Skip to main content

Advertisement

Log in

Characterization of human pancreatic orthotopic tumor xenografts suitable for drug screening

  • Original Paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Background

Efforts to identify novel therapeutic options for human pancreatic ductal adenocarcinoma (PDAC) have failed to result in a clear improvement in patient survival to date. Pancreatic cancer requires efficient therapies that must be designed and assayed in preclinical models with improved predictor ability. Among the available preclinical models, the orthotopic approach fits with this expectation, but its use is still occasional.

Methods

An in vivo platform of 11 orthotopic tumor xenografts has been generated by direct implantation of fresh surgical material. In addition, a frozen tumorgraft bank has been created, ensuring future model recovery and tumor tissue availability.

Results

Tissue microarray studies allow showing a high degree of original histology preservation and maintenance of protein expression patterns through passages. The models display stable growth kinetics and characteristic metastatic behavior. Moreover, the molecular diversity may facilitate the identification of tumor subtypes and comparison of drug responses that complement or confirm information obtained with other preclinical models.

Conclusions

This panel represents a useful preclinical tool for testing new agents and treatment protocols and for further exploration of the biological basis of drug responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.L. Kindler, Pancreatic cancer: an update. Curr. Oncol. Rep. 9, 170–176 (2007)

    Article  PubMed  CAS  Google Scholar 

  2. J.D. Berlin, P. Catalano, J.P. Thomas, J.W. Kugler, D.G. Haller, A.B. Benson 3rd, Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J. Clin. Oncol. 20, 3270–3275 (2002)

    Article  PubMed  CAS  Google Scholar 

  3. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, M.J. Thun, Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008)

    Article  PubMed  Google Scholar 

  4. J.E. Talmadge, R.K. Singh, I.J. Fidler, A. Raz, Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am. J. Pathol. 170, 793–804 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. B. Rubio-Viqueira, A. Jimeno, G. Cusatis, X. Zhang, C. Iacobuzio-Donahue, C. Karikari, C. Shi, K. Danenberg, P.V. Danenberg, H. Kuramochi, K. Tanaka, S. Singh, H. Salimi-Moosavi, N. Bouraoud, M.L. Amador, S. Altiok, P. Kulesza, C. Yeo, W. Messersmith, J. Eshleman, R.H. Hruban, A. Maitra, M. Hidalgo, An in vivo platform for translational drug development in pancreatic cancer. Clin. Cancer Res. 12, 4652–4661 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. B. Rubio-Viqueira, M. Hidalgo, Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin. Pharmacol. Ther. 85, 217–221 (2009)

    Article  PubMed  CAS  Google Scholar 

  7. X. Fu, F. Guadagni, R.M. Hoffman, A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc. Natl Acad. Sci. U.S.A. 89, 5645–5649 (1992)

    Article  PubMed  CAS  Google Scholar 

  8. G. Capella, L. Farre, A. Villanueva, G. Reyes, C. Garcia, G. Tarafa, F. Lluis, Orthotopic models of human pancreatic cancer. Ann. NY Acad. Sci. 880, 103–109 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. K. Garber, From human to mouse and back: ‘tumorgraft’ models surge in popularity. J. Natl. Cancer Inst. 101, 6–8 (2009)

    PubMed  Google Scholar 

  10. C. Sorio, A. Bonora, S. Orlandini, P.S. Moore, P. Capelli, P. Cristofori, G. Dal Negro, P. Marchiori, G. Gaviraghi, M. Falconi, P. Pederzoli, G. Zamboni, A. Scarpa, Successful xenografting of cryopreserved primary pancreatic cancers. Virchows Arch. 438, 154–158 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. M.P. Kim, D.B. Evans, H. Wang, J.L. Abbruzzese, J.B. Fleming, G.E. Gallick, Generation of orthotopic and heterotopic human pancreatic cancer xenografts in immunodeficient mice. Nat. Protoc. 4, 1670–1680 (2009)

    Article  PubMed  CAS  Google Scholar 

  12. R.M. Hoffman, Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest. New. Drugs. 17, 343–359 (1999)

    Article  PubMed  CAS  Google Scholar 

  13. P.A. Philip, M. Mooney, D. Jaffe, G. Eckhardt, M. Moore, N. Meropol, L. Emens, E. O’Reilly, M. Korc, L. Ellis, J. Benedetti, M. Rothenberg, C. Willett, M. Tempero, A. Lowy, J. Abbruzzese, D. Simeone, S. Hingorani, J. Berlin, J. Tepper, Consensus report of the national cancer institute clinical trials planning meeting on pancreas cancer treatment. J. Clin. Oncol. 27, 5660–5669 (2009)

    Article  PubMed  Google Scholar 

  14. J. Kononen, L. Bubendorf, A. Kallioniemi, M. Barlund, P. Schraml, S. Leighton, J. Torhorst, M.J. Mihatsch, G. Sauter, O.P. Kallioniemi, Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998)

    Article  PubMed  CAS  Google Scholar 

  15. S. Kumar, V.M. Weaver, Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28, 113–127 (2009)

    Article  PubMed  Google Scholar 

  16. G.C. Chu, A.C. Kimmelman, A.F. Hezel, R.A. DePinho, Stromal biology of pancreatic cancer. J. Cell. Biochem. 101, 887–907 (2007)

    Article  PubMed  CAS  Google Scholar 

  17. A.L. Kung, Practices and pitfalls of mouse cancer models in drug discovery. Adv. Cancer Res. 96, 191–212 (2007)

    Article  PubMed  CAS  Google Scholar 

  18. H.G. Hotz, H.A. Reber, B. Hotz, T. Yu, T. Foitzik, H.J. Buhr, G. Cortina, O.J. Hines, An orthotopic nude mouse model for evaluating pathophysiology and therapy of pancreatic cancer. Pancreas. 26, e89–e98 (2003)

    Article  PubMed  Google Scholar 

  19. S. Marchan, S. Perez-Torras, A. Vidal, J. Adan, F. Mitjans, N. Carbo, A. Mazo, Dual effects of beta3 integrin subunit expression on human pancreatic cancer models. Anal. Cell Pathol/Cellular Oncology 33, 191–205 (2010)

    Google Scholar 

  20. M. Andrianifahanana, N. Moniaux, B.M. Schmied, J. Ringel, H. Friess, M.A. Hollingsworth, M.W. Buchler, J.P. Aubert, S.K. Batra, Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin. Cancer Res. 7, 4033–4040 (2001)

    PubMed  CAS  Google Scholar 

  21. K. Nagata, M. Horinouchi, M. Saitou, M. Higashi, M. Nomoto, M. Goto, S. Yonezawa, Mucin expression profile in pancreatic cancer and the precursor lesions. J. Hepatobiliary Pancreat Surg. 14, 243–254 (2007)

    Article  PubMed  Google Scholar 

  22. A.P. Singh, P. Chaturvedi, S.K. Batra, Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Res. 67, 433–436 (2007)

    Article  PubMed  CAS  Google Scholar 

  23. A. Westgaard, A.R. Schjolberg, M. Cvancarova, T.J. Eide, O.P. Clausen, I.P. Gladhaug, Differentiation markers in pancreatic head adenocarcinomas: MUC1 and MUC4 expression indicates poor prognosis in pancreatobiliary differentiated tumours. Histopathology. 54, 337–347 (2009)

    Article  PubMed  Google Scholar 

  24. S. Meer, M. Altini, CK7+/CK20- immunoexpression profile is typical of salivary gland neoplasia. Histopathology. 51, 26–32 (2007)

    Article  PubMed  CAS  Google Scholar 

  25. F.H. Schmitz-Winnenthal, C. Volk, B. Helmke, S. Berger, U. Hinz, M. Koch, J. Weitz, J. Kleeff, H. Friess, M. Zoller, M.W. Buchler, K. Z’Graggen, Expression of cytokeratin-20 in pancreatic cancer: an indicator of poor outcome after R0 resection. Surgery. 139, 104–108 (2006)

    Article  PubMed  Google Scholar 

  26. M.C. Bibby, Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur. J. Cancer 40, 852–857 (2004)

    Article  PubMed  CAS  Google Scholar 

  27. H.H. Fiebig, A. Maier, A.M. Burger, Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur. J. Cancer 40, 802–820 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. E. Karna, A. Surazynski, K. Orlowski, J. Laszkiewicz, Z. Puchalski, P. Nawrat, J. Palka, Serum and tissue level of insulin-like growth factor-I (IGF-I) and IGF-I binding proteins as an index of pancreatitis and pancreatic cancer. Int. J. Exp. Pathol. 83, 239–245 (2002)

    Article  PubMed  CAS  Google Scholar 

  29. U. Bergmann, H. Funatomi, M. Yokoyama, H.G. Beger, M. Korc, Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res. 55, 2007–2011 (1995)

    PubMed  CAS  Google Scholar 

  30. S. Ueda, K. Hatsuse, H. Tsuda, S. Ogata, N. Kawarabayashi, T. Takigawa, T. Einama, D. Morita, K. Fukatsu, Y. Sugiura, O. Matsubara, H. Mochizuki, Potential crosstalk between insulin-like growth factor receptor type 1 and epidermal growth factor receptor in progression and metastasis of pancreatic cancer. Mod. Pathol. 19, 788–796 (2006)

    PubMed  CAS  Google Scholar 

  31. H. Werner, I. Bruchim, The insulin-like growth factor-I receptor as an oncogene. Arch. Physiol. Biochem. 115, 58–71 (2009)

    Article  PubMed  CAS  Google Scholar 

  32. C. Horndler, R. Gallego, X. Garcia-Albeniz, V. Alonso-Espinaco, V. Alonso, P. Escudero, M. Jimeno, J. Ortego, J. Codony-Servat, C. Fernandez-Martos, A. Calatrava, M. Marin-Aguilera, J. Munoz, S. Castellvi-Bel, A. Castells, M. Rubini, P. Gascon, J. Maurel, Co-expression of matrix metalloproteinase-7 (MMP-7) and phosphorylated insulin growth factor receptor I (pIGF-1R) correlates with poor prognosis in patients with wild-type KRAS treated with cetuximab or panitumumab: a GEMCAD study. Cancer Biol. Ther. 11, 177–83 (2011)

    Google Scholar 

  33. M. Guix, M. Granja Nde, I. Meszoely, T.B. Adkins, B.M. Wieman, K.E. Frierson, V. Sanchez, M.E. Sanders, A.M. Grau, I.A. Mayer, G. Pestano, Y. Shyr, S. Muthuswamy, B. Calvo, H. Krontiras, I.E. Krop, M.C. Kelley, C.L. Arteaga, Short preoperative treatment with erlotinib inhibits tumor cell proliferation in hormone receptor-positive breast cancers. J. Clin. Oncol. 26, 897–906 (2008)

    Article  PubMed  CAS  Google Scholar 

  34. S. Miyamoto, K. Yano, S. Sugimoto, G. Ishii, T. Hasebe, Y. Endoh, K. Kodama, M. Goya, T. Chiba, A. Ochiai, Matrix metalloproteinase-7 facilitates insulin-like growth factor bioavailability through its proteinase activity on insulin-like growth factor binding protein 3. Cancer Res. 64, 665–671 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. A.C. Williams, H. Smartt, A.M. H-Zadeh, M. Macfarlane, C. Paraskeva, T.J. Collard, Insulin-like growth factor binding protein 3 (IGFBP-3) potentiates TRAIL-induced apoptosis of human colorectal carcinoma cells through inhibition of NF-kappaB. Cell Death Differ. 14, 137–145 (2007)

    Article  PubMed  CAS  Google Scholar 

  36. F. Ozawa, H. Friess, J. Kleeff, Z.W. Xu, A. Zimmermann, M.S. Sheikh, M.W. Buchler, Effects and expression of TRAIL and its apoptosis-promoting receptors in human pancreatic cancer. Cancer Lett. 163, 71–81 (2001)

    Article  PubMed  CAS  Google Scholar 

  37. J. Li, M.W. Saif, Any progress in the management of advanced pancreatic cancer? Highlights from the 45th ASCO annual meeting. Orlando, FL, USA. May 29-June 2, 2009. JOP 10, 361–365 (2009)

    PubMed  Google Scholar 

  38. M.T. Mueller, P.C. Hermann, J. Witthauer, B. Rubio-Viqueira, S.F. Leicht, S. Huber, J.W. Ellwart, M. Mustafa, P. Bartenstein, J.G. D’Haese, M.H. Schoenberg, F. Berger, K.W. Jauch, M. Hidalgo, C. Heeschen, Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137, 1102–1113 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Ministerio de Ciencia e Innovación, Grant BIO2005-08682-C03-03 and BIO2008-04692-C03-03 and Ministerio de Sanidad y Consumo, Grant 03/156. AVP has been FI fellow recipient.

We are very grateful to Raquel Longarón, Eva Fernández, and Ingrid Victoria for technical work in characterization of gene status, tissue microarrays and histochemistry/immunohistochemistry, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adela Mazo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental 1

Macroscopic picture representative of a pancreatic resection and tissue sampling. Macroscopic features of a ductal pancreatic adenocarcinoma (CP2). A cross section of the pancreatic head show a 2.5 cm tumor which can be identified as a solid nodular area. The limit of the tumor is marked with a dotted line. A fresh tumor tissue sample was obtained (black arrowhead) to be implanted in the mice and to be stored frozen. Normal pancreatic tissue can be observed at the left side of the surgical specimen, nearby the resection margin. The white arrowhead shows the place where the normal tissue sample was taken. (DOC 745 kb)

Supplemental 2

Hematoxylin-eosin staining of primary human tumors and their corresponding xenografted tumors (2nd or 3th generations) (PPT 44246 kb)

Supplemental 3

Microphotography of tumorgrafts showing transition zones between tumor and normal pancreas. Acini representative of normal pancreas (→). Tumor areas (*) (PPT 997 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez-Torras, S., Vidal-Pla, A., Miquel, R. et al. Characterization of human pancreatic orthotopic tumor xenografts suitable for drug screening. Cell Oncol. 34, 511–521 (2011). https://doi.org/10.1007/s13402-011-0049-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-011-0049-1

Keywords

Navigation