal cancers in response to irinotecan is mediated by P53. Carcinogenesis. 31, 812–819 (2010)PubMedCrossRefGoogle Scholar
  112. 112.
    C. Atorrasagasti, M. Malvicini, J.B. Aquino, L. Alaniz, M. Garcia, M. Bolontrade, M. Rizzo, O.L. Podhajcer, G. Mazzolini, Overexpression of SPARC obliterates the in vivo tumorigenicity of human hepatocellular carcinoma cells. Int. J. Cancer. 126, 2726–2740 (2010)PubMedGoogle Scholar
  113. 113.
    I.T. Tai, M. Dai, D.A. Owen, L.B. Chen, Genome-wide expression analysis of therapy-resistant tumors reveals SPARC as a novel target for cancer therapy. J. Clin. Invest. 115, 1492–1502 (2005)PubMedCrossRefGoogle Scholar
  114. 114.
    S.L. Bull Phelps, J. Carbon, A. Miller, E. Castro-Rivera, S. Arnold, R.A. Brekken, J.S. Lea, Secreted protein acidic and rich in cysteine as a regulator of murine ovarian cancer growth and chemosensitivity. Am. J. Obstet. Gynecol 200, 180.e1–7 (2009)CrossRefGoogle Scholar
  115. 115.
    H.-C. Jeung, S.Y. Rha, C.K. Im, S.J. Shin, J.B. Ahn, W.I. Yang, J.K. Roh, S.H. Noh, H.C. Chung, A randomized phase 2 study of docetaxel and S-1 versus docetaxel and cisplatin in advanced gastric cancer with an evaluation of SPARC expression for personalized therapy. Cancer. 117, 2050–2057 (2011)PubMedCrossRefGoogle Scholar
  116. 116.
    A. Francki, K. Motamed, T.D. McClure, M. Kaya, C. Murri, D.J. Blake, J.G. Carbon, E.H. Sage, SPARC regulates cell cycle progression in mesangial cells via its inhibition of IGF-dependent signaling. J. Cell. Biochem. 88, 802–811 (2003)PubMedCrossRefGoogle Scholar
  117. 117.
    B.J. Schiemann, J.R. Neil, W.P. Schiemann, SPARC inhibits epithelial cell proliferation in part through stimulation of the transforming growth factor-beta-signaling system. Mol. Biol. Cell. 14, 3977–3988 (2003)PubMedCrossRefGoogle Scholar
  118. 118.
    A. Francki, A.D. Bradshaw, J.A. Bassuk, C.C. Howe, W.G. Couser, E.H. Sage, SPARC regulates the expression of collagen type I and transforming growth factor-beta1 in mesangial cells. J. Cell. Biochem. 274(32145–52) (1999)Google Scholar
  119. 119.
    M. Bernfield, M. Götte, P.W. Park, O. Reizes, M.L. Fitzgerald, J. Lincecum, M. Zako, Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999)PubMedCrossRefGoogle Scholar
  120. 120.
    M. Götte, Syndecans in inflammation. FASEB J. 17, 575–591 (2003)PubMedCrossRefGoogle Scholar
  121. 121.
    T. Maeda, C.M. Alexander, A. Friedl, Induction of syndecan-1 expression in stromal fibroblasts promotes proliferation of human breast cancer cells. Cancer Res. 64, 612–621 (2004)PubMedCrossRefGoogle Scholar
  122. 122.
    B.J. Burbach, Y. Ji, A.C. Rapraeger, Syndecan-1 ectodomain regulates matrix-dependent signaling in human breast carcinoma cells. Exp. Cell Res. 300, 234–247 (2004)PubMedCrossRefGoogle Scholar
  123. 123.
    M. Barbareschi, P. Maisonneuve, D. Aldovini, M.G. Cangi, L. Pecciarini, F. Angelo Mauri, S. Veronese, O. Caffo, A. Lucenti, P.D. Palma, E. Galligioni, C. Doglioni, High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer. 98, 474–483 (2003)PubMedCrossRefGoogle Scholar
  124. 124.
    C. Martin Götte, M. Kersting, J. Ruggiero, A.H. Tio, L. Tulusan, P. Kiesel, Wülfing, Predictive value of syndecan-1 expression for the response to neoadjuvant chemotherapy of primary breast cancer. Anticancer Res. 26, 621–627 (2006)PubMedGoogle Scholar
  125. 125.
    E. Tsanou, E. Ioachim, E. Briasoulis, A. Charchanti, K. Damala, V. Karavasilis, N. Pavlidis, N.J. Agnantis, Clinicopathological study of the expression of syndecan-1 in invasive breast carcinomas. correlation with extracellular matrix components. J. Exp. Clin. Cancer Res. 23, 641–650 (2004)PubMedGoogle Scholar
  126. 126.
    E.J. Kantelhardt, M. Vetter, M. Schmidt, C. Veyret, D. Augustin, V. Hanf, C. Meisner, D. Paepke, M. Schmitt, F. Sweep, G. von Minckwitz, P.-M. Martin, F. Jaenicke, C. Thomssen, N. Harbeck, Prospective evaluation of prognostic factors uPA/PAI-1 in node-negative breast cancer: phase III NNBC3-Europe trial (AGO, GBG, EORTC-PBG) comparing 6 × FEC versus 3 × FEC/3 × Docetaxel. BMC cancer. 11, 140 (2011)PubMedCrossRefGoogle Scholar
  127. 127.
    E. Dublin, A. Hanby, N.K. Patel, R. Liebman, D. Barnes, Immunohistochemical expression of uPA, uPAR, and PAI-1 in breast carcinoma. Fibroblastic expression has strong associations with tumor pathology. Am. J. Pathol. 157, 1219–1227 (2000)PubMedCrossRefGoogle Scholar
  128. 128.
    N. Harbeck, R.E. Kates, M. Schmitt, Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J. Clin. Oncol. 20(1000–7) (2002)Google Scholar
  129. 129.
    N. Harbeck, R.E. Kates, M.P. Look, M. Kiechle, F. Ja, M. Schmitt, J.A. Foekens, Enhanced Benefit from Adjuvant Chemotherapy in Breast Cancer Patients Classified High-Risk according to Urokinase-type Plasminogen Activator (uPA) and Plasminogen Activator Inhibitor Type 1 (n = 3424. Cancer Res. 62(4617–22) (2002)Google Scholar
  130. 130.
    P. Manders, V.C.G. Tjan-Heijnen, P.N. Span, N. Grebenchtchikov, A.J. Geurts-Moespot, D.T.H. van Tienoven, L.V.A.M. Beex, F.C.G.J. Sweep, The complex between urokinase-type plasminogen activator (uPA) and its type-1 inhibitor (PAI-I) independently predicts response to first-line endocrine therapy in advanced breast cancer. Thromb. Haemost. 91, 514–521 (2004)PubMedGoogle Scholar
  131. 131.
    S. Borstnar, A. Sadikov, B. Mozina, T. Cufer, High levels of uPA and PAI-1 predict a good response to anthracyclines. Breast Cancer Res. Treat. 121, 615–624 (2010)PubMedCrossRefGoogle Scholar
  132. 132.
    P. Manders, Predictive impact of urokinase-type plasminogen activator: plasminogen activator inhibitor type-1 complex on the efficacy of adjuvant systemic therapy in primary breast cancer. Cancer Res. 64, 659–664 (2004)PubMedCrossRefGoogle Scholar
  133. 133.
    S. Ohno, M. Tachibana, T. Fujii, S. Ueda, H. Kubota, N. Nagasue, Role of stromal collagen in immunomodulation and prognosis of advanced gastric carcinoma. Int. J. Cancer. 97, 770–774 (2002)PubMedCrossRefGoogle Scholar
  134. 134.
    N. Harbeck, R.E. Kates, M. Schmitt, K. Gauger, M. Kiechle, F. Jänicke, C. Thomssen, M.P. Look, J.A. Foekens, Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer. Clin. Breast Cancer 5, 348–352 (2004)PubMedCrossRefGoogle Scholar
  135. 135.
    S. McAllister, A. Gifford, A. Greiner, S. Kelleher, M. Saelzler, T. Ince, F. Reinhardt, L. Harris, B. Hylander, E. Repasky, R. Weinberg, Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 133, 994–1005 (2008)PubMedCrossRefGoogle Scholar
  136. 136.
    A.S. Schrohl, I.J. Christensen, A.N. Pedersen, V. Jensen, H. Mouridsen, G. Murphy, J.A. Foekens, N. Brunner, Mads Nikolaj Holten-Andersen, Tumor tissue concentrations of the proteinase inhibitors tissue inhibitor of metalloproteinases-1 (TIMP-1) and plasminogen activator inhibitor type 1 (PAI-1) are complementary in determining prognosis in primary breast cancer. Mol. Cell Proteomics. 2(164–72) (2003)Google Scholar
  137. 137.
    F. Jänicke, A. Prechtl, C. Thomssen, N. Harbeck, C. Meisner, M. Untch, C.G. Sweep, H.K. Selbmann, H. Graeff, M. Schmitt, Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J. Natl. Cancer Inst. 93(913–20) (2001)Google Scholar
  138. 138.
    C. Chuaysri, P. Thuwajit, A. Paupairoj, S. Chau-In, T. Suthiphongchai, C. Thuwajit, Alpha-smooth muscle actin-positive fibroblasts promote biliary cell proliferation and correlate with poor survival in cholangiocarcinoma. Oncol. Rep. 21, 957–969 (2009)PubMedGoogle Scholar
  139. 139.
    T. Tsujino, I. Seshimo, Hirofumi Yamamoto, C.Y. Ngan, K. Ezumi, I. Takemasa, M. Ikeda, M. Sekimoto, N. Matsuura, M. Monden, Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin. Cancer Res. 13, 2082–2090 (2007)PubMedCrossRefGoogle Scholar
  140. 140.
    M. Erkan, C.W. Michalski, S. Rieder, C. Reiser-Erkan, I. Abiatari, A. Kolb, N.A. Giese, I. Esposito, H. Friess, J. Kleeff, The activated stroma index is a novel and independent prognostic marker in pancreatic ductal adenocarcinoma. Clin. Gastroenterol. Hepatol. 6, 1155–1161 (2008)PubMedCrossRefGoogle Scholar
  141. 141.
    H. Zhong, A.M. De Marzo, E. Laughner, M. Lim, D.A. Hilton, D. Zagzag, P. Buechler, W.B. Isaacs, G.L. Semenza, J.W. Simons, Overexpression of hypoxia-inducible factor 1 alpha in common human cancers and their metastases. Cancer Res. 59, 5830–5835 (1999)PubMedGoogle Scholar
  142. 142.
    D.M. Brizel, G.S. Sibley, L.R. Prosnitz, R.L. Scher, M.W. Dewhirst, Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 38, 285–289 (1997)PubMedCrossRefGoogle Scholar
  143. 143.
    K. Sundfør, H. Lyng, E.K. Rofstad, Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br. J. Cancer. 78, 822–827 (1998)PubMedCrossRefGoogle Scholar
  144. 144.
    M. Bacac, P. Provero, N. Mayran, J.-C. Stehle, C. Fusco, I. Stamenkovic, A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival. PloS ONE. 1, e32 (2006)PubMedCrossRefGoogle Scholar
  145. 145.
    K. Utispan, P. Thuwajit, Y. Abiko, K. Charngkaew, A. Paupairoj, S. Chau-in, C. Thuwajit, Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Mol. Cancer. 9, 13 (2010)PubMedCrossRefGoogle Scholar
  146. 146.
    T. Yamanashi, Y. Nakanishi, G. Fujii, Y. Akishima-Fukasawa, Y. Moriya, Y. Kanai, M. Watanabe, S. Hirohashi, Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology. 77, 53–62 (2009)PubMedCrossRefGoogle Scholar
  147. 147.
    M. Leivonen, J. Lundin, S. Nordling, K. von Boguslawski, C. Haglund, Prognostic value of syndecan-1 expression in breast cancer. Oncology. 67, 11–18 (2004)PubMedCrossRefGoogle Scholar
  148. 148.
    J.R. Infante, H. Matsubayashi, N. Sato, J. Tonascia, A.P. Klein, T.A. Riall, C. Yeo, C. Iacobuzio-Donahue, M. Goggins, Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J. Clin. Oncol. 25, 319–325 (2007)PubMedCrossRefGoogle Scholar
  149. 149.
    A.H. Ree, V.A. Florenes, J.P. Berg, G.M. Maelandsmo, J.M. Nesland, O. Fodstad, High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. Clin. Cancer Res. 3, 1623–1628 (1997)PubMedGoogle Scholar
  150. 150.
    K. McCarthy, T. Maguire, G. McGreal, E. McDermott, N. O’Higgins, M.J. Duffy, High levels of tissue inhibitor of metalloproteinase-1 predict poor outcome in patients with breast cancer. Int. J. Cancer. 84, 44–48 (1999)PubMedCrossRefGoogle Scholar
  151. 151.
    M.P. Look, W.L.J. van Putten, M.J. Duffy, N. Harbeck, I.J. Christensen, C. Thomssen, R. Kates, F. Spyratos, M. Fernö, S. Eppenberger-Castori, C.G.J.F. Sweep, K. Ulm, J. Peyrat, P. Martin, H. Magdelenat, N. Brünner, C. Duggan, B.W. Lisboa, P. Bendahl, V. Quillien et al., Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J. Natl. Cancer Inst 94, 116–128 (2002)PubMedCrossRefGoogle Scholar
  152. 152.
    P.A. Andreasen, L. Kjøller, L. Christensen, M.J. Duffy, The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer. 72, 1–22 (1997)PubMedCrossRefGoogle Scholar
  153. 153.
    M. Schmitt, N. Harbeck, C. Thomssen, O. Wilhelm, V. Magdolen, U. Reuning, K. Ulm, H. Höfler, F. Jänicke, H. Graeff, Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb. Haemost. 78(285–96) (1997)Google Scholar
  154. 154.
    M.J. Duffy, T.M. Maguire, E.W. McDermott, N. O’Higgins, Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J Surg Oncol. 71(130–5) (1999)Google Scholar
  155. 155.
    C.Y. Ngan, H. Yamamoto, I. Seshimo, T. Tsujino, M. Man-i, J.-I. Ikeda, K. Konishi, I. Takemasa, M. Ikeda, M. Sekimoto, N. Matsuura, M. Monden, Quantitative evaluation of vimentin expression in tumour stroma of colorectal cancer. Br. J. Cancer 96, 986–992 (2007)PubMedCrossRefGoogle Scholar
  156. 156.
    S. Al-Saad, K. Al-Shibli, T. Donnem, M. Persson, R.M. Bremnes, L.-T. Busund, The prognostic impact of NF-kappaB p105, vimentin, E-cadherin and Par6 expression in epithelial and stromal compartment in non-small-cell lung cancer. Br. J. Cancer. 99, 1476–1483 (2008)PubMedCrossRefGoogle Scholar
  157. 157.
    L.-K. Liu, X.-Y. Jiang, X.-X. Zhou, D.-M. Wang, X.-L. Song, H.-B. Jiang, Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod. Pathol. 23, 213–224 (2010)PubMedCrossRefGoogle Scholar
  158. 158.
    S. Otsuki, M. Inokuchi, M. Enjoji, T. Ishikawa, Y. Takagi, K. Kato, H. Yamada, K. Kojima, K. Sugihara, Vimentin expression is associated with decreased survival in gastric cancer. Oncol. Rep. 25, 1235–1242 (2011)PubMedGoogle Scholar
  159. 159.
    T. Hasebe, H. Tsuda, Y. Tsubono, S. Imoto, K. Mukai, Fibrotic focus in invasive ductal carcinoma of the breast: a histopathological prognostic parameter for tumor recurrence and tumor death within three years after the initial operation. Jpn. J. Cancer Res. 88(590–9) (1997)Google Scholar
  160. 160.
    A. Neesse, P. Michl, K.K. Frese, C. Feig, N. Cook, M.A. Jacobetz, M.P. Lolkema, M. Buchholz, K.P. Olive, T.M. Gress, D.A. Tuveson, Stromal biology and therapy in pancreatic cancer. Gut 60, 861–868 (2011)PubMedCrossRefGoogle Scholar
  161. 161.
    I.G. Schauer, A.K. Sood, S. Mok, Cancer-associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer. Neoplasia. 13, 393–405 (2011)PubMedGoogle Scholar
  162. 162.
    H. Breuninger, G. Schaumburg-Lever, J. Holzschuh, H.P. Horny, Desmoplastic squamous cell carcinoma of skin and vermilion surface: a highly malignant subtype of skin cancer. Cancer. 79, 915–919 (1997)PubMedCrossRefGoogle Scholar
  163. 163.
    L.A. Hazlehurst, W.S. Dalton, Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metastasis Rev. 20, 43–50 (2001)PubMedCrossRefGoogle Scholar
  164. 164.
    H.F. Dvorak, Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 315, 1650–1659 (1986)PubMedCrossRefGoogle Scholar
  165. 165.
    S. Grotegut, R. Kappler, S. Tarimoradi, F. Lehembre, Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by AKT activation. Int. J. Oncol. 36, 1261–1267 (2010)PubMedGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2013

Authors and Affiliations

  • Matthew David Hale
    • 1
  • Jeremy David Hayden
    • 2
  • Heike Irmgard Grabsch
    • 1
  1. 1.Section of Pathology & Tumour Biology, Leeds Institute of Molecular MedicineUniversity of LeedsLeedsUK
  2. 2.Department of Upper Gastrointestinal SurgeryLeeds Teaching Hospitals NHS TrustLeedsUK

Personalised recommendations