Skip to main content

Advertisement

Log in

HIF-1α and NOTCH signaling in ductal and lobular carcinomas of the breast

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

NOTCH signaling is involved in every step of metazoan development and maintenance of adult tissue homeostasis. It is frequently deregulated by mutations and overexpression in different cancer types including solid tumors such as breast cancer. Another common feature of solid tumors is hypoxia, which occurs due to defective or insufficient vascularization. Hypoxia-inducible factors (HIFs) are key regulators of the homeostatic response to low oxygen levels. HIF-1α is overexpressed in many solid tumors, including breast cancer. Hypoxia-induced stabilization of HIF transcription factors has been shown to lead to NOTCH activation in vitro in different contexts and tissues, causing differentiation arrest and induction of proliferation and migration.

Methods

Since the link between HIF-1α and NOTCH signalling has hardly been studied, we set out to closely investigate associations between the expression of HIF-1α and NOTCH pathway members in primary and metastatic human breast cancer specimens and their prognostic value.

Results

Co-expression of NOTCH1 intracellular domain (N1ICD) and HIF-1α was associated with a high grade and a high proliferation rate in invasive breast cancer. HIF-1α expression was low in classic, but high in pleomorphic lobular cancers, which also frequently showed stromal HIF-1α expression. NOTCH1 pathway activation was prognostically unfavorable.

Conclusion

In breast cancer, NOTCH pathway activation appears to be associated with a poor prognosis, but NOTCH and HIF signaling do not seem to be functionally associated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.S. Mumm, R. Kopan, Notch signaling: from the outside in. Dev. Biol. 228, 151–165 (2000)

    Article  PubMed  CAS  Google Scholar 

  2. S.J. Bray, Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. F. Radtke, K. Raj, The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat. Rev. Cancer 3, 756–767 (2003)

    Article  PubMed  CAS  Google Scholar 

  4. A. Dievart, N. Beaulieu, P. Jolicoeur, Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 18, 5973–5981 (1999)

    Article  PubMed  CAS  Google Scholar 

  5. M. Vooijs, C.T. Ong, B. Hadland, S. Huppert, Z. Liu, J. Korving, M. van den Born, T. Stappenbeck, Y. Wu, H. Clevers, R. Kopan, Mapping the consequence of Notch1 proteolysis in vivo with NIP-CRE. Development 134, 535–544 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. S. Weijzen, P. Rizzo, M. Braid, R. Vaishnav, S.M. Jonkheer, A. Zlobin, B.A. Osborne, S. Gottipati, J.C. Aster, W.C. Hahn, M. Rudolf, K. Siziopikou, W.M. Kast, L. Miele, Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat. Med. 8, 979–986 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. P. Sansone, G. Storci, C. Giovannini, S. Pandolfi, S. Pianetti, M. Taffurelli, D. Santini, C. Ceccarelli, P. Chieco, M. Bonafe, p66Shc/Notch-3 interplay controls self-renewal and hypoxia survival in human stem/progenitor cells of the mammary gland expanded in vitro as mammospheres. Stem Cells 25, 807–815 (2007)

    Article  PubMed  CAS  Google Scholar 

  8. M. Shipitsin, L.L. Campbell, P. Argani, S. Weremowicz, N. Bloushtain-Qimron, J. Yao, T. Nikolskaya, T. Serebryiskaya, R. Beroukhim, M. Hu, M.K. Halushka, S. Sukumar, L.M. Parker, K.S. Anderson, L.N. Harris, J.E. Garber, A.L. Richardson, S.J. Schnitt, Y. Nikolsky, R.S. Gelman, K. Polyak, Molecular definition of breast tumor heterogeneity. Cancer Cell 11, 259–273 (2007)

    Article  PubMed  CAS  Google Scholar 

  9. M. Reedijk, S. Odorcic, L. Chang, H. Zhang, N. Miller, D.R. McCready, G. Lockwood, S.E. Egan, High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65, 8530–8537 (2005)

    Article  PubMed  CAS  Google Scholar 

  10. S. Pece, M. Serresi, E. Santolini, M. Capra, E. Hulleman, V. Galimberti, S. Zurrida, P. Maisonneuve, G. Viale, P.P. Di Fiore, Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. C. Parr, G. Watkins, W.G. Jiang, The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int. J. Mol. Med. 14, 779–786 (2004)

    PubMed  CAS  Google Scholar 

  12. D. Gallahan, C. Kozak, R. Callahan, A new common integration region (int-3) for mouse mammary tumor virus on mouse chromosome 17. J. Virol. 61, 218–220 (1987)

    PubMed  CAS  Google Scholar 

  13. C. Hu, A. Dievart, M. Lupien, E. Calvo, G. Tremblay, P. Jolicoeur, Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am. J. Pathol. 168, 973–990 (2006)

    Article  PubMed  CAS  Google Scholar 

  14. R. Bos, H. Zhong, C.F. Hanrahan, E.C. Mommers, G.L. Semenza, H.M. Pinedo, M.D. Abeloff, J.W. Simons, P.J. van Diest, E. van der Wall, Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J. Natl. Cancer Inst. 93, 309–314 (2001)

    Article  PubMed  CAS  Google Scholar 

  15. R. Bos, P. van der Groep, A.E. Greijer, A. Shvarts, S. Meijer, H.M. Pinedo, G.L. Semenza, P.J. van Diest, E. van der Wall, Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer 97, 1573–1581 (2003)

    Article  PubMed  Google Scholar 

  16. M.M. Vleugel, A.E. Greijer, A. Shvarts, P. van der Groep, M. van Berkel, Y. Aarbodem, H. van Tinteren, A.L. Harris, P.J. van Diest, E. van der Wall, Differential prognostic impact of hypoxia induced and diffuse HIF-1alpha expression in invasive breast cancer. J. Clin. Pathol. 58, 172–177 (2005)

    Article  PubMed  CAS  Google Scholar 

  17. Y. Chen, M.A. De Marco, I. Graziani, A.F. Gazdar, P.R. Strack, L. Miele, M. Bocchetta, Oxygen concentration determines the biological effects of NOTCH-1 signaling in adenocarcinoma of the lung. Cancer Res. 67, 7954–7959 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. C. Sahlgren, M.V. Gustafsson, S. Jin, L. Poellinger, U. Lendahl, Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc. Natl. Acad. Sci. U. S. A. 105, 6392–6397 (2008)

    Article  PubMed  CAS  Google Scholar 

  19. B. Bedogni, J.A. Warneke, B.J. Nickoloff, A.J. Giaccia, M.B. Powell, Notch1 is an effector of Akt and hypoxia in melanoma development. J. Clin. Invest. 118, 3660–3670 (2008)

    Article  PubMed  CAS  Google Scholar 

  20. J. Chen, N. Imanaka, J. Chen, J.D. Griffin, Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br. J. Cancer 102, 351–360 (2010)

    Article  PubMed  CAS  Google Scholar 

  21. F. Xing, H. Okuda, M. Watabe, A. Kobayashi, S.K. Pai, W. Liu, P.R. Pandey, K. Fukuda, S. Hirota, T. Sugai, G. Wakabayshi, K. Koeda, M. Kashiwaba, K. Suzuki, T. Chiba, M. Endo, Y.Y. Mo, K. Watabe, Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 30, 4075–4086 (2011)

    Article  PubMed  CAS  Google Scholar 

  22. P.J. van Diest, J.P. Baak, P. Matze-Cok, E.C. Wisse-Brekelmans, C.M. van Galen, P.H. Kurver, S.M. Bellot, J. Fijnheer, L.H. van Gorp, W.S. Kwee et al., Reproducibility of mitosis counting in 2,469 breast cancer specimens: results from the Multicenter Morphometric Mammary Carcinoma Project. Hum. Pathol. 23, 603–607 (1992)

    Article  PubMed  Google Scholar 

  23. P.J. van Diest, No consent should be needed for using leftover body material for scientific purposes. For. Bmj 325, 648–651 (2002)

    Article  Google Scholar 

  24. P. van der Groep, A. Bouter, F.H. Menko, E. van der Wall, P.J. van Diest, High frequency of HIF-1alpha overexpression in BRCA1 related breast cancer. Breast Cancer Res. Treat. 111, 475–480 (2008)

    Article  PubMed  CAS  Google Scholar 

  25. G.S. Richards, B.M. Degnan, The dawn of developmental signaling in the metazoa. Cold Spring Harb. Symp. Quant. Biol. 74, 81–90 (2009)

    Article  PubMed  CAS  Google Scholar 

  26. C.T. Taylor, J.C. McElwain, Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology (Bethesda) 25, 272–279 (2010)

    Article  CAS  Google Scholar 

  27. F. Pistollato, E. Rampazzo, L. Persano, S. Abbadi, C. Frasson, L. Denaro, D. D'Avella, D.M. Panchision, A. Della Puppa, R. Scienza, G. Basso, Interaction of hypoxia-inducible factor-1alpha and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 28, 1918–1929 (2010)

    Article  PubMed  CAS  Google Scholar 

  28. C.L. Efferson, C.T. Winkelmann, C. Ware, T. Sullivan, S. Giampaoli, J. Tammam, S. Patel, G. Mesiti, J.F. Reilly, R.E. Gibson, C. Buser, T. Yeatman, D. Coppola, C. Winter, E.A. Clark, G.F. Draetta, P.R. Strack, P.K. Majumder, Downregulation of Notch pathway by a gamma-secretase inhibitor attenuates AKT/mammalian target of rapamycin signaling and glucose uptake in an ERBB2 transgenic breast cancer model. Cancer Res. 70, 2476–2484 (2010)

    Article  PubMed  CAS  Google Scholar 

  29. T. Palomero, M.L. Sulis, M. Cortina, P.J. Real, K. Barnes, M. Ciofani, E. Caparros, J. Buteau, K. Brown, S.L. Perkins, G. Bhagat, A.M. Agarwal, G. Basso, M. Castillo, S. Nagase, C. Cordon-Cardo, R. Parsons, J.C. Zuniga-Pflucker, M. Dominguez, A.A. Ferrando, Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 13, 1203–1210 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. P.K. Majumder, P.G. Febbo, R. Bikoff, R. Berger, Q. Xue, L.M. McMahon, J. Manola, J. Brugarolas, T.J. McDonnell, T.R. Golub, M. Loda, H.A. Lane, W.R. Sellers, mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10, 594–601 (2004)

    Article  PubMed  CAS  Google Scholar 

  31. L.D. Hoefnagel, M.J. van de Vijver, H.J. van Slooten, P. Wesseling, J. Wesseling, P.J. Westenend, J. Bart, C.A. Seldenrijk, I.D. Nagtegaal, J. Oudejans, P. van der Valk, P. van der Groep, E.G. de Vries, E. van der Wall, P.J. van Diest, Receptor conversion in distant breast cancer metastases. Breast Cancer Res. 12, R75 (2011)

    Article  Google Scholar 

  32. L. D. Hoefnagel, C. B. Moelans, S. L. Meijer, H. J. van Slooten, P. Wesseling, J. Wesseling, P. J. Westenend, J. Bart, C. A. Seldenrijk, I. D. Nagtegaal, J. Oudejans, P. van der Valk, C. H. van Gils, E. van der Wall and P. J. van Diest, Prognostic value of estrogen receptor alpha and progesterone receptor conversion in distant breast cancer metastases. Cancer (2012).

  33. L.M. Veenendaal, O. Kranenburg, N. Smakman, A. Klomp, I.H. Borel Rinkes, P.J. van Diest, Differential Notch and TGFbeta signaling in primary colorectal tumors and their corresponding metastases. Cell. Oncol. 30, 1–11 (2008)

    PubMed  CAS  Google Scholar 

  34. S. Jarriault, C. Brou, F. Logeat, E.H. Schroeter, R. Kopan, A. Israel, Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995)

    Article  PubMed  CAS  Google Scholar 

  35. L. Ronnov-Jessen, O.W. Petersen, M.J. Bissell, Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76, 69–125 (1996)

    PubMed  CAS  Google Scholar 

  36. B. Chiavarina, D. Whitaker-Menezes, G. Migneco, U.E. Martinez-Outschoorn, S. Pavlides, A. Howell, H.B. Tanowitz, M.C. Casimiro, C. Wang, R.G. Pestell, P. Grieshaber, J. Caro, F. Sotgia, M.P. Lisanti, HIF1-alpha functions as a tumor promoter in cancer associated fibroblasts, and as a tumor suppressor in breast cancer cells: Autophagy drives compartment-specific oncogenesis. Cell Cycle 9, 3534–3551 (2010)

    Article  PubMed  CAS  Google Scholar 

  37. G.L. Semenza, Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Iordanka Ivanova for helpful suggestions and critical input.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. van Diest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ercan, C., Vermeulen, J.F., Hoefnagel, L. et al. HIF-1α and NOTCH signaling in ductal and lobular carcinomas of the breast. Cell Oncol. 35, 435–442 (2012). https://doi.org/10.1007/s13402-012-0102-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-012-0102-8

Keywords

Navigation