Skip to main content
Log in

Assessment of algal diversity and carbon sequestration potential of Arthrospira platensis and Scenedesmus vacuolatus isolated from the urban gravel pit lake in Chennai, South India—a biomass production approach from the novel areas

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Global warming and increasing CO2 play an important role in making terrestrial and aquatic life highly pathetic. Microalgae have many advantages over other methods in bioremediation and carbon sequestration including eco-friendly nature, less space requirement, and sustainable energy production from wastes. The aim of the present investigation is to assess the microalgal diversity, followed by isolation of microalgae from the abandoned urban man-made ecosystem and evaluation of their carbon fixation potential. Samples were collected for a year (October 2021–September 2022). The prominent water quality parameters were estimated. The Statistical Package for Social Sciences, version 26.0, was used to estimate Karl Pearson’s correlation coefficient and one-way analysis of variance. Paleontological Statistics (version 4.03) was used to estimate the diversity indices. Sixty species categorized into 7 classes, 19 orders, and 41 genera were identified. The quantitative spectrum revealed that Bacillariophyceae was the dominant class (231 cells/L) followed by Chlorophyceae (220 cells/L). In carbon sequestration, Scenedesmus vacuolatus (6.50 mg/L/h) performed more efficiently than Arthrospira platensis (1.81 mg/L/h). It is vital to explore the occurrence of microalgae from all possible wet environments, which further can be isolated and employed in various biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data and materials will be made available on reasonable request from the first/corresponding author.

References

  1. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  2. Bagulia AM (2008) Encyclopaedia of algae. Anmol Publications, Banglore, India

    Google Scholar 

  3. Cheah WY, Show PL, Chang J-S, Ling TC, Juan JC (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour Technol 184:190–201. https://doi.org/10.1016/j.biortech.2014.11.026

    Article  Google Scholar 

  4. Lara-Gil JA, Álvarez MM, Pacheco A (2014) Toxicity of flue gas components from cement plants in microalgae CO2 mitigation systems. J Appl Phycol 26:357–368. https://doi.org/10.1007/s10811-013-0136-y

    Article  Google Scholar 

  5. Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838. https://doi.org/10.1016/j.biortech.2008.06.061

    Article  Google Scholar 

  6. Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054

    Article  Google Scholar 

  7. Westerhoff P, Hu Q, Esparza-Soto M, Vermaas W (2010) Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ Technol 31:523–532. https://doi.org/10.1080/09593330903552078

    Article  Google Scholar 

  8. Blanchette ML, Lund MA (2016) Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Curr Opin Environ Sustain 23:28–34. https://doi.org/10.1016/j.cosust.2016.11.012

    Article  Google Scholar 

  9. Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Ali B, Rafiq M (2018) Diversity of prokaryotic communities indigenous to acid mine drainage and related rocks from Baiyin open-pit copper mine stope. China Geomicrobiol J 35(7):580–600. https://doi.org/10.1080/01490451.2018.1430873

    Article  Google Scholar 

  10. Zhang Q, Banda JF, Dong H, Hao C, Guo D, Mao W, Ma L, Dong H (2021) Responses of acidophilic communities in different acid mine drainages to environmental conditions in Nanshan mine, Anhui Province. China Geomicrobiol J 38(8):686–697. https://doi.org/10.1080/01490451.2021.1937405

    Article  Google Scholar 

  11. Dogan S, Gulluce M, Alaylar B, Karadayi M (2019) Isolation and molecular identification of bacteria with magnesite enrichment potential from Turanocak and Ortaocak Quarries in Kütahya-Turkey. Geomicrobiol J 36(9):826–830. https://doi.org/10.1080/01490451.2019.1631910

    Article  Google Scholar 

  12. Valdez-NuñezL F, Ayala-Muñoz D, Sánchez-España J, Sánchez-Andrea I (2022) Microbial communities in Peruvian acid mine drainages: low-abundance sulfate-reducing bacteria with high metabolic activity. Geomicrobiol J 39(10):867–883. https://doi.org/10.1080/01490451.2022.2087808

    Article  Google Scholar 

  13. Mondal S, Palit D, Hazra N (2022) Study on composition and spatio-temporal variation of zooplankton community in coal mine generated pit lakes, West Bengal, India. Trop Ecol 1–17. https://doi.org/10.1007/s42965-022-00274-6

  14. Matern S, Klefoth T, Wolter C, Arlinghaus R (2021) Environmental determinants of fish abundance in the littoral zone of gravel pit lakes. Hydrobiologia 848(10):2449–2471. https://doi.org/10.1007/s10750-021-04563-4

    Article  Google Scholar 

  15. Maday A, Matern S, Monk C.T, Klefoth T, Wolter C, Arlinghaus R (2023) Seasonal and diurnal patterns of littoral microhabitat use by fish in gravel pit lakes, with special reference to supplemented deadwood brush piles. Hydrobiologia pp.1–25. https://doi.org/10.1007/s10750-023-05152-3

  16. Mondal S, Palit D, Hazra N (2021) Rotifer diversity in coal mine generated pit lakes of Raniganj coal field area, West Bengal India. J Limnol Fish Res 7(2):115–127

    Google Scholar 

  17. Yang B, Zhang X, Tan S, Wang H, Kuang S, Liu X, Liao W (2024) Ultra-selective removal of thorium from rare earths by aminophosphonic acid-modified porous silica. Sep Purif Technol 341:126952

    Article  Google Scholar 

  18. Yang Y (2023) Fixed bed adsorption of phosphate by lanthanum carbonate modified microfibrous composite. Colloids Surf C Environ Aspects 1:100007. https://doi.org/10.1016/j.colsuc.2023.100007

    Article  Google Scholar 

  19. Yang Y, Tang S, Lin H, Fu H, Mei Y, Long Y (2023) Catalytic reaction intensification by a novel cryogenic auxiliary synthesized Fe-PAN membrane. Ind Eng Chem Res 62(48):20677–20688. https://doi.org/10.1021/acs.iecr.3c03497

    Article  Google Scholar 

  20. Yang Y, Liu M, You X, Li Y, Lin H, Chen JP (2024) A novel bimetallic Fe-Cu-CNT catalyst for effective catalytic wet peroxide oxidation: reaction optimization and mechanism investigation. Chem Eng J 479:147320. https://doi.org/10.1016/j.cej.2023.147320

    Article  Google Scholar 

  21. Yang Y, Zhu H, Xu X, Bao L, Wang Y, Lin H, Zheng C (2021) Construction of a novel lanthanum carbonate-grafted ZSM-5 zeolite for effective highly selective phosphate removal from wastewater. Microporous Mesoporous Mater 324:111289. https://doi.org/10.1016/j.micromeso.2021.111289

    Article  Google Scholar 

  22. Yang Y, Wang Y, Zheng C, Lin H, Xu R, Zhu H, Xu X (2022) Lanthanum carbonate grafted ZSM-5 for superior phosphate uptake: investigation of the growth and adsorption mechanism. Chem Eng J 430:133166. https://doi.org/10.1016/j.cej.2021.133166

    Article  Google Scholar 

  23. Yang Y, Koh KY, Li R, Zhang H, Yan Y, Chen JP (2020) An innovative lanthanum carbonate grafted microfibrous composite for phosphate adsorption in wastewater. J Hazard Mater 392:121952. https://doi.org/10.1016/j.jhazmat.2019.121952

    Article  Google Scholar 

  24. Subramanian KG, Dhanushkodi M, Satyapriyan A, Nagarajan M, Muthusamy G (2023) Deciphering microalgal diversity of peculiar lentic ecosystem in Chennai, South India: a way towards sustainability. Mol. Biotechnol: 1–12. https://doi.org/10.1007/s12033-023-00825-9

  25. Subramanian KG, Dhanushkodi M, Satyapriyan A, Nagarajan M, Muthuvinayagam P, Nallathambi M, ... & Muthusamy, G. (2023) An intensive study on algal diversity in the ancient man-made aquatic ecosystem of Tiruvallur, South India: exploration for sustainable development. Mol Biotechnol: 1–11. https://doi.org/10.1007/s12033-023-00817-9

  26. APHA (2017) Standard methods for the examination of water and wastewater (23rd ed.) Washington DC: American Public Health Association

  27. Desikachary TV (1959) Cyanobacteria ICAR monograph on blue green algae. New Delhi 1:686

    Google Scholar 

  28. Mahendra Perumal G, Anand N (2009) Manual of freshwater algae of Tamil Nadu. Bishen Singh Mahendra Pal Singh, Dehradun

    Google Scholar 

  29. Bellinger EG, Sigee DC (2015) Freshwater algae: identification, enumeration and use as bioindicators. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  30. Santhanam R (1989) A manual of freshwater ecology: an aspect of fishery environment. Daya Books, New Delhi

    Google Scholar 

  31. Shannon CE, Weaver W (1949) The mathematical theory of information. Urbana: Univ Illinois Press 97(6):128–164

    Google Scholar 

  32. Simpson EH (1949) Measurement of diversity. Nature 163(4148):688–688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  33. Margalef DR (1958) Information theory in ecology. Gen Syst Yearb 3:36–71

    Google Scholar 

  34. Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  35. Palmer CM (1969) A composite rating of algae tolerating organic pollution. J Phycol 5(1):78–82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x

    Article  Google Scholar 

  36. Kamyab H, Din MFM, Ghoshal SK et al (2016) Chlorella pyrenoidosa mediated lipid production using Malaysian agricultural wastewater: effects of photon and carbon. Waste Biomass Valoriz 7:779–788. https://doi.org/10.1007/s12649-016-9556-7

    Article  Google Scholar 

  37. Varshney P, Sohoni S, Wangikar PP, Beardall J (2016) Effect of high CO2 concentrations on the growth and macromolecular composition of a heat-and high-light-tolerant microalga. J Appl Phycol 28:2631–2640. https://doi.org/10.1007/s10811-016-0797-4

    Article  Google Scholar 

  38. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  Google Scholar 

  39. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  Google Scholar 

  40. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  Google Scholar 

  41. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  Google Scholar 

  42. Andersen RA, Kawachi M (2005) Microalgae isolation techniques. Algal Culturing Tech 83:92

    Google Scholar 

  43. Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47(13):4294–4302. https://doi.org/10.1016/j.watres.2013.05.004

    Article  Google Scholar 

  44. Komolafe O, Orta SBV, Monje-Ramirez I, Noguez IY, Harvey AP, Ledesma MTO (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304. https://doi.org/10.1016/j.biortech.2013.12.048

    Article  Google Scholar 

  45. Issarapayup K, Powtongsook S, Pavasant P (2009) Flat panel airlift photobioreactors for cultivation of vegetative cells of microalga Haematococcus pluvialis. J Biotechnol 142(3–4):227–232. https://doi.org/10.1016/j.jbiotec.2009.04.014

    Article  Google Scholar 

  46. Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101(8):2623–2628. https://doi.org/10.1016/j.biortech.2009.10.062

    Article  Google Scholar 

  47. Guillard RR, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8(2):229–239

    Article  Google Scholar 

  48. Carpenter JH (1965) The accuracy of the Winkler method for dissolved oxygen analysis 1. Limnol Oceanogr 10(1):135–140. https://doi.org/10.4319/lo.1965.10.1.0135

    Article  Google Scholar 

  49. Dinesh kumar R, Manikandavelu D, Guru kasirajan k (2010) Fixation of carbon dioxide and oxygen production by photosynthetic simulations in indoor environs. J Algal Biomass Utln 1(4):84–88

  50. Sayeswara HA, Goudar MA, Manjunatha R (2011) Water quality evaluation and phytoplankton diversity of Hosahalli pond, Shivamogga, Karnataka (India). Int J Chem Sci 9(2):805–815

    Google Scholar 

  51. Al Mamun MA, Howladar MF, Sohail MA (2019) Assessment of surface water quality using Fuzzy Analytic Hierarchy Process (FAHP): a case study of Piyain River’s sand and gravel quarry mining area in Jaflong. Sylhet Groundw Sustain Dev 9:100208. https://doi.org/10.1016/j.gsd.2019.03.002

    Article  Google Scholar 

  52. Eyankware MO, Obasi PN, Omo-Irabor OO, Akakuru OC (2020) Hydrochemical characterization of abandoned quarry and mine water for domestic and irrigation uses in Abakaliki, southeast Nigeria. Model Earth Syst Environ 6(4):2465–2485. https://doi.org/10.1007/s40808-020-00827-5

    Article  Google Scholar 

  53. Shelyuk YS, Astahova LY (2021) Phytoplankton succession in the anthropogenic and climate ecological transformation of freshwater ecosystems. Biosyst Divers 29(2):119–128

    Article  Google Scholar 

  54. Eugene LR, Singh OP (2014) Degradation in water quality due to limestone mining in East Jaintia Hills, Meghalaya. India Int J Environ Sci 3(5):13–20

    Google Scholar 

  55. Kokcha S, Chatrath H (2020) Study of physicochemical characteristics of bird valley’s quarry water pcmc Maharashtra. Green Chem Lett Rev 6(2):18–24. https://doi.org/10.18510/gctl.2020.622

    Article  Google Scholar 

  56. Pratapan VG, Tiwari A, Chakraborty T, Singh RB, Khan S (2012) Depth wise water quality assessment in pit lakes: a case study of Manikpur pilot quarry, south eastern coalfields limited, India. In: VI World Aqua Congress., VI World Aqua Congress, pp 179–188

  57. Naik DP, Somashekar RK (2021) Ground water quality evaluation in stone quarry area. I Cont Poll 23(1):15–18

    Google Scholar 

  58. Eyankware MO, Nnajieze VS, Aleke CG (2018) Geochemical assessment of water quality for irrigation in abandoned limestone quarry pit at Nkalagu area, southern Benue Trough. Nigeria Environ Earth Sci 77(3):1–12. https://doi.org/10.1007/s12665-018-7232-x

    Article  Google Scholar 

  59. Kilonzo W, Home P, Sang J, Kakoi B (2019) The storage and water quality characteristics of Rungiri quarry reservoir in Kiambu, Kenya, as a potential source of urban water. Hydrology 6(4):93. https://doi.org/10.3390/hydrology6040093

    Article  Google Scholar 

  60. Sahni K, Yadav S (2012) Seasonal variations in physico-chemical parameters of Bharawas Pond, Rewari. Haryana Asian J Exp Sci 26(1):61–64

    Google Scholar 

  61. Seelen LM, Teurlincx S, Bruinsma J, Huijsmans TM, van Donk E, Lürling M, de Senerpont Domis LN (2021) The value of novel ecosystems: disclosing the ecological quality of quarry lakes. Sci Total Environ 769:144294. https://doi.org/10.1016/j.scitotenv.2020.144294

    Article  Google Scholar 

  62. Mishra S, Singh AL, Tiwary D (2014) Studies of physico-chemical status of the ponds at Varanasi Holy City under anthropogenic influences. Int J Environ Res Dev 4(3):261–268

    Google Scholar 

  63. Palanivel S, Rani VU, Karthikeyan D, Kumar BB (2018) Asserting algal flora of Sikkarayapuram stone quarries: a lentic ecosystem near Chennai City, Tamil Nadu. India. J Theor Exp Biol 13(1–2):87–101

    Google Scholar 

  64. Shelyuk YS (2014) Phytoplankton structure and functioning in artificial water bodies of the town of Zhitomir. Hydrobiol J 50(4). https://doi.org/10.1615/HydrobJ.v50.i4.20

  65. Adesalu TA, Nwankwo DI (2008) Effect of water quality indices on phytoplankton of a sluggish tidal creek in Lagos. Nigeria Pak J Biol Sci 11(6):836–844. https://doi.org/10.3923/pjbs.2008.836.844

    Article  Google Scholar 

  66. Gabal AAA, Khaled AEM, El-Sayed HA, Aboul-Ela HM, Shalaby OK, Khaled AA (2018) Optimization of Spirulina platensis biomass and evaluation of its protective effect against chromosomal aberrations of bone marrow cells. Fish Aqua J 10(260):2

    Google Scholar 

  67. Khatoon H, Rahman NA, Suleiman SS, Banerjee S, Abol-Munafi AB (2019) Growth and proximate composition of Scenedesmus obliquus and Selenastrum bibraianum cultured in different media and condition. Proc Natl Acad Sci India Sect B Biol Sci 89(1):251–257. https://doi.org/10.1007/s40011-017-0938-9

    Article  Google Scholar 

  68. Kumar A, Ergas S, Yuan X, SahuA ZQ, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  Google Scholar 

  69. Seth JR, Wangikar PP (2015) Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery. Biotechnol Bioeng 112:1281–1296. https://doi.org/10.1002/bit.25619

    Article  Google Scholar 

  70. Glibert PM, Azanza R, Burford M et al (2008) Ocean urea fertilization for carbon credits poses high ecological risks. Mar Pollut Bull 56:1049–1056. https://doi.org/10.1016/j.marpolbul.2008.03.010

    Article  Google Scholar 

  71. Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517. https://doi.org/10.1007/s10811-009-9446-5

    Article  Google Scholar 

  72. Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348. https://doi.org/10.1016/j.biortech.2011.10.059

    Article  Google Scholar 

  73. Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010) Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour Technol 101(8):2616–2622. https://doi.org/10.1016/j.biortech.2009.10.061

    Article  Google Scholar 

  74. Ghoshal D, Husic HD, Goyal A (2002) Dissolved inorganic carbon concentration mechanism in Chlamydomonas moewusii. Plant Physiol Biochem 40(4):299–305. https://doi.org/10.1016/S0981-9428(02)01384-0

    Article  Google Scholar 

  75. Riebesell U, Schulz KG, Bellerby RGJ, Botros M, Fritsche P, Meyerhöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450(7169):545–548. https://doi.org/10.1038/nature06267

    Article  Google Scholar 

  76. Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584:1121–1129. https://doi.org/10.1016/j.scitotenv.2017.01.172

    Article  Google Scholar 

  77. Miyachi S, Iwasaki I, Shiraiwa Y (2003) Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-CO2 conditions. Photosynth Res 77(2):139–153. https://doi.org/10.1023/A:1025817616865

    Article  Google Scholar 

  78. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. https://doi.org/10.1016/j.biortech.2011.11.133

    Article  Google Scholar 

  79. Goswami RD, Kalita MC (2011) Scenedesmus dimorphus and Scenedesmus quadricauda: two potent indigenous microalgae strains for biomass production and CO2 mitigation—a study on their growth behavior and lipid productivity under different concentration of urea as nitrogen source. J Algal Biomass Util 2(4):2–4

    Google Scholar 

  80. Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329. https://doi.org/10.1016/j.seppur.2005.12.006

    Article  Google Scholar 

  81. Thielmann J, Tolbert NE, Goyal A, Sneger H (1990) Two systems for concentrating CO2 and bicarbonate during photosynthesis by Scenedesmus. Plant Physiol 92:622–629. https://doi.org/10.1104/pp.92.3.622

    Article  Google Scholar 

  82. Vidyashankar S, Deviprasad K, Chauhan VS, Ravishankar GA, Sarada R (2013) Selection and evaluation of CO2 tolerant indigenous microalga Scenedesmus dimorphus for unsaturated fatty acid rich lipid production under different culture conditions. Bioresour Technol 144:28–37. https://doi.org/10.1016/j.biortech.2013.06.054

    Article  Google Scholar 

  83. Basu S, Roy AS, Mohanty K, Ghoshal AK (2013) Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India. Bioresour Technol 143:369–377. https://doi.org/10.1016/j.biortech.2013.06.010

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Tamil Nadu Fisheries University (TNFU), Nagapattinam, India, for rendering their support in conducting this research. The first author is thankful to Dr. Anup Mandal (Rajiv Gandhi Centre for Aquaculture) and Dr. Moulitharan Nallathambi (Dept. of Fisheries Resource Management, TNFU, Nagapattinam) for their constant encouragement and support on gene sequencing.

Funding

The authors declare that no funds, grants, or other support was received during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Keerthivarman G. Subramanian—sample collection and laboratory analyses, statistical analyses, literature collection, writing and framing of article, original draft preparation.

Manikandavelu Dhanushkodi—conceptualization, article correction.

Aruna Satyapriyan—supervision.

Muralidharan Nagarajan—technical support.

Meivelu Moovendhan—formal analysis.

P. Muthuvinayagam—formal analysis.

Velmurugan Ragavan—statistical analysis.

Pavinkumar P—statistical analysis.

Dhinesh Rajendiran—laboratory analysis.

Corresponding author

Correspondence to Keerthivarman G. Subramanian.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, K.G., Dhanushkodi, M., Satyapriyan, A. et al. Assessment of algal diversity and carbon sequestration potential of Arthrospira platensis and Scenedesmus vacuolatus isolated from the urban gravel pit lake in Chennai, South India—a biomass production approach from the novel areas. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05704-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05704-0

Keywords

Navigation