Skip to main content

Advertisement

Log in

Enhancing sustainable composites: isolation of nanocellulose from Selenicereus undatus (dragon fruit) and kenaf fiber reinforcement in vinyl ester matrix—a study on mechanical, wear, fatigue, creep, and dynamic mechanical properties

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study explores the potential of utilizing nanocellulose extracted from Selenicereus undatus (dragon fruit) and kenaf fiber to enhance the properties of vinyl ester composites. With a focus on sustainable and high-performance materials, our research aims to innovate by reinforcing composites with bioderived nanocellulose and natural fibers. We employ traditional hand layup techniques for precise assembly and abrasive water jet machining for accurate specimen preparation, merging conventional fabrication methods with advanced material science. The integration of nanocellulose and kenaf fibers is expected to significantly enhance the mechanical durability and environmental resistance of the composites, addressing both performance and sustainability concerns. Our comprehensive analysis, following ASTM standards, evaluates mechanical, wear, fatigue, creep, and dynamic mechanical properties of the developed composites. The standout composite, designated VC2, exhibits notable performance improvements, including a tensile strength of 162 MPa, flexural strength of 191 MPa, and impact energy absorption of 5.12 J, among others. Furthermore, VC3 demonstrates exceptional fatigue resistance, while VC4 shows reduced creep strain, highlighting the material’s resilience under cyclic loading and prolonged stress. These findings underscore the synergistic effects of combining nanocellulose and kenaf fibers within a vinyl ester matrix, resulting in marked enhancements in both mechanical properties and durability. The successful application of these biobased reinforcements opens new avenues for sustainable composite materials across industries, from automotive to aerospace. This research not only advances our understanding of biocomposite materials but also demonstrates the feasibility of incorporating agricultural waste products into high-value engineering applications. Future studies will focus on optimizing composite formulation and exploring scalability for commercial use, further advancing the field of sustainable material science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data are available within the manuscript. No more additional data is available.

References

  1. Syduzzaman MD et al (2023) Results in materials 100448. https://doi.org/10.1016/j.rinma.2023.100448

  2. Karaoui M, Hsissou R, Alami M, Assouag M (2023) Iran Polym J 32(5):621–631. https://doi.org/10.1007/s13726-023-01151-2

    Article  Google Scholar 

  3. Kumar P, Kumar M, Roopa CP (2022) J Indian Chem Soc 99(10):100715. https://doi.org/10.1016/j.jics.2022.100715

    Article  Google Scholar 

  4. Fahma F, Febiyanti I, Lisdayana N, Arnata IW, Sartika D (2021) Arch Mater Sci Eng 109(2):49–64. https://doi.org/10.5604/01.3001.0015.2624

    Article  Google Scholar 

  5. Tien NNT, Le NL, Khoi TT, Richel A (2022) Biomass Conversion Biorefinery. 1–13. https://doi.org/10.1007/s13399-021-02146-w

  6. Kaur P, Sharma N, Munagala M, Rajkhowa R, Aallardyce B, Shastri Y, Agrawal R (2021) Front Nanotechnol 3:747329. https://doi.org/10.3389/fnano.2021.747329

    Article  Google Scholar 

  7. Bosenbecker MW, Cholant GM, Silva GEHD, Paniz OG, Carreño NLV, Marini J, Oliveira ADD (2020) Polímeros 29:e2019058. https://doi.org/10.1590/0104-1428.04819

    Article  Google Scholar 

  8. Sunesh NP, Indran S, Divya D, Suchart S (2022) Polym Compos 43(9):6476–6488. https://doi.org/10.1002/pc.26960

    Article  Google Scholar 

  9. Nagarajan KJ, Balaji AN, Basha KS, Ramanujam NR, Kumar RA (2020) Int J Biol Macromol 152:327–339. https://doi.org/10.1016/j.ijbiomac.2020.02.255

    Article  Google Scholar 

  10. Mohammed M, Jawad AJAM, Mohammed AM, Oleiwi JK, Adam T, Osman AF, ... Jaafar M (2023) Polymer Testing. 108083. https://doi.org/10.1016/j.polymertesting.2023.108083

  11. Bhanuprakash L, Manikandan N, Raphel A, Mangalathu GS (2023). Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.06.247

    Article  Google Scholar 

  12. Fajrin J, Akmaluddin A, Gapsari F (2022) Results Eng 13:100380. https://doi.org/10.1016/j.rineng.2022.100380

    Article  Google Scholar 

  13. Muralidharan ND, Subramanian J, Rajamanickam SK, Gopalan V (2023) J Polym Eng 43(10):865–874. https://doi.org/10.1515/polyeng-2023-0128

    Article  Google Scholar 

  14. Raja T, Mohanavel V, Kumar SS, Rajkumar S, Ravichandran M, Subbiah R (2022) Mater Today Proc 59:1345–1348. https://doi.org/10.1016/j.matpr.2021.11.548

    Article  Google Scholar 

  15. Uzoma AE, Nwaeche CF, Al-Amin M, Muniru OS, Olatunji O, Nzeh SO (2023) Eng 4(2):1698–1710. https://doi.org/10.3390/eng4020096

    Article  Google Scholar 

  16. Arjmandi R, Yıldırım I, Hatton F, Hassan A, Jefferies C, Mohamad Z, Othman N (2021) J Eng Fibers Fabr 16:15589250211040184. https://doi.org/10.1177/15589250211040184

    Article  Google Scholar 

  17. Hosseini SB, Gaff M, Li H, Hui D (2023) Rev Adv Mater Sci 62(1):20230131. https://doi.org/10.1515/rams-2023-0131

    Article  Google Scholar 

  18. Bhardwaj S, Singh S, Meda RS, Jain S, Maji PK (2023) Biomass Convers Biorefinery. 1–14. https://doi.org/10.1007/s13399-023-03970-y

  19. Sivakumar V, Kaliappan S, Natrayan L, Patil PP (2023) Silicon 1–9. https://doi.org/10.1007/s12633-023-02370-1

  20. Venkatesh R, Ballal S, Krishnan AM, Prabagaran S, Mohankumar S, Ramaraj E (2023) Heliyon 9(5). https://doi.org/10.1016/j.heliyon.2023.e15934

  21. Pinnell M, Fields R, Zabora R (2005) J Test Eval 33(1):27–31. https://doi.org/10.1520/JTE12521

    Article  Google Scholar 

  22. Prasad MM, Harikrishnan R, Khan MS, Santhoshkumar T, Rajkumar T, Nandhagopan S (2023) Mater Today Proc 77:509–514. https://doi.org/10.1016/j.matpr.2022.11.354

    Article  Google Scholar 

  23. Kumar S, Sharma N, Biswas R, Singh KK (2023). Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.03.327

    Article  Google Scholar 

  24. Bachi Al-Fahad IO, Hassan AD, Faisal BM, Sharaf HK (2023) East-Eur J Enterp Technol 124(7). https://doi.org/10.15587/1729-4061.2023.286541

  25. Tavadi AR, Nagabhushana N, Vivek Bhandarkar VN, Jagadeesha T, Kerur MR, Rudresha S, ... Mohan DG (2024) Arab J Sci Eng 49(2):2311–2325. https://doi.org/10.1007/s13369-023-08207-8

  26. Sharma N, Singh KK, Ansari MTA (2023). Mater Today Proc. https://doi.org/10.1016/j.matpr.2023.05.357

    Article  Google Scholar 

  27. Mohamed K, Hassanein A, Benmokrane B (2023) In International Symposium of the International Federation for Structural Concrete (pp. 778–787). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-32519-9_76

  28. Kaushik D, Gairola S, Varikkadinmel B, Singh I (2023) Polym Compos 44(1):515–523. https://doi.org/10.1002/pc.27114

    Article  Google Scholar 

  29. Abbas AGN, Aziz FNAA, Abdan K, Nasir NAM, Huseien GF (2023) Constr Build Mater 396:132160. https://doi.org/10.1016/j.conbuildmat.2023.132160

    Article  Google Scholar 

  30. Marcuello C, Chabbert B, Berzin F, Bercu NB, Molinari M, Aguié-Béghin V (2023) Materials 16(6):2440. https://doi.org/10.3390/ma16062440

    Article  Google Scholar 

  31. Li C, Liao H, Gao H, Cheng F (2024) Enhancing interface compatibility in high-filled coal gangue/polyethylene composites through silane coupling agent-mediated interface modification. Compos Sci Technol 110546. https://doi.org/10.1016/j.compscitech.2024.110546

  32. James A, Rahman MR, Mohamad Said KA, Kanakaraju D, Sueraya AZ, Kuok KK, ... Rahman MM (2023) J Thermoplast Compos Mater 08927057231205451. https://doi.org/10.1177/08927057231205451

  33. Khan K, Johari MAM, Amin MN, Iqbal M (2024) Case Stud Constr Mater 20:e02699. https://doi.org/10.1016/j.cscm.2023.e02699

    Article  Google Scholar 

  34. Seydibeyoğlu MÖ, Dogru A, Wang J, Rencheck M, Han Y, Wang L, ... Gardner DJ (2023) Review on hybrid reinforced polymer matrix composites with nanocellulose, nanomaterials, and other fibers. Polymers 15(4):984. https://doi.org/10.3390/polym15040984

  35. Khan A, Sapuan SM, Siddiqui VU, Zainudin ES, Zuhri MYM, Harussani MM (2023) Int J Biol Macromol 127119. https://doi.org/10.1016/j.ijbiomac.2023.127119

  36. Ni K, Du G, Liu C, Wu Y, Yang H, Yin C, ... Yang L (2023) Cross-linked entanglement of aldehyde and amine-functionalized nanocellulose reinforced with biomineralization to produce an all-bio-based adhesive. Chem Eng J 465:142888. https://doi.org/10.1016/j.cej.2023.142888

  37. Dias IK, Lacerda BK, Arantes V (2023) Int J Biol Macromol 242:125053. https://doi.org/10.1016/j.ijbiomac.2023.125053

    Article  Google Scholar 

  38. Zhao LC, Xu L, Yazdi A (2023) Laboratory evaluation of the effect of waste materials on mechanical properties of asphalt binder and mixture containing combined natural binder and waste polymer. Constr Build Mater 403:132995. https://doi.org/10.1016/j.conbuildmat.2023.132995

    Article  Google Scholar 

  39. Oliver BA, Dong Q, Ramezani M, Selles MA, Sanchez-Caballero S (2023) Tribological performance of bamboo fabric reinforced epoxy composites. Macromol Mater Eng 308(9):2300077. https://doi.org/10.1002/mame.202300077

    Article  Google Scholar 

  40. Neves RM, Ornaghi Jr HL, Alves FC, Zattera AJ, Tom M, Lal HM, ... Thomas S (2023) Creep and stress relaxation behavior of functionalized microcrystalline cellulose/epoxy composites. Cellulose30(4), 2197–2216. Neves, R. M., Ornaghi Jr, H. L., Alves, F. C., Zattera, A. J., Tom, M., Lal, H. M., ... & Thomas, S. (2023). Creep and stress relaxation behavior of functionalized microcrystalline cellulose/epoxy composites. Cellulose 30(4):2197–2216

  41. Tang S, Wu Z, Li X, Xie F, Ye D, Ruiz-Hitzky E, ... Wang X (2023) Carbohydr Polym 299:120204. https://doi.org/10.1016/j.carbpol.2022.120204

  42. Mohapatra DK, Deo CR, Mishra P, Ekka KK, Mishra C (2023) Proc Inst Mech Eng Part E J Process Mech Eng 237(6):2440–2448. https://doi.org/10.1177/09544089221136813

    Article  Google Scholar 

  43. Zhao X, Bhagia S, Gomez-Maldonado D, Tang X, Wasti S, Lu S, ... Ozcan S (2023) Materials Today https://doi.org/10.1016/j.mattod.2023.04.010

  44. Feng X, Wang X, Zhang C, Dang C, Chen Y, Qi H (2021) Carbon 183:187–195. https://doi.org/10.1016/j.carbon.2021.07.022

    Article  Google Scholar 

  45. Perumal KS, Boopathi R, Selvarajan L, Venkataramanan K (2023) The effects of zircon particles on the mechanical and morphological properties of glass fibre reinforced epoxy composite. Mater Today Commun 37:107067. https://doi.org/10.1016/j.mtcomm.2023.107067

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the management for their provision of resources and assistance enabling the completion of this research.

Author information

Authors and Affiliations

Authors

Contributions

R. Ashok Raj and K. Vinoth Kumar: full research. Rajkumar Subburathinam and H. Vinoth Kumar: testing support.

Corresponding author

Correspondence to R. Ashok Raj.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, R.A., Kumar, K.V., Subburathinam, R. et al. Enhancing sustainable composites: isolation of nanocellulose from Selenicereus undatus (dragon fruit) and kenaf fiber reinforcement in vinyl ester matrix—a study on mechanical, wear, fatigue, creep, and dynamic mechanical properties. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05707-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05707-x

Keywords

Navigation