Cellular Oncology

, Volume 35, Issue 4, pp 231–241 | Cite as

DNA hypermethylation biomarkers to predict response to cisplatin treatment, radiotherapy or chemoradiation: the present state of art

  • Frank Roossink
  • Steven de Jong
  • G. Bea A. Wisman
  • Ate G. J. van der Zee
  • Ed Schuuring



Concurrent platinum-based chemoradiation significantly improved survival of advanced stage cervical patients over radiotherapy alone. However, the 5-year overall survival is still only 66%. Presently, no biomarkers are available to select those cervical cancer patients that might benefit from concurrent platinum-based chemoradiation therapy. DNA methylation is a well-established contributor to the regulation of gene transcription, predominantly causing transcriptional silencing. Differences in promoter hypermethylation patterns and subsequent silencing, could contribute to the variety of responses observed in clinical practice. Several clinical trials on various malignancies reported a better response when Decitabine was administered prior to or in combination with standard therapy. This sensitization is thought to be due to re-expression of tumor suppressor genes. However, not all patients might benefit from demethylating agents, since re-expression of oncogenes could render patients more resistant.


In this review, we summarized the present state of art regarding hypermethylated genes and their affected signaling pathways that are associated with outcome after cisplatin treatment, radiotherapy or chemoradiation. Since only few studies were reported in cervical cancer, other malignancies were reviewed as well.


From the data presented in this review, we conclude that, in order to select patients that benefit most optimally from demethylating strategies, a comprehensive screening of a large panel of methylation markers, associated with both good as well as poor clinical outcome have to be investigated. Since such panels are not available at this moment, global methylation screening approaches are required to profile such methylated genes. Such methylated gene profiles might be very useful to optimize personalized treatment planning not only in cervical cancer but also in other malignancies.


DNA hypermethylation Cervical cancer Chemoradiation Response Predict Biomarker 


  1. 1.
    J. Ferlay, H.R. Shin, F. Bray, D. Forman, C. Mathers, D.M. Parkin, Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12), 2893–2917 (2010)PubMedCrossRefGoogle Scholar
  2. 2.
    C. McNeil, New standard of care for cervical cancer sets stage for next questions. J Natl Cancer Inst 91(6), 500–501 (1999)PubMedCrossRefGoogle Scholar
  3. 3.
    H.M. Keys, B.N. Bundy, F.B. Stehman, L.I. Muderspach, W.E. Chafe, C.L. Suggs 3rd, J.L. Walker, D. Gersell, Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med 340(15), 1154–1161 (1999)PubMedCrossRefGoogle Scholar
  4. 4.
    M. Morris, P.J. Eifel, J. Lu, P.W. Grigsby, C. Levenback, R.E. Stevens, M. Rotman, D.M. Gershenson, D.G. Mutch, Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. N Engl J Med 340(15), 1137–1143 (1999)PubMedCrossRefGoogle Scholar
  5. 5.
    C.W. Whitney, W. Sause, B.N. Bundy, J.H. Malfetano, E.V. Hannigan, W.C. Fowler Jr., D.L. Clarke-Pearson, S.Y. Liao, Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. J Clin Oncol 17(5), 1339–1348 (1999)PubMedGoogle Scholar
  6. 6.
    W.A. Peters 3rd, P.Y. Liu, R.J. Barrett 2nd, R.J. Stock, B.J. Monk, J.S. Berek, L. Souhami, P. Grigsby, W. Gordon Jr., D.S. Alberts, Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. J Clin Oncol 18(8), 1606–1613 (2000)PubMedGoogle Scholar
  7. 7.
    P.G. Rose, B.N. Bundy, E.B. Watkins, J.T. Thigpen, G. Deppe, M.A. Maiman, D.L. Clarke-Pearson, S. Insalaco, Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med 340(15), 1144–1153 (1999)PubMedCrossRefGoogle Scholar
  8. 8.
    Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration, Reducing Uncertainties About the Effects of Chemoradiotherapy for Cervical Cancer: A Systematic Review and Meta-Analysis of Individual Patient Data From 18 Randomized Trials. J Clin Oncol 26(35), 5802–5812 (2008)Google Scholar
  9. 9.
    A.W. Fyles, M. Pintilie, P. Kirkbride, W. Levin, L.A. Manchul, G.A. Rawlings, Prognostic factors in patients with cervix cancer treated by radiation therapy: results of a multiple regression analysis. Radiother Oncol 35(2), 107–117 (1995)PubMedCrossRefGoogle Scholar
  10. 10.
    A. Jakobsen, P. Bichel, M. Vaeth, New prognostic factors in squamous cell carcinoma of cervix uteri. Am J Clin Oncol 8(1), 39–43 (1985)PubMedCrossRefGoogle Scholar
  11. 11.
    D.S. Kapp, D. Fischer, E. Gutierrez, E.I. Kohorn, P.E. Schwartz, Pretreatment prognostic factors in carcinoma of the uterine cervix: a multivariable analysis of the effect of age, stage, histology and blood counts on survival. Int J Radiat Oncol Biol Phys 9(4), 445–455 (1983)PubMedCrossRefGoogle Scholar
  12. 12.
    C.A. Perez, P.W. Grigsby, S.M. Nene, H.M. Camel, A. Galakatos, M.S. Kao, M.A. Lockett, Effect of tumor size on the prognosis of carcinoma of the uterine cervix treated with irradiation alone. Cancer 69(11), 2796–2806 (1992)PubMedCrossRefGoogle Scholar
  13. 13.
    F.B. Stehman, B.N. Bundy, P.J. DiSaia, H.M. Keys, J.E. Larson, W.C. Fowler, Carcinoma of the cervix treated with radiation therapy. I. A multi-variate analysis of prognostic variables in the Gynecologic Oncology Group. Cancer 67(11), 2776–2785 (1991)PubMedCrossRefGoogle Scholar
  14. 14.
    R.A. Cooper, C.M. West, D.P. Wilks, J.P. Logue, S.E. Davidson, S.A. Roberts, R.D. Hunter, Tumour vascularity is a significant prognostic factor for cervix carcinoma treated with radiotherapy: independence from tumour radiosensitivity. Br J Cancer 81(2), 354–358 (1999)PubMedCrossRefGoogle Scholar
  15. 15.
    C.M. West, S.E. Davidson, S.A. Roberts, R.D. Hunter, The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer 76(9), 1184–1190 (1997)PubMedCrossRefGoogle Scholar
  16. 16.
    T. Toita, Y. Kakinohana, S. Shinzato, K. Ogawa, M. Yoshinaga, S. Iraha, M. Higashi, K. Sakumoto, K. Kanazawa, S. Sawada, Tumor diameter/volume and pelvic node status assessed by magnetic resonance imaging (MRI) for uterine cervical cancer treated with irradiation. Int J Radiat Oncol Biol Phys 43(4), 777–782 (1999)PubMedCrossRefGoogle Scholar
  17. 17.
    C.A. Meanwell, K.A. Kelly, S. Wilson, C. Roginski, C. Woodman, R. Griffiths, G. Blackledge, Young age as a prognostic factor in cervical cancer: analysis of population based data from 10,022 cases. Br Med J (Clin Res Ed) 296(6619), 386–391 (1988)CrossRefGoogle Scholar
  18. 18.
    F.N. Rutledge, M.F. Mitchell, M. Munsell, S. Bass, V. McGuffee, E.N. Atkinson, Youth as a prognostic factor in carcinoma of the cervix: a matched analysis. Gynecol Oncol 44(2), 123–130 (1992)PubMedCrossRefGoogle Scholar
  19. 19.
    K.M. Prise, J.M. O’Sullivan, Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5), 351–360 (2009)PubMedCrossRefGoogle Scholar
  20. 20.
    D. Verellen, M. De Ridder, N. Linthout, K. Tournel, G. Soete, G. Storme, Innovations in image-guided radiotherapy. Nat Rev Cancer 7(12), 949–960 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    M.W. Dewhirst, Y. Cao, B. Moeller, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8(6), 425–437 (2008)PubMedCrossRefGoogle Scholar
  22. 22.
    A. Bird, Perceptions of epigenetics. Nature 447(7143), 396–398 (2007)PubMedCrossRefGoogle Scholar
  23. 23.
    S.B. Baylin, M. Esteller, M.R. Rountree, K.E. Bachman, K. Schuebel, J.G. Herman, Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet 10(7), 687–692 (2001)PubMedCrossRefGoogle Scholar
  24. 24.
    S.B. Baylin, J.E. Ohm, Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6(2), 107–116 (2006)PubMedCrossRefGoogle Scholar
  25. 25.
    J.G. Herman, S.B. Baylin, Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 349(21), 2042–2054 (2003)PubMedCrossRefGoogle Scholar
  26. 26.
    N. Yang, E.R. Nijhuis, H.H. Volders, J.J. Eijsink, A. Lendvai, B. Zhang, H. Hollema, E. Schuuring, G.B. Wisman, A.G. van der Zee, Gene promoter methylation patterns throughout the process of cervical carcinogenesis. Cell Oncol 32(1–2), 131–143 (2010)PubMedGoogle Scholar
  27. 27.
    G.H. Kang, S. Lee, W.H. Kim, H.W. Lee, J.C. Kim, M.G. Rhyu, J.Y. Ro, Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 160(3), 787–794 (2002)PubMedCrossRefGoogle Scholar
  28. 28.
    G.H. Kang, S. Lee, N.-Y. Cho, T. Gandamihardja, T.I. Long, D.J. Weisenberger, M. Campan, P.W. Laird, DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 88(2), 161–170 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    K.L. Richards, B. Zhang, K.A. Baggerly, S. Colella, J.C. Lang, D.E. Schuller, R. Krahe, Genome-wide hypomethylation in head and neck cancer is more pronounced in HPV-negative tumors and is associated with genomic instability. PLoS One 4(3), e4941 (2009)PubMedCrossRefGoogle Scholar
  30. 30.
    W.A. Burgers, L. Blanchon, S. Pradhan, Y. de Launoit, T. Kouzarides, F. Fuks, Viral oncoproteins target the DNA methyltransferases. Oncogene 26(11), 1650–1655 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    C.B. Yoo, P.A. Jones, Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5(1), 37–50 (2006)PubMedCrossRefGoogle Scholar
  32. 32.
    J.A. Plumb, G. Strathdee, J. Sludden, S.B. Kaye, R. Brown, Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 60(21), 6039–6044 (2000)PubMedGoogle Scholar
  33. 33.
    G. Strathdee, M.J. MacKean, M. Illand, R. Brown, A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18(14), 2335–2341 (1999)PubMedCrossRefGoogle Scholar
  34. 34.
    F. Fang, C. Balch, J. Schilder, T. Breen, S. Zhang, C. Shen, L. Li, C. Kulesavage, A.J. Snyder, K.P. Nephew, D.E. Matei, A phase 1 and pharmacodynamic study of decitabine in combination with carboplatin in patients with recurrent, platinum-resistant, epithelial ovarian cancer. Cancer 116(17), 4043–4053 (2010)PubMedCrossRefGoogle Scholar
  35. 35.
    J.M. Scandura, G.J. Roboz, M. Moh, E.W. Morawa, F. Brenet, J.R. Bose, L. Villegas, U.S. Gergis, S.A. Mayer, C.M. Ippoliti, T.J. Curcio, E.K. Ritchie, E.J. Feldman, Phase I study of epigenetic priming with decitabine prior to standard induction chemotherapy for patients with AML. Blood 118(6), 1472–1480 (2011)PubMedCrossRefGoogle Scholar
  36. 36.
    M. Li, C. Balch, J.S. Montgomery, M. Jeong, J.H. Chung, P. Yan, T.H. Huang, S. Kim, K.P. Nephew, Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics 2, 34 (2009)PubMedCrossRefGoogle Scholar
  37. 37.
    J.P. Issa, V. Gharibyan, J. Cortes, J. Jelinek, G. Morris, S. Verstovsek, M. Talpaz, G. Garcia-Manero, H.M. Kantarjian, Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23(17), 3948–3956 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    R.M. Glasspool, M. Gore, G. Rustin, I. McNeish, R. Wilson, S. Pledge, J. Paul, M. Mackean, S. Halford, S. Kaye, Scottish Gynaecological Cancer Trials Group, Randomized phase II study of decitabine in combination with carboplatin compared with carboplatin alone in patients with recurrent advanced ovarian cancer. ASCO Meeting Abstracts 27(15), 5562 (2009)Google Scholar
  39. 39.
    S.S. Liu, R.C. Leung, K.Y. Chan, P.M. Chiu, A.N. Cheung, K.F. Tam, T.Y. Ng, L.C. Wong, H.Y. Ngan, p73 expression is associated with the cellular radiosensitivity in cervical cancer after radiotherapy. Clin Cancer Res 10(10), 3309–3316 (2004)PubMedCrossRefGoogle Scholar
  40. 40.
    G. Narayan, H. Arias-Pulido, S. Koul, H. Vargas, F.F. Zhang, J. Villella, A. Schneider, M.B. Terry, M. Mansukhani, V.V. Murty, Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2, 24 (2003)PubMedCrossRefGoogle Scholar
  41. 41.
    G. Narayan, H. Arias-Pulido, S.V. Nandula, K. Basso, D.D. Sugirtharaj, H. Vargas, M. Mansukhani, J. Villella, L. Meyer, A. Schneider, L. Gissmann, M. Durst, B. Pothuri, V.V. Murty, Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res 64(9), 2994–2997 (2004)PubMedCrossRefGoogle Scholar
  42. 42.
    T. Taniguchi, M. Tischkowitz, N. Ameziane, S.V. Hodgson, C.G. Mathew, H. Joenje, S.C. Mok, A.D. D’Andrea, Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nature Med 9(5), 568–574 (2003)PubMedCrossRefGoogle Scholar
  43. 43.
    J.L. Ramirez, R. Rosell, M. Taron, M. Sanchez-Ronco, V. Alberola, Penas R. de Las, J.M. Sanchez, T. Moran, C. Camps, B. Massuti, J.J. Sanchez, F. Salazar, S. Catot, 14-3-3sigma methylation in pretreatment serum circulating DNA of cisplatin-plus-gemcitabine-treated advanced non-small-cell lung cancer patients predicts survival: The Spanish Lung Cancer Group. J Clin Oncol 23(36), 9105–9112 (2005)PubMedCrossRefGoogle Scholar
  44. 44.
    M. Zurita, P.C. Lara, R. del Moral, B. Torres, J.L. Linares-Fernandez, S.R. Arrabal, J. Martinez-Galan, F.J. Oliver, J.M. Ruiz de Almodovar, Hypermethylated 14-3-3-sigma and ESR1 gene promoters in serum as candidate biomarkers for the diagnosis and treatment efficacy of breast cancer metastasis. BMC Cancer 10, 217 (2010)PubMedCrossRefGoogle Scholar
  45. 45.
    P. Chaudhry, R. Srinivasan, F.D. Patel, Utility of gene promoter methylation in prediction of response to platinum-based chemotherapy in epithelial ovarian cancer (EOC). Cancer Invest 27(8), 877–884 (2009)PubMedCrossRefGoogle Scholar
  46. 46.
    J.M. Teodoridis, J. Hall, S. Marsh, H.D. Kannall, C. Smyth, J. Curto, N. Siddiqui, H. Gabra, H.L. McLeod, G. Strathdee, R. Brown, CpG island methylation of DNA damage response genes in advanced ovarian cancer. Cancer Res 65(19), 8961–8967 (2005)PubMedCrossRefGoogle Scholar
  47. 47.
    Y. Zhang, X. Qu, W. Jing, X. Hu, X. Yang, K. Hou, Y. Teng, J. Zhang, Y. Liu, GSTP1 determines cis-platinum cytotoxicity in gastric adenocarcinoma MGC803 cells: regulation by promoter methylation and extracellular regulated kinase signaling. Anticancer Drugs 20(3), 208–214 (2009)PubMedCrossRefGoogle Scholar
  48. 48.
    R.C. Cumming, J. Lightfoot, K. Beard, H. Youssoufian, P.J. O’Brien, M. Buchwald, Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nature Med 7(7), 814–820 (2001)PubMedCrossRefGoogle Scholar
  49. 49.
    H.Y. Chen, C.J. Shao, F.R. Chen, A.L. Kwan, Z.P. Chen, Role of ERCC1 promoter hypermethylation in drug resistance to cisplatin in human gliomas. Int J Cancer 126(8), 1944–1954 (2010)PubMedGoogle Scholar
  50. 50.
    W. Wang, Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8(10), 735–748 (2007)PubMedCrossRefGoogle Scholar
  51. 51.
    K.S. Park, H.K. Kim, J.H. Lee, Y.B. Choi, S.Y. Park, S.H. Yang, S.Y. Kim, K.M. Hong, Transglutaminase 2 as a cisplatin resistance marker in non-small cell lung cancer. J Cancer Res Clin Oncol 136(4), 493–502 (2010)PubMedCrossRefGoogle Scholar
  52. 52.
    M. D’Eletto, M.G. Farrace, L. Falasca, V. Reali, S. Oliverio, G. Melino, M. Griffin, G.M. Fimia, M. Piacentini, Transglutaminase 2 is involved in autophagosome maturation. Autophagy 5(8), 1145–1154 (2009)PubMedCrossRefGoogle Scholar
  53. 53.
    L.J. Nicholson, P.R. Smith, L. Hiller, P.W. Szlosarek, C. Kimberley, J. Sehouli, D. Koensgen, A. Mustea, P. Schmid, T. Crook, Epigenetic silencing of argininosuccinate synthetase confers resistance to platinum-induced cell death but collateral sensitivity to arginine auxotrophy in ovarian cancer. Int J Cancer 125(6), 1454–1463 (2009)PubMedCrossRefGoogle Scholar
  54. 54.
    S. Battisti, D. Valente, L. Albonici, R. Bei, A. Modesti, C. Palumbo, Nutritional stress and arginine auxotrophy confer high sensitivity to chloroquine toxicity in mesothelioma cells. Am J Resp Cell Mol Biol 46(4), 498–506 (2012)CrossRefGoogle Scholar
  55. 55.
    W. Dai, J.M. Teodoridis, C. Zeller, J. Graham, J. Hersey, J.M. Flanagan, E. Stronach, D.W. Millan, N. Siddiqui, J. Paul, R. Brown, Systematic CpG islands methylation profiling of genes in the wnt pathway in epithelial ovarian cancer identifies biomarkers of progression-free survival. Clin Cancer Res 17(12), 4052–4062 (2011)PubMedCrossRefGoogle Scholar
  56. 56.
    J.A. Plumb, G. Strathdee, J. Sludden, S.B. Kaye, R. Brown, Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 60(21), 6039–6044 (2000)PubMedGoogle Scholar
  57. 57.
    G. Gifford, J. Paul, P.A. Vasey, S.B. Kaye, R. Brown, The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 10(13), 4420–4426 (2004)PubMedCrossRefGoogle Scholar
  58. 58.
    Wu Q, Vasquez KM (2008) Human MLH1 Protein Participates in Genomic Damage Checkpoint Signaling in Response to DNA Interstrand Crosslinks, while MSH2 Functions in DNA Repair. Plos Genet 4 (9)Google Scholar
  59. 59.
    H.-Y. Su, H.-C. Lai, Y.-W. Lin, C.-Y. Liu, C.-K. Chen, Y.-C. Chou, S.-P. Lin, W.-C. Lin, H.-Y. Lee, M.-H. Yu, Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway. Int J Cancer 127(3), 555–567 (2010)PubMedCrossRefGoogle Scholar
  60. 60.
    J. Staub, J. Chien, Y. Pan, X. Qian, K. Narita, G. Aletti, M. Scheerer, L.R. Roberts, J. Molina, V. Shridhar, Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance. Oncogene 26(34), 4969–4978 (2007)PubMedCrossRefGoogle Scholar
  61. 61.
    X. Chang, C.L. Monitto, S. Demokan, M.S. Kim, S.S. Chang, X. Zhong, J.A. Califano, D. Sidransky, Identification of hypermethylated genes associated with cisplatin resistance in human cancers. Cancer Res 70(7), 2870–2879 (2010)PubMedCrossRefGoogle Scholar
  62. 62.
    W.J. Kim, Q.N. Vo, M. Shrivastav, T.A. Lataxes, K.D. Brown, Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene 21(24), 3864–3871 (2002)PubMedCrossRefGoogle Scholar
  63. 63.
    K. Roy, L. Wang, G.M. Makrigiorgos, B.D. Price, Methylation of the ATM promoter in glioma cells alters ionizing radiation sensitivity. Biochem Biophys Res Commun 344(3), 821–826 (2006)PubMedCrossRefGoogle Scholar
  64. 64.
    H. De Schutter, H. Geeraerts, E. Verbeken, S. Nuyts, Promoter methylation of TIMP3 and CDH1 predicts better outcome in head and neck squamous cell carcinoma treated by radiotherapy only. Oncol Rep 21(2), 507–513 (2009)PubMedGoogle Scholar
  65. 65.
    S.L. Gerson, Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol 20(9), 2388–2399 (2002)PubMedCrossRefGoogle Scholar
  66. 66.
    M.E. Hegi, A.C. Diserens, T. Gorlia, M.F. Hamou, N. de Tribolet, M. Weller, J.M. Kros, J.A. Hainfellner, W. Mason, L. Mariani, J.E. Bromberg, P. Hau, R.O. Mirimanoff, J.G. Cairncross, R.C. Janzer, R. Stupp, MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10), 997–1003 (2005)PubMedCrossRefGoogle Scholar
  67. 67.
    M. Esteller, J. Garcia-Foncillas, E. Andion, S.N. Goodman, O.F. Hidalgo, V. Vanaclocha, S.B. Baylin, J.G. Herman, Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343(19), 1350–1354 (2000)PubMedCrossRefGoogle Scholar
  68. 68.
    K.H. Huang, S.F. Huang, I.H. Chen, C.T. Liao, H.M. Wang, L.L. Hsieh, Methylation of RASSF1A, RASSF2A, and HIN-1 is associated with poor outcome after radiotherapy, but not surgery, in oral squamous cell carcinoma. Clin Cancer Res 15(12), 4174–4180 (2009)PubMedCrossRefGoogle Scholar
  69. 69.
    Q.Z. Zhao, K.F. Dou, Methylation of Ras association domain family protein 1, isoform A correlated with proliferation and drug resistance in hepatocellular carcinoma cell line SMMC-7721. J Gastroenterol Hepatol 22(5), 683–689 (2007)PubMedGoogle Scholar
  70. 70.
    S. Honda, M. Haruta, W. Sugawara, F. Sasaki, M. Ohira, T. Matsunaga, H. Yamaoka, H. Horie, N. Ohnuma, A. Nakagawara, E. Hiyama, S. Todo, Y. Kaneko, The methylation status of RASSF1A promoter predicts responsiveness to chemotherapy and eventual cure in hepatoblastoma patients. Int J Cancer 123(5), 1117–1125 (2008)PubMedCrossRefGoogle Scholar
  71. 71.
    J. Bernier, E.J. Hall, A. Giaccia, Radiation oncology: a century of achievements. Nat Rev Cancer 4(9), 737–747 (2004)PubMedCrossRefGoogle Scholar
  72. 72.
    D. Wang, S.J. Lippard, Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4), 307–320 (2005)PubMedCrossRefGoogle Scholar
  73. 73.
    M.B. Kastan, J. Bartek, Cell-cycle checkpoints and cancer. Nature 432(7015), 316–323 (2004)PubMedCrossRefGoogle Scholar
  74. 74.
    Y. Shiloh, ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3(3), 155–168 (2003)PubMedCrossRefGoogle Scholar
  75. 75.
    F. Roossink, H.W. Wieringa, M.G. Noordhuis, K.A. Ten Hoor, M. Kok, L. Slagter-Menkema, G.H. de Bock, H. Hollema, E. Pras, E.G.E. de Vries, S. de Jong, A.G.J. van der Zee, E. Schuuring, G.B.A. Wisman, M.A.T.M. van Vugt, The Role of ATM and 53BP1 as Predictive Markers and Therapeutic Targets in Cervical Cancer. Int J Cancer (2012). doi:10.1002/ijc.27488
  76. 76.
    J.P.T. Morris, S.C. Wang, M. Hebrok, KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 10(10), 683–695 (2010)PubMedCrossRefGoogle Scholar
  77. 77.
    S. Angers, R.T. Moon, Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 10(7), 468–477 (2009)PubMedGoogle Scholar
  78. 78.
    Y. Kawano, R. Kypta, Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116(13), 2627–2634 (2003)PubMedCrossRefGoogle Scholar
  79. 79.
    Y.W. Lin, M.T. Chung, H.C. Lai, M. De Yan, Y.L. Shih, C.C. Chang, M.H. Yu, Methylation analysis of SFRP genes family in cervical adenocarcinoma. J Cancer Res Clin Oncol 135(12), 1665–1674 (2009)PubMedCrossRefGoogle Scholar
  80. 80.
    J. Ko, K.S. Ryu, Y.H. Lee, D.S. Na, Y.S. Kim, Y.M. Oh, I.S. Kim, J.W. Kim, Human Secreted Frizzled-Related Protein Is Down-regulated and Induces Apoptosis in Human Cervical Cancer. Exp Cell Res 280(2), 280–287 (2002)PubMedCrossRefGoogle Scholar
  81. 81.
    E.F. Wagner, A.R. Nebreda, Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9(8), 537–549 (2009)PubMedCrossRefGoogle Scholar
  82. 82.
    J.S. Sebolt-Leopold, R. Herrera, Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12), 937–947 (2004)PubMedCrossRefGoogle Scholar
  83. 83.
    A.E. Karnoub, R.A. Weinberg, Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7), 517–531 (2008)PubMedCrossRefGoogle Scholar
  84. 84.
    M.G. Noordhuis, J.J.H. Eijsink, K.A. ten Hoor, F. Roossink, H. Hollema, H.J.G. Arts, E. Pras, J.H. Maduro, A.K.L. Reyners, G.H. de Bock, G.B.A. Wisman, E. Schuuring, A.G.J. van der Zee, Expression of Epidermal Growth Factor Receptor (EGFR) and Activated EGFR Predict Poor Response to (Chemo)radiation and Survival in Cervical Cancer. Clin Cancer Res 15(23), 7389–7397 (2009)PubMedCrossRefGoogle Scholar
  85. 85.
    Y. Liu, B. Cui, Y. Qiao, Y. Zhang, Y. Tian, J. Jiang, D. Ma, B. Kong, Phosphoinositide-3-kinase inhibition enhances radiosensitization of cervical cancer in vivo. Int J Gynecol Cancer 21(1), 100–105 (2011)PubMedCrossRefGoogle Scholar
  86. 86.
    D.D. Meira, V.H. de Almeida, J.S. Mororo, I. Nobrega, L. Bardella, R.L. Silva, R.M. Albano, C.G. Ferreira, Combination of cetuximab with chemoradiation, trastuzumab or MAPK inhibitors: mechanisms of sensitisation of cervical cancer cells. Br J Cancer 101(5), 782–791 (2009)PubMedCrossRefGoogle Scholar
  87. 87.
    M. Ongenaert, G.B. Wisman, H.H. Volders, A.J. Koning, A.G. Zee, W. van Criekinge, E. Schuuring, Discovery of DNA methylation markers in cervical cancer using relaxation ranking. BMC Med Genomics 1, 57 (2008). doi:10.1186/1755-8794-1-57 PubMedCrossRefGoogle Scholar
  88. 88.
    M.O. Hoque, M.S. Kim, K.L. Ostrow, J. Liu, G.B. Wisman, H.L. Park, M.L. Poeta, C. Jeronimo, R. Henrique, A. Lendvai, E. Schuuring, S. Begum, E. Rosenbaum, M. Ongenaert, K. Yamashita, J. Califano, W. Westra, A.G. van der Zee, W. Van Criekinge, D. Sidransky, Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res 68(8), 2661–2670 (2008)PubMedCrossRefGoogle Scholar
  89. 89.
    J.J. Eijsink, A. Lendvai, V. Deregowski, H.G. Klip, G. Verpooten, L. Dehaspe, G.H. de Bock, H. Hollema, W. van Criekinge, E. Schuuring, A.G. van der Zee, G.B. Wisman, A four gene methylation marker panel as triage test in hr-HPV positive patients. Int J Cancer 130(8), 1861–1869 (2012)PubMedCrossRefGoogle Scholar
  90. 90.
    E.R. Nijhuis, N. Reesink-Peters, G.B. Wisman, H.W. Nijman, J. van Zanden, H. Volders, H. Hollema, A.J. Suurmeijer, E. Schuuring, A.G. van der Zee, An overview of innovative techniques to improve cervical cancer screening. Cell Oncol 28(5–6), 233–246 (2006)PubMedGoogle Scholar
  91. 91.
    D. Serre, B.H. Lee, A.H. Ting, MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Res 38(2), 391–399 (2010)PubMedCrossRefGoogle Scholar
  92. 92.
    S. Stolzenburg, A. Bilsland, W.N. Keith, M.G. Rots, Modulation of gene expression using zinc finger-based artificial transcription factors. Methods Mol Biol 649, 117–132 (2010)PubMedCrossRefGoogle Scholar
  93. 93.
    S. Koul, J. Houldsworth, M.M. Mansukhani, A. Donadio, J.M. McKiernan, V.E. Reuter, G.J. Bosl, R.S. Chaganti, V.V. Murty, Characteristic promoter hypermethylation signatures in male germ cell tumors. Mol Cancer 1, 8 (2002)PubMedCrossRefGoogle Scholar
  94. 94.
    S.L. Lim, P. Smith, N. Syed, C. Coens, H. Wong, M. van der Burg, P. Szlosarek, T. Crook, J.A. Green, Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br J Cancer 98(8), 1452–1456 (2008)PubMedCrossRefGoogle Scholar

Copyright information

© International Society for Cellular Oncology 2012

Authors and Affiliations

  • Frank Roossink
    • 1
  • Steven de Jong
    • 2
  • G. Bea A. Wisman
    • 1
  • Ate G. J. van der Zee
    • 1
  • Ed Schuuring
    • 3
    • 4
  1. 1.Department of Gynecologic OncologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  2. 2.Department of Medical OncologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  3. 3.Department of PathologyUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
  4. 4.Department of Pathology and Medical Biology (EA10)University Medical Center GroningenGroningenThe Netherlands

Personalised recommendations