Skip to main content

Advertisement

Log in

Trends in the full use of the superfruit Psidium guajava: a scientific and technological review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Psidium guajava (PG)  possesses high bioactive compound content, such as phenolics and carotenoids. Therefore, the fruit’s pulp is consumed mainly, generating approximately 30% of co-products. Moreover, using different PG parts can enhance food chain production sustainability, contributing to a circular economy. This review was based on scientific papers that used parts of PG to obtain bioactive compounds in order to investigate sustainable extraction methods. In addition, scientific papers and patent documents were reviewed to assess the products developed using PG and its potential applications and gaps for future development. This review shows that 50% of the papers used sustainable methodologies for extracting bioactive compounds with ultrasound (59%) and supercritical fluid (17%) preeminent. PG seeds were the most used in the applications found in the papers (31%), followed by leaves (28%), pulp (14%), and peel (3%), while in the patent documents, the leaves were predominant (75%). Different parts of PG showed great potential for application in many areas, especially in foods and beverages associated with health benefits, such as immunomodulation and antioxidant potential. The main gaps listed in this study were the development of products with bioactive compounds extracted from PG and the greater applicability of different parts of PG, especially the peel. The main challenges of using PG are sustainability in the extraction methods and keeping good sensory characteristics in products fortified with PG. Therefore, this review shows that PG coproducts can become a high-value and low-cost ingredient to be explored in many fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available in public repositories (provided in the references).

References  

  1. Ugbogu ME, Emmanuel O, Ebubechi Uche M, Dike ED, Okoro BC, Ibe C, Ude VC, Ekweogu CN, Ugbogu OC (2022) The ethnobotanical, phytochemistry and pharmacological activities of Psidium guajava L. Arab J Chem. https://doi.org/10.1016/J.ARABJC.2022.103759

    Article  Google Scholar 

  2. Angulo-López JE, Flores-Gallegos AC, Torres-León C, Ramírez-Guzmán KN, Martínez GA, Aguilar CN (2021) Guava (Psidium guajava L.) fruit and valorization of industrialization by-products. Process. https://doi.org/10.3390/PR9061075

  3. Kumar M, Kapoor S, Dhumal S, Tkaczewska J, Changan S, Saurabh V, Mekhemar M, Radha RN, Satankar V, Pandiselvam R, Sayed AAS, Senapathy M, Anitha T, Singh S, Tomar M, Dey A, Zengin G, Amarowicz R, Bhyyan DJ (2022) Guava (Psidium guajava L.) seed: a low-volume, high-value byproduct for human health and the food industry. Food Chem. https://doi.org/10.1016/J.FOODCHEM.2022.132694

  4. Cuenca CE, Inampues-Charfuelan ML, Hurtado-Benavides AM, Parada-Afonso F, Vincken JP (2020) The phenolic compounds, tocopherols, and phytosterols in the edible oil of guava (Psidium guajava) seeds obtained by supercritical CO2 extraction. J Food Compos Anal. https://doi.org/10.1016/J.JFCA.2020.103467

    Article  Google Scholar 

  5. Ryen E, Babbitt CW (2022) The role of U.S. policy in advancing circular economy solutions for wasted food. J Clean Prod. https://doi.org/10.1016/J.JCLEPRO.2022.133200

    Article  Google Scholar 

  6. D’Amato D, Droste N, Allen B, Kettunen M, Lahtinen K, Korhonen J, Leskinen P, Matthies BD, Toppinen A (2017) Green, circular, bio economy: a comparative analysis of sustainability avenues. J Clean Prod. https://doi.org/10.1016/J.JCLEPRO.2017.09.053

    Article  Google Scholar 

  7. Kumar M, Tomar M, Amarowicz R, Saurabh V, Nair MS, Maheshwari C, Sasi M, Prajapati U, Hasan M, Singh S, Changan S, Prajapat RK, Bewal MK, Satankar V (2021) Guava (Psidium guajava L.) leaves: nutritional composition, phytochemical profile, and health-promoting bioactivities. Foods. https://doi.org/10.3390/FOODS10040752

    Article  Google Scholar 

  8. Lima SR, Nunes IL, Block JM (2020) Ultrasound-assisted extraction for the recovery of carotenoids from guava’s pulp and waste powders. Plant Foods Hum Nutr. https://doi.org/10.1007/s11130-019-00784-0

    Article  Google Scholar 

  9. Ferreira BL, Junior TK, Block JM, Granato D, Nunes IL (2021) Innovative approach for obtaining phenolic compounds from guava (Psidium guajava L.) coproduct using ionic liquid ultrasound-assisted extraction (IL-UAE). Biocatal Agric Biotechnol. https://doi.org/10.1016/J.BCAB.2021.102196

  10. Moura PM, Prado GHC, Meireles MAA, Pereira CG (2012) Supercritical fluid extraction from guava (Psidium guajava) leaves: global yield, composition, and kinetic data. J Supercrit Fluids. https://doi.org/10.1016/J.SUPFLU.2011.11.014

    Article  Google Scholar 

  11. Hussein AM, Kamil MM, Mohamed GF (2011) Physicochemical and sensorial quality of semolina-defatted guava seeds flour composite pasta. J Am Sci 7(6):623–629

    Google Scholar 

  12. Nemitz MC, Argenta DF, Koester LS, Bassani VL, Poser GLV, Teixeira HF (2016) The international scenario of patents concerning isoflavones. Trends Food Sci Technol. https://doi.org/10.1016/J.TIFS.2016.01.008

    Article  Google Scholar 

  13. OECD (Organization for economic co-operation and development) (2004) Patents and innovation: trends and policy challenges. https://www.oecd.org/science/inno/24508541.pdf. Accessed 20 Dec 2024

  14. Verma AK, Rajkumar V, Banerjee R, Biswas S, Das AK (2013) Guava (Psidium guajava L.) powder as an antioxidant dietary fibre in sheep meat nuggets. Asian-Australasian J Anim Sci. https://doi.org/10.5713/AJAS.2012.12671

    Article  Google Scholar 

  15. Cong P, Zhengming L (1998) Method for producing guava fruit pulp beverage (patent n° CN103719980A). Epacenet Patent Search

  16. Beyong-In YB, Chul JY, Eun HC, Moo CY, Won LJ, Yeong SW (2022) Drink composition for antidiabetes comprising Guava leaf and fermented Mulberry extracts and Aquilaria agallocha fermented green tea and its preparation method (patent n° KR20220020559A). Espacenet Patent Search

  17. Yeon KT, Yeon PS, Min KJ, Sung MG, Gyoung GJ, Jeong JH (2021) Functional cosmetic composition comprising Psidium guajava leaf extract and ipomoea batatas extract and method for producing same, vol patent n°. KR20210086176A. Espacenet Patent Search

  18. Iha OK, Martins GBC, Ehlert E, Montenegro MA, Sucupira RR, Suarez PAZ (2018) Extraction and characterization of passion fruit and guava oils from industrial residual seeds and their application as biofuels. J Braz Chem Soc. https://doi.org/10.21577/0103-5053.20180083

  19. Unicamp (NEPA - UNICAMP) (2011) Tabela Brasileira de Composicao de Alimentos - TACO. 4ª ed. https://www.cfn.org.br/wp-content/uploads/2017/03/taco_4_edicao_ampliada_e_revisada.pdf. Accessed 20 Mar 2023

  20. Maria A, Uchôa-Thomaz A, Sousa EC, Carioca JOB, Morais SM, de Lima A, Martins CG, Alexandrino CD, Ferreira PAT, Rodrigues ALM, Rodrigues SP, Thomaz JCA, Silva JN, Rodrigues LL (2014) Chemical composition, fatty acid profile and bioactive compounds of guava seeds (Psidium guajava L.). Food Sci Technol. https://doi.org/10.1590/1678-457X.6339

    Article  Google Scholar 

  21. Shabbir H, Kausar T, Noreen S, Rehman HU, Hussain A, Huang Q, Gani A, Su S, Nawaz A (2020) In Vivo screening and antidiabetic potential of polyphenol extracts from guava pulp, seeds and leaves. Anim. https://doi.org/10.3390/ANI10091714

    Article  Google Scholar 

  22. Carvalho GC, de Camargo BAF, de Araújo JTC, Chorilli M (2021) Lycopene: from tomato to its nutraceutical use and its association with nanotechnology. Trends Food Sci Technol. https://doi.org/10.1016/J.TIFS.2021.10.015

    Article  Google Scholar 

  23. Rodrigues-Amaya DB (2008) Tabela Brasileira de Composição de Carotenoides em Alimentos. http://www.b4fn.org/fileadmin/templates/b4fn.org/upload/documents/Fontes_Brasileiras_de_Caroten%C3%B3ides.pdf. Accessed 23 Mar 2023

  24. Universidade de São Paulo (UsP) (2023) Tabela Brasileira de Composição de Alimentos (TBCA). http://www.fcf.usp.br/tbca. Accessed 16 Mar 2023.

  25. Lima SR, Ferreira SRS, Vitali L, Block JM (2019) May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res Int. https://doi.org/10.1016/J.FOODRES.2018.10.053

    Article  Google Scholar 

  26. Thomas L, Lasyaja AB, Anitha T, Suganya M, Gayathri P, Chithra S, Pubs G (2017) Biochemical and mineral analysis of the undervalued leaves – Psidium guajava L. Int J Adv Sci Res 2:16–21

    Google Scholar 

  27. Garbanzo C, Gleichenhagen M, Heller A, Esquivel P, Schulze-Kaysers N, Schieber A (2017) Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guajava L. Cv. ‘Criolla’) during fruit ripening. J Agric Food Chem. https://doi.org/10.1021/ACS.JAFC.6B04560/ASSET/IMAGES/LARGE/JF-2016-045605_0007.JPEG

    Article  Google Scholar 

  28. Liu X, Yan X, Bi J, Liu J, Zh WuX, Chen Q (2018) Determination of phenolic compounds and antioxidant activities from peel, flesh, seed of guava (Psidium guajava L). Electrophoresis. https://doi.org/10.1002/ELPS.201700479

    Article  Google Scholar 

  29. Ribeiro D, Freitas M, Silva AMS, Carvalho F, Fernandes E (2018) Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem Toxicol. https://doi.org/10.1016/J.FCT.2018.07.060

    Article  Google Scholar 

  30. Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Wózniak K, Aprotosoaie AC, Trifan A (2019) Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1546669

    Article  Google Scholar 

  31. Escrig AJ, Rincón M, Pulido R, Saura-Calixto F (2001) Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J Agric Food Chem. https://doi.org/10.1021/JF010147P

  32. Abdelmalek S, Mohsen E, Awwad A, Issa R (2016) Peels of Psidium guajava fruit possess antimicrobial properties. Int Arab J Antimicrob Agents 6:1–9

    Google Scholar 

  33. Lin HC, Lin JY (2020) Characterization of guava (Psidium guajava Linn) seed polysaccharides with an immunomodulatory activity. Int J Biol Macromol. https://doi.org/10.1016/J.IJBIOMAC.2020.03.137

    Article  Google Scholar 

  34. Lin L, Biol I (2017) Splenocyte-conditioned media inhibit breast cancer MCF-7 cell growth, associated with increased Th2/Th1 cytokine secretion ratio in the media using five selected polysaccharides. J Imunno Biol. https://doi.org/10.4172/2476-1966.1000121

    Article  Google Scholar 

  35. Nicanor AB, Anon MC, Scilingo AA, Dávila-Ortíz G (2005) Functional properties of guava seed glutelins. J Agric Food Chem. https://doi.org/10.1021/JF0400359/ASSET/IMAGES/LARGE/JF0400359F00002.JPEG

    Article  Google Scholar 

  36. Nicanor AB, Moreno AO, Ayala ALM, Ortíz GD (2001) Guava seed protein isolate: functional and nutritional characterization. J Food Biochem. https://doi.org/10.1111/J.1745-4514.2001.TB00725.X

    Article  Google Scholar 

  37. Kapoor S, Gandhi N, Tyagi SK, Kaur A, Mahajan BVC (2020) Extraction and characterization of guava seed oil: a novel industrial byproduct. LWT. https://doi.org/10.1016/J.LWT.2020.109882

    Article  Google Scholar 

  38. Luo Y, Peng B, Liu Y, Yanan W, Zhengiang W (2018) Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochem. https://doi.org/10.1016/J.PROCBIO.2018.08.003

    Article  Google Scholar 

  39. Kim J, Cha YN, Surh YJ (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res Mol Mech Mutagen. https://doi.org/10.1016/J.MRFMMM.2009.09.007

    Article  Google Scholar 

  40. Luo Y, Peng B, Wei W, Tian X, Wu Z (2019) Antioxidant and anti-diabetic activities of polysaccharides from guava leaves. Mol. https://doi.org/10.3390/MOLECULES24071343

    Article  Google Scholar 

  41. Claus J, Sommer FO, Kragl U (2018) Ionic liquids in biotechnology and beyond. Solid State Ion. https://doi.org/10.1016/J.SSI.2017.11.012

    Article  Google Scholar 

  42. Prommaban A, Utama-Ang N, Chaikitwattana A, Uthaipibul C, Porter JB, Srichairatanakool S (2020) Phytosterol, lipid and phenolic composition, and biological activities of guava seed oil. Mol. https://doi.org/10.3390/MOLECULES25112474

    Article  Google Scholar 

  43. Prommaban A, Utama-ang N, Chaikitwattana A, Uthaipibull C, Srichairatanakool S (2019) Linoleic acid-rich guava seed oil: safety and bioactivity. Phyther Res. https://doi.org/10.1002/PTR.6449

    Article  Google Scholar 

  44. Lin HC, Lin JY (2016) Immune cell-conditioned media suppress prostate cancer PC-3 cell growth correlating with decreased proinflammatory/anti-inflammatory cytokine ratios in the media using 5 selected crude polysaccharides. Integr Cancer Ther. https://doi.org/10.1177/1534735415627923

    Article  Google Scholar 

  45. Martínez LJC, Benavides AMH, Aponte AA, Cock LS, Tirado DF (2023) Bioactive fractions isolated from by-products of the guava (Psidium guajava) and mango (Mangifera indica L.) agri-food industry. Fluids. https://doi.org/10.3390/fluids8090256

    Article  Google Scholar 

  46. Zhu X, Ouyang W, Lan Y, Xiao H, Tang L, Liu G, Feng K, Zhang L, Song M, Cao Y (2020) Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice. Food Biosci. https://doi.org/10.1016/j.fbio.2020.100574

    Article  Google Scholar 

  47. Kumar NS, Tomar M, Amarowicz R, Saurabh V, Nair MS, Maheshwari C, Sasi M, Prajapati U, Hasan M, Singh S, Changan S, Prajapat RK, Berwal MK, Satankar V (2021) Extraction of bioactive compounds from Psidium guajava leaves and its utilization in preparation of jellies. AMB Express. https://doi.org/10.1186/S13568-021-01194-9/TABLES/5

    Article  Google Scholar 

  48. Nascimento CPF, Lopes MVA, Bessa JMR, Andrade APC, Oliveira LS, Eça KS (2024) Effect of pectin coating incorporated with guava leaf extract (Psidium guajava L) on the stability of fresh beef steak. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.16914

    Article  Google Scholar 

  49. Dinh TA, Le YN, Pham NQ, Ton-That P, Van-Xuan T, Ho TG, Nguyen T, Phuong HHK (2023) Fabrication of antimicrobial edible films from chitosan incorporated with guava leaf extract. Prog Org Coat. https://doi.org/10.1016/j.porgcoat.2023.107772

    Article  Google Scholar 

  50. Hendrarti W, Robiansyah M, Nur S, Amin A, Nisa M, Abidin HL (2023) Potential of ethanol extract of guava (Psidium guajava L) leaves as adjuvant-antibiotic on Salmonella typhi characterized. Bull Pharm Sci Assiut University. https://doi.org/10.21608/bfsa.2023.327712

    Article  Google Scholar 

  51. Wani KM, Uppaluri RVS (2022) Efficacy of ultrasound-assisted extraction of bioactive constituents from Psidium guajava leaves. Appl Food Res. https://doi.org/10.1016/J.AFRES.2022.100096

    Article  Google Scholar 

  52. Nagarajan J, Krishnamurthy NP, Nagasundara RR, Raghunandan ME, Galanakis CM, Ooi CW (2019) A facile water-induced complexation of lycopene and pectin from pink guava byproduct: Extraction, characterization and kinetic studies. Food Chem. https://doi.org/10.1016/J.FOODCHEM.2019.05.135

    Article  Google Scholar 

  53. Correa MG, Couto JS, Trindade BB, Abreu JP, Nakajima VM, Oliveira FL, Farah A, Teodoro AJ (2020) Antiproliferative effect of guava fruit extracts in MDA-MB-435 and MCF-7 human breast cancer cell lines. An Acad Bras Cienc. https://doi.org/10.1590/0001-3765202020191500

    Article  Google Scholar 

  54. Vasconcelos AG, Valim MO, do Amorim AGN, de Amaral CP, Almeida MP, Borges TKS, Socodato R, Portugal CC, Brand GD, Mattos JSC, Relvas J, Plácido A, Eaton P, Ramos DAR, Kuckelhaus SAS, Leite JRSA (2020) Cytotoxic activity of poly-ɛ-caprolactone lipid-core nanocapsules loaded with lycopene-rich extract from red guava (Psidium guajava L) on breast cancer cells. Food Res Int. https://doi.org/10.1016/J.FOODRES.2020.109548

    Article  Google Scholar 

  55. Arango VA, Hleap-Zapata JI, Ordóñez-Santos LE (2021) Effect of adding guava (Psidium guajava) epicarp extract flour on the physicochemical, textural, colour and sensory properties of frankfurters. Food Technol Biotechno. https://doi.org/10.17113/FTB.59.02.21.7062

    Article  Google Scholar 

  56. Goula AM, Ververi M, Adamopoulou A, Kaderides K (2017) Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason Sonochem. https://doi.org/10.1016/J.ULTSONCH.2016.07.022

    Article  Google Scholar 

  57. Lasta HFB, Lentz L, Gonçalves-Rodrigues L, Mezzomo N, Vitali L, Ferreira SRS (2019) Pressurized liquid extraction applied for the recovery of phenolic compounds from beetroot waste. Biocatal Agric Biotechnol. https://doi.org/10.1016/J.BCAB.2019.101353

    Article  Google Scholar 

  58. Danielski R, Mazzutti S, Ferreira SRS, Vitali L, Block JM (2022) A non-conventional approach for obtaining phenolic antioxidants from red guava (Psidium guajava L.) by-products. J Food Process Preserv. https://doi.org/10.1111/JFPP.16502

    Article  Google Scholar 

  59. Ferreira BL, Granato D, Nunes IL (2022) Uses of ionic liquids to obtain bioactive compounds: insights from the main international regulations for technological applications. Crit Rev Food Sci Nutr. https://doi.org/10.1080/1040839820222067115

    Article  Google Scholar 

  60. Vera NG, Perez-Rocha KA, Bernardino-Nicanor A, Cruz LG, Uribe JPH, Sanchez AT (2015) Fortification of white bread with guava seed protein isolate. Pakistan J Nutr 14:828–833

    Article  Google Scholar 

  61. Tran TTT, Ton NMN, Nguyen TT, Le VVM, Sajeev D, Schiling MW, Dinh TTN (2020) Application of natural antioxidant extract from guava leaves (Psidium guajava L.) in fresh pork sausage. Meat Sci. https://doi.org/10.1016/J.MEATSCI.2020.108106

    Article  Google Scholar 

  62. Omitoyin BO, Ajani EK, Orisasona O, Bassey HE, Kareem KO, Osho FE (2019) Effect of guava Psidium guajava (L.) aqueous extract diet on growth performance, intestinal morphology, immune response and survival of Oreochromis niloticus challenged with Aeromonas hydrophila. Aquac Res. https://doi.org/10.1111/ARE.14068

    Article  Google Scholar 

  63. Shori AB, Yong YS, Baba AS (2022) Effects of medicinal plants extract enriched cheese with fish collagen on proteolysis and in vitro angiotensin-I converting enzyme inhibitory activity. LWT. https://doi.org/10.1016/J.LWT.2022.113218

    Article  Google Scholar 

  64. Casarotti SN, Borgonovi TF, Batista CLFM, Penna ALB (2018) Guava, orange and passion fruit by-products: characterization and its impacts on kinetics of acidification and properties of probiotic fermented products. LWT. https://doi.org/10.1016/J.LWT.2018.08.010

    Article  Google Scholar 

  65. Milani LPG, Garcia NOS, Morais MC, Dias ALS, Oliveira NL, Conceição EC (2018) Extract from byproduct Psidium guajava standardized in ellagic acid: additivation of the in vitro photoprotective efficacy of a cosmetic formulation. Rev Bras Farmacogn. https://doi.org/10.1016/J.BJP.2018.08.005

    Article  Google Scholar 

  66. Nobre PT, Munekata PES, Costa RG, Carvalho FR, Ribeiro NL, Queiroga RCRR, Sousa S, da Silva ACR, Lorenzo JM (2020) The impact of dietary supplementation with guava (Psidium guajava L.) agroindustrial waste on growth performance and meat quality of lambs. Meat Sci. https://doi.org/10.1016/J.MEATSCI.2020.108105

    Article  Google Scholar 

  67. Araújo CM, Sampaio KB, Menezes FNDD, Almeida ETC, Lima MS, Vieira VB, Garcia EF, Gómez-Zavaglia A, Souza EL, Oliveira MEG (2020) Protective effects of tropical fruit processing coproducts on probiotic Lactobacillus strains during freeze-drying and storage. Microorg. https://doi.org/10.3390/MICROORGANISMS8010096

    Article  Google Scholar 

  68. Hirudkar JR, Parmar KM, Prasad RS, Sinha SK, Lomte AD, Itankar PR, Prasad SK (2020) The antidiarrhoeal evaluation of Psidium guajava L. against enteropathogenic Escherichia coli induced infectious diarrhoea. J Ethnopharmacol. https://doi.org/10.1016/J.JEP.2020.112561

    Article  Google Scholar 

  69. Menezes FNDD, de Melo FHC, Vieira ARS, Almeira MS, Lima JS, Aquino A, Gomez-Zavaglia M, Magnani ELS (2021) Acerola (Malpighia glabra L.) and guava (Psidium guajaba L.) industrial processing by-products stimulate probiotic Lactobacillus and Bifidobacterium growth and induce beneficial changes in colonic microbiota. J Appl Microbiol. https://doi.org/10.1111/JAM.14824

    Article  Google Scholar 

  70. Pereira UC, Matos NM, Barros RGC, Santana PMS, de Almeida ACA, Vieira JS, Bomfim CNC (2022) Influence of guava residue on tambaqui growth performance. Acta Sci Anim Sci. https://doi.org/10.4025/actascianimsci.v44i1.54361

    Article  Google Scholar 

  71. Wang L, Luo Y, Wu Y, Wu Z (2018) Impact of fermentation degree on phenolic compositions and bioactivities during the fermentation of guava leaves with Monascus anka and Bacillus sp. J Funct Foods. https://doi.org/10.1016/J.JFF.2017.12.044

    Article  Google Scholar 

  72. Fitri RA, Wirakusuma A, Fahrina A, Bilad MR, Arahman N (2019) Adsorption performance of low-cost java plum leaves and guava fruits as natural adsorbents for removal of free fatty acids from coconut oil. Int J Eng 32:1–7

    Google Scholar 

  73. Fernandes FD, Ferreira LM, da Silva MLCP (2021) Application of Psidium guajava L. leaf extract as a green corrosion inhibitor in biodiesel: biofilm formation and encrustation. Appl Surf Sci Adv. https://doi.org/10.1016/J.APSADV.2021.100185

    Article  Google Scholar 

  74. Mota MD, Costa RYS, Guedes AAS, Silva LCRC, Chinalia FA (2019) Guava-fruit extract can improve the UV-protection efficiency of synthetic filters in sun cream formulations. J Photochem Photobiol B Biol. https://doi.org/10.1016/J.JPHOTOBIOL.2019.111639

    Article  Google Scholar 

  75. Palachum W, Choorit W, Manurakchinakorn S, Chisti Y (2020) Guava pulp fermentation and processing to a vitamin B12-enriched product. J Food Process Preserv. https://doi.org/10.1111/JFPP.14566

    Article  Google Scholar 

  76. Lana SRV, Silva LCL, Lana GRQ, Leão APA, Barros RF Jr, Santos TMC, Santos DS (2020) Resíduo da polpa de goiaba em dietas para codornas. Arch Zootec. https://doi.org/10.21071/AZ.V69I266.5107

    Article  Google Scholar 

  77. Shams El-Din MHA, Yassen AAE (1997) Evaluation and utilization of guava seed meal (Psidium guajava L) in cookies preparation as wheat flour substitute. Food / Nahrung. https://doi.org/10.1002/FOOD.19970410605

    Article  Google Scholar 

  78. Darmasiwi S, Herawati O, Retnaningrum E (2018) Edible biofilm formation from guava seed waste fermentation. UGM Digit Press Phys Sci Eng. https://doi.org/10.29037/digitalpress.11244

  79. Vargas SR, Alfaro RCV, Huirache RA, Cortés-Martínez R (2018) Removal of fluoride and arsenate from aqueous solutions by aluminum-modified guava seeds. Appl Sci. https://doi.org/10.3390/APP8101807

    Article  Google Scholar 

  80. Silveira-Junior EG, Perez VH, Justo OR, Davis GF, Simionatto E, de Oliveira LCS (2021) Valorization of guava (Psidium guajava L.) seeds for levoglucosan production by fast pyrolysis. Cellulose. https://doi.org/10.1007/S10570-020-03506-X/FIGURES/5

    Article  Google Scholar 

  81. Cock LS, Mera-Ayala JD, Angulo-López JE (2013) Guava Psidium guajava seed flour and dry Aspergillus niger mycelium as nitrogen sources for the production of biomass and antimicrobial compounds produced by Weissella confusa. Electron J Biotechnol. https://doi.org/10.2225/VOL16-ISSUE6-FULLTEXT-1

    Article  Google Scholar 

  82. Fulgencio CS, Antonio JE (2002) Antioxidant dietary fibre and concentrate of natural antioxidants from skin and pulp of guava (Psidium guajava and Psidium acutangulum) and procedures for obtaining them (patent n° ES2168223A1). Espacenet Patent Search

  83. Mohamed AHS, Atta AR, Mohamed YH, Serag EMF, Fawzy EM, Gasmelseed AMA, Metwally HDM (2019) Guava seed (Psidium guajava) nanoparticles as antibacterial agent (patent n° US10206417B1). Espacenet Patent Search

  84. Takafumi I (1985) Health drink composed of extract of guava leaf (patent n° PS6036746B2). Espacenet Patent Search

  85. Lian S (2009) Gingko leaf, guava leaf, honeybee series vitamin preparation and preparation technique thereof (patent n° CN101375945A). Espacenet Patent Search

  86. Shigeaki A, Tsunenori (2008) Health-food product with mixed-in concentrated guava-leaf extract of savoriness improved by cereal grain (patent n° US2011104352A1). Espacenet Patent Search

  87. Zhang X, Ye W, Ye C, Zhao J, Fan C, Wang Y, Shao M, Zhang J, Zhang D (2011) Guava leaf extract with function of reducing blood sugar as well as preparation method and application thereof (patent n° CN108783414A). Espacenet Patent Search

  88. Shigeaki A, Tsugiyoshi A (2012) New carbonated beverage having fizziness improved by addition of essence of guava leaf extract and packaged essence of guava extract (patent n° JP2012039960A). Espacenet Patent Search

  89. Mi SK, Seok KA Composition for treating prostate cancer comprising hexane fraction from guava leaf extract as active ingredient (patent n° 101320946B1). Espacenet Patent Search

  90. Ming H (2014) Guava leaf liquid beverage (patent n° CN103653148A). Espacenet Patent Search

  91. Bei P, Pei L (2016) Preparation method of guava leaf fruit butter (patent n° CN106136161A). Espacenet Patent Search

  92. Rose PJ, Louisa TM (2017) Process of producing wine from guava and star fruit and the product derived thereof (patent n° PH22016001016U1). Espacenet Patent Search

  93. Chun C, Qinghong L, Liqing L, Fei C, Lixuan C, Zhikai L, Hongzhou L (2017) Method for preparing antibacterial biological pesticide by using Psidium guajava linn leaf extract (patent n° CN106465736A). Espacenet Patent Search

  94. Zhiguang Z, Jiaokun L, Weimin Z, Fang H, Li S, Gan H, Runlan Y, Xueling W, Yuandong L, Chenchen W, Fang L, Ajuan L, Guanzhou Q (2018) Guava leaf health-care product capable of reducing blood sugar and preparation method of guava leaf health-care product (patent n° CN108783414A). Espacenet Patent Search

  95. Jiujiu H, Webin Z, Xiuping Z, Wei L (2018) Guava enzyme liquid used as raw material for skincare product, and preparation method and application thereof (patent n° CN108714121A). Espacenet Patent Search

  96. Zhiguang Z, Jiaokun L, Weimin Z, Fang H, Li S, Gan H, Runlan Y, Xueling W, Yuandong L, Chenchen W, Fang L, Ajuan L, Guanzhou Q (2018) Micron Psidium guajava leaf sugar-reducing compound, and preparation method and capsules thereof (patent n° CN108186796A). Espacenet Patent Search

  97. Li L, Liang L, Changqiang L, Guochun H (2020) Guava leaf beverage (patent n° CN111772074A). Espacenet Patent Search

  98. Liang L, Li L, Bin C (2020) Processed guava leaf product and preparation method thereof, vol patent n° CN11188391A. Espacenet Patent Search

  99. Carvalho AA, Starling CA, Conceição EC, Menezes HS, Barbosa NP, Oliveira SES (2020) Processo de obtenção de material esfoliante a partir de rejeitos agroindustriais de goiaba e seu uso para produção de cosméticos (patent n° BR 10 2019 001943 3). National Institute of Industrial Property (INPI)

  100. Yeon KT, Gyoung GJ, Jeong JH (2021) Functional cosmetic composition comprising Psidium guajava leaf extract and Ipomoea batats extract and method for producing same, vol patent n° KR20210086176A. Espacenet Patent Search

  101. Jiming S, Yueyue Z (2023) Rhizoma coptidis and Psidium guajava antidiarrheal solid dispersion and preparation method thereof, vol patent n° CN116370528A. Espacenet Patent Search

  102. Ling W, Yuhang L, Ligang J, Jinlong Z, Yuyan C (2018) Preparation method of guava leaf extract with anti-allergy effect (patent n° CN108852929A). Espacenet Patent Search

  103. Cong P, Zhengming L (2014) Method for producing guava fruit pulp beverage (patent n° CN103719980A). Espacenet Patent Search

  104. Hoon KJ, Jin ST, Sun JY, Young MS (2017) Food composition with the fruit extract of Phyllanthus emblica Linn. and the leaf extract of Psidium guajava for the improvement of immunity (patent n° KR101722448B1). Espacenet Patent Seach

  105. WIPO (World intellectual property organization) (2021) Índice global de inovação 2021 Resumo executivo 14 Edição. https://www.wipo.int/edocs/pubdocs/pt/wipo_pub_gii_2021_exec.pdf. Accessed 15 Mar 2023

  106. Renan da Silva Lima (2019) Extração e caracterização de carotenoides e compostos fenólicos da polpa e do resíduo do processamento da goiaba (Psidium Guajava L.). Federal University of Santa Catarina https://repositorio.ufsc.br/handle/123456789/214756. Accessed 10 Mar 2023

  107. Figge F, Dimitrov S, Schlosser R, Chenavaz R (2022) Does the circular economy fuel the throwaway society? The role of opportunity costs for products that lose value over time. J Clean Prod. https://doi.org/10.1016/J.JCLEPRO.2022.133207

  108. Ling CX, Chang YP (2017) Valorizing guava (Psidium guajava L) seeds through germination-induced carbohydrate changes. J Food Sci Technol. https://doi.org/10.1007/s13197-017-2641-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Coordination for the Training and Improvement of Higher Education Personnel (CAPES, Brazil) and to the Brazilian National Council for Scientific and Technological Development (CNPq, Brazil).

Funding

This paper was supported by Coordination for the Training and Improvement of Higher Education Personnel (CAPES, Brazil)—Academic Excellence Program—PROEX (Process nº 23038.001859/2022–28) and Ph.D. scholarship (Process nº 88887.645657/2021–00) and by Brazilian National Council for Scientific and Technological Development (CNPq, Brazil) (process nº 310088/2022-4 and process nº150259/2022–0).

Author information

Authors and Affiliations

Authors

Contributions

Flávia Barbosa Schappo: methodology, investigation, writing, and visualization; Bruno Luís Ferreira: writing—review and editing; Itaciara Larroza Nunes: supervision, funding acquisition, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Itaciara L. Nunes.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schappo, F.B., Ferreira, B.L. & Nunes, I.L. Trends in the full use of the superfruit Psidium guajava: a scientific and technological review. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05652-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05652-9

Keywords

Navigation