Skip to main content
Log in

Response surface optimization, kinetic modeling, and thermodynamic study for ultrasound-assisted extraction of dietary fiber from mango peels and its structural characterization

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Mango peels, a major mango byproduct, are considered to possess high polysaccharide content, such as dietary fiber. In the present study, RSM was used to obtain the optimal conditions (liquid to solid ratio (49.8:1), temperature (26 °C), amplitude (38.6%), and treatment time (8.6 min)) for ultrasound-assisted extraction of dietary fiber. The extraction yield (73.5%) was further enhanced by using enzymatic treatment (α-amylase, protease, amyloglucosidase) after ultrasonication. Extraction kinetics indicated pseudo second-order model as most suitable model with R2 > 0.9. Thermodynamic parameters for SDF (∆G =  − 15 to − 12.44 kJ/mol, ∆H = 51.45, and ∆S = 0.122) and IDF (∆G =  − 8.55 to − 6.52 kJ/mol, ∆H = 31.49, and ∆S = 0.077) extraction indicated spontaneous, endothermic, and irreversible nature of the process. SEM images indicate positive effect of sonoenzymolysis technique in enhancement of functional properties of dietary fiber fractions, whereas, FTIR analysis (3700–3000 cm−1, 2920–2930 cm−1, 1620 cm−1, and 1430 cm−1) confirmed the expected functional groups in SDF and IDF. Overall, extraction of dietary fiber using ultrasound-assisted enzymatic technique could be an economical and eco-friendly route for valorization of mango byproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Lebaka VR, Wee YJ, Ye W, Korivi M (2021) Nutritional composition and bioactive compounds in three different parts of mango fruit. Int J Environ Res Public Health 18(2):741. https://doi.org/10.3390/ijerph18020741

    Article  Google Scholar 

  2. NMD (National Mango Database) (2021) Indian status of mango (area, production and productivity-growth pattern). https://mangifera.res.in/indianstatus.php. Accessed 28 May 2021

  3. Oliver-Simancas R, Muñoz R, Díaz-Maroto MC, Pérez-Coello MS, Alañón ME (2020) Mango by-products as a natural source of valuable odor-active compounds. J Sci Food Agric 100(13):4688–4695. https://doi.org/10.1002/jsfa.10524

    Article  Google Scholar 

  4. Donner M, Gohier R, de Vries H (2020) A new circular business model typology for creating value from agro-waste. Sci Total Environ 716:137065. https://doi.org/10.1016/j.scitotenv.2020.137065

    Article  Google Scholar 

  5. Ravani A, Joshi D (2013) Mango and its by product utilization–a review. Energy (kcal) 74(44):2013

    Google Scholar 

  6. Ajila CM, Rao UP (2013) Mango peel dietary fibre: composition and associated bound phenolics. J Funct Foods 5(1):444–450. https://doi.org/10.1016/j.jff.2012.11.017

    Article  Google Scholar 

  7. Cheng L, Zhang X, Hong Y, Li Z, Li C, Gu Z (2017) Characterisation of physicochemical and functional properties of soluble dietary fibre from potato pulp obtained by enzyme-assisted extraction. Int J Biol Macromol 101:1004–1011. https://doi.org/10.1016/j.ijbiomac.2017.03.156

    Article  Google Scholar 

  8. Moczkowska M, Karp S, Niu Y, Kurek MA (2019) Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed-a physicochemical approach. Food Hydrocoll 90:105–112. https://doi.org/10.1016/j.foodhyd.2018.12.018

    Article  Google Scholar 

  9. Peerajit P, Chiewchan N, Devahastin S (2012) Effects of pretreatment methods on health-related functional properties of high dietary fibre powder from lime residues. Food Chem 132(4):1891–1898. https://doi.org/10.1016/j.foodchem.2011.12.022

    Article  Google Scholar 

  10. Kaur B, Panesar PS, Thakur A (2021) Extraction and evaluation of structural and physicochemical properties of dietary fiber concentrate from mango peels by using green approach. Biomass Convers Biorefinery 1–10. https://link.springer.com/article/10.1007/s13399-021-01740-2

  11. Qu P, Li D, Li Z, Zhou Y, Yu G, Zhang D (2018) Research progress on function, extraction process and application of dietary fiber. Food Res Dev 39:218–224

    Google Scholar 

  12. Kaur B, Panesar PS, Anal AK, Chu-Ky S (2023) Recent trends in the management of mango by-products. Food Rev Intl 39(7):4159–4179. https://doi.org/10.1080/87559129.2021.2021935

    Article  Google Scholar 

  13. Tariq A, Sahar A, Usman M, Sameen A, Azhar M, Tahir R, Younas R, Khan MI (2023) Extraction of dietary fiber and polyphenols from mango peel and its therapeutic potential to improve gut health. Food Biosci 102669. https://doi.org/10.1016/j.fbio.2023.102669

  14. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops – a review. Ultrason Sonochem 48:538–549. https://doi.org/10.1016/j.ultsonch.2018.07.018

    Article  Google Scholar 

  15. Panesar PS, Kaur R, Singla G, Sangwan RS (2016) Bio-processing of agro-industrial wastes for production of food-grade enzymes: progress and prospects. Appl Food Biotechnol 3(4):208–227. https://doi.org/10.22037/afb.v3i4.13458

    Article  Google Scholar 

  16. Geng N, Song J, Luo S, Li Y, Wu G, Liu C, Wu C (2022) Ultrasound-assisted enzymatic extraction of soluble dietary fiber from fresh corn bract and its physio-chemical and structural properties. Qual Assur Saf Crops Foods 14(2):119–130. https://doi.org/10.15586/qas.v14i2.1101

    Article  Google Scholar 

  17. Minjares-Fuentes R, Femenia A, Garau MC, Candelas-Cadillo MG, Simal S, Rosselló C (2016) Ultrasound-assisted extraction of hemicelluloses from grape pomace using response surface methodology. Carbohyd Polym 138:180–191. https://doi.org/10.1016/j.carbpol.2015.11.045

    Article  Google Scholar 

  18. Amendola D, De Faveri DM, Spigno G (2010) Grape marc phenolics: extraction kinetics, quality and stability of extracts. J Food Eng 97(3):384–392. https://doi.org/10.1016/j.jfoodeng.2009.10.033

    Article  Google Scholar 

  19. Xu Y, Zhang L, Bailina Y, Ge Z, Ding T, Ye X, Liu D (2014) Effects of ultrasound and/or heating on the extraction of pectin from grapefruit peel. J Food Eng 126:72–81. https://doi.org/10.1016/j.jfoodeng.2013.11.004

    Article  Google Scholar 

  20. Dos Santosa WJ, Silvab EA, Taranto OP (2013) Supercritical fluid extraction from mango (Mangifera indica L.) leaves: experiments and modeling. Chem Eng 32. https://doi.org/10.3303/CET1332335

  21. Borhan A, Yusup S, Lim JW, Show PL (2019) Characterization and modelling studies of activated carbon produced from the rubber-seed shell using KOH for CO2 adsorption. Processes 7(11). https://doi.org/10.3390/pr7110855

  22. Hadidi M, Amoli PI, Jelyani AZ, Hasiri Z, Rouhafza A, Ibarz A, Khaksar FB, Tabrizi ST (2020) Polysaccharides from pineapple core as a canning by-product: extraction optimization, chemical structure, antioxidant and functional properties. Int J Biol Macromol 163:2357–2364. https://doi.org/10.1016/j.ijbiomac.2020.09.092

    Article  Google Scholar 

  23. Guo Y, Byambasuren K, Liu X, Wang X, Qiu S, Gao Y, Wang Z (2021) Extraction, purification, and characterization of insoluble dietary fiber from oat bran. Trans Tianjin Univ 27:385–393. https://doi.org/10.1007/s12209-019-00224-9

    Article  Google Scholar 

  24. Easson MW, Condon B, Dien BS, Iten L, Slopek R, Yoshioka-Tarver M, Lambert A, Smith J (2011) The application of ultrasound in the enzymatic hydrolysis of switchgrass. Appl Biochem Biotechnol 165:1322–1331. https://doi.org/10.1007/s12010-011-9349-1

    Article  Google Scholar 

  25. Moorthy IG, Maran JP, Muneeswari S, Naganyashree S, Shivamathi CS (2015) Response surface optimization of ultrasound assisted extraction of pectin from pomegranate peel. Int J Biol Macromol 72:1323–1328. https://doi.org/10.1016/j.ijbiomac.2014.10.037

    Article  Google Scholar 

  26. Martinez-Solano KC, Garcia-Carrera NA, Tejada-Ortigoza V, García-Cayuela T, Garcia-Amezquita LE (2021) Ultrasound application for the extraction and modification of fiber-rich by-products. Food Eng Rev 13 (3):524–543. https://link.springer.com/article/10.1007/s12393-020-09269-2

  27. Sun J, Zhang Z, Xiao F, Wei Q, Jing Z (2018) Ultrasound-assisted alkali extraction of insoluble dietary fiber from soybean residues. IOP Conf Ser: Mater Sci Eng 392. https://doi.org/10.1088/1757-899X/392/5/052005

  28. Kaur S, Panesar PS, Chopra HK (2023) Sequential extraction of functional compounds from Citrus reticulata pomace using ultrasonication technique. Food Chem Adv 2:100155. https://doi.org/10.1016/j.focha.2022.100155

    Article  Google Scholar 

  29. Balicki S, Pawlaczyk-Graja I, Gancarz R, Capek P, Wilk KA (2020) Optimization of ultrasound-assisted extraction of functional food fiber from Canadian horseweed (Erigeron canadensis L.). ACS Omega 5(33):20854–20862. https://doi.org/10.1021/acsomega.0c02181

    Article  Google Scholar 

  30. Kumar K, Srivastav S, Sharanagat VS (2021) Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: a review. Ultrason Sonochem 70:105325. https://doi.org/10.1016/j.ultsonch.2020.105325

    Article  Google Scholar 

  31. Ibrahim MS, Nadeem M, Khalid W, Ainee A, Roheen T, Javaria S, Ahmad A, Fatima H, Riaz MN, Khalid MZ, Ahmed IAM, Aljobair MO (2024) Optimization of ultrasound assisted extraction and characterization of functional properties of dietary fiber from oat cultivar S2000. LWT 115875

  32. Muthusamy S, Manickam LP, Murugesan V, Muthukumaran C, Pugazhendhi A (2019) Pectin extraction from Helianthus annuus (sunflower) heads using RSM and ANN modelling by a genetic algorithm approach. Int J Biol Macromol 124:750–758. https://doi.org/10.1016/j.ijbiomac.2018.11.036

    Article  Google Scholar 

  33. Dranca F, Oroian M (2019) Ultrasound-assisted extraction of pectin from Malus domestica ‘Fălticeni’ apple pomace. Processes 7(8):488. https://doi.org/10.3390/pr7080488

    Article  Google Scholar 

  34. Panwar D, Panesar PS, Chopra HK (2023) Ultrasound-assisted extraction of pectin from Citrus limetta peels: optimization, characterization, and its comparison with commercial pectin. Food Biosci 51:102231. https://doi.org/10.1016/j.fbio.2022.102231

    Article  Google Scholar 

  35. Vilcapoma W, de Bruijn J, Elías-Peñafiel C, Espinoza C, Farfán-Rodríguez L, López J, Encina-Zelada CR (2023) Optimization of ultrasound-assisted extraction of dietary fiber from yellow dragon fruit peels and its application in low-fat alpaca-based sausages. Foods 12(15):2945. https://doi.org/10.3390/foods12152945

    Article  Google Scholar 

  36. Freitas PA, González-Martínez C, Chiralt A (2022) Applying ultrasound-assisted processing to obtain cellulose fibres from rice straw to be used as reinforcing agents. Innov Food Sci Emerg Technol 76:102932

    Article  Google Scholar 

  37. Luque-Garcıa JL, De Castro ML (2003) Ultrasound: a powerful tool for leaching. TrAC Trends Anal Chem 22(1):41–47

    Article  Google Scholar 

  38. Raza A, Li F, Xu X, Tang J (2017) Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. Int J Biol Macromol 94:335–344. https://doi.org/10.1016/j.ijbiomac.2016.10.033

    Article  Google Scholar 

  39. de Oliveira CF, Giordani D, Lutckemier R, Gurak PD, Cladera-Olivera F, Marczak LDF (2016) Extraction of pectin from passion fruit peel assisted by ultrasound. LWT-Food Sci Technol 71:110–115. https://doi.org/10.1016/j.lwt.2016.03.027

    Article  Google Scholar 

  40. Begum YA, Deka SC (2019) Effect of processing on structural, thermal, and physicochemical properties of dietary fiber of culinary banana bracts. J Food Process Preserv 43(12):e14256. https://doi.org/10.1111/jfpp.14256

    Article  Google Scholar 

  41. Nishad J, Saha S, Kaur C (2019) Enzyme-and ultrasound-assisted extractions of polyphenols from Citrus sinensis (cv. Malta) peel: a comparative study. J Food Process Preserv 43(8):e14046. https://doi.org/10.1111/jfpp.14046

    Article  Google Scholar 

  42. da Silva RPFF, Rocha-Santos TAP, Duarte AC (2016) Supercritical fluid extraction of bioactive compounds. TrAC - Trends Anal Chem 76:40–51. https://doi.org/10.1016/j.trac.2015.11.013

    Article  Google Scholar 

  43. Mohamed SK, Alazhary AM, Al-Zaqri N, Alsalme A, Alharthi FA, Hamdy MS (2020) Cost-effective adsorbent from arabinogalactan and pectin of cactus pear peels: kinetics and thermodynamics studies. Int J Biol Macromol 150:941–947. https://doi.org/10.1016/j.ijbiomac.2019.11.187

    Article  Google Scholar 

  44. Schiewer S, Patil SB (2008) Pectin-rich fruit wastes as biosorbents for heavy metal removal: equilibrium and kinetics. Biores Technol 99(6):1896–1903. https://doi.org/10.1016/j.biortech.2007.03.060

    Article  Google Scholar 

  45. Pan Z, Qu W, Ma H, Atungulu GG, McHugh TH (2011) Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason Sonochem 18(5):1249–1257. https://doi.org/10.1016/j.ultsonch.2011.01.005

    Article  Google Scholar 

  46. Amin S, Hawash G, Diwani El, El Rafei S (2010) Kinetics and thermodynamics of oil extraction from jatropha curcas in aqueous acidic hexane solutions. J Am Sci 6(11):8

    Google Scholar 

  47. Xie F, Zhao T, Wan H, Li M, Sun L, Wang Z, Zhang S (2019) Structural and physicochemical characteristics of rice bran dietary fiber by cellulase and high-pressure homogenization. Appl Sci 9(7):1270. https://doi.org/10.3390/app9071270

    Article  Google Scholar 

  48. Ramadoss G, Muthukumar K (2016) Ultrasound assisted metal chloride treatment of sugarcane bagasse for bioethanol production. Renew Energy 99:1092–1102. https://doi.org/10.1016/j.renene.2016.08.003

    Article  Google Scholar 

  49. Wang K, Li M, Wang Y, Liu Z, Ni Y (2021) Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit (Actinidia deliciosa). Food Hydrocoll 110:106162. https://doi.org/10.1016/j.foodhyd.2020.106162

    Article  Google Scholar 

  50. Wang S, Fang Y, Xu Y, Zhu B, Piao J, Zhu L, Yao L, Liu K, Wang S, Zhang Q, Qin L, Wu J (2022) The effects of different extraction methods on physicochemical, functional and physiological properties of soluble and insoluble dietary fiber from Rubus chingii Hu. fruits. J Funct Foods 93:105081. https://doi.org/10.1016/j.jff.2022.105081

    Article  Google Scholar 

  51. Sang J, Li L, Wen J, Gu Q, Wu J, Yu Y, Xu Y, Fu M, Lin X (2021) Evaluation of the structural, physicochemical and functional properties of dietary fiber extracted from newhall navel orange y-products. Foods 10:2772. https://doi.org/10.3390/foods10112772

    Article  Google Scholar 

  52. Zhang Y, Qi JR, Zeng WQ, Huang YX, Yang XQ (2020) Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment. Food Chem 311:125873. https://doi.org/10.1016/j.foodchem.2019.125873

    Article  Google Scholar 

  53. Wang H, Huang T, Tu ZC, Ruan CY, Lin D (2016) The adsorption of lead (II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber. J Food Sci Technol 53:2532–2539. https://doi.org/10.1007/s13197-016-2203-2

    Article  Google Scholar 

  54. Tao Y (2008) Study on the modification and application of wheat bran dietary fibre. Jiangnan University, Wuxi

Download references

Funding

The research project was funded by ASEAN India Science & Technology Development Fund (AISTDF), Science & Engineering Research Board- Department of Science & Technology (SERB-DST) under Grant No. CRD/2019/000141.

Author information

Authors and Affiliations

Authors

Contributions

Brahmeet Kaur: conceptualization, investigation, methodology, writing—original draft, formal analysis. Parmjit S. Panesar: conceptualization, resources, supervision, writing—reviewing and editing. Avinash Thakur: resources and supervision.

Corresponding author

Correspondence to Parmjit S. Panesar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, B., Panesar, P.S. & Thakur, A. Response surface optimization, kinetic modeling, and thermodynamic study for ultrasound-assisted extraction of dietary fiber from mango peels and its structural characterization. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05606-1

Keywords

Navigation