Skip to main content
Log in

Hemp fibers derived porous carbon for naphthenic acids removal from contaminated aqueous stream

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A considerable amount of oil sand process-affected water (OSPW) is produced as a byproduct during bitumen recovery and processing. OSPW contains mainly naphthenic acids (NAs) with a lesser quantity of other organic acids, which are extremely poisonous to aquatic life. The reuse, recycling, or storing of OSPW into the environment is a significant problem for the oil sand sector. As a result, an effective and economical treatment method is necessary. Porous carbonaceous materials as adsorbents are of interest for the remediation of such contaminated waste streams, although new tunable surface chemistries are required. This work examined a single-step carbonization of hemp fibers (HFs) using different chemical activators (ZnCl2, KOH, K2CO3, Na2CO3, and MgSO4) to synthesize porous carbon. The effects of carbonization temperature (400 to 700 °C) and impregnation ratio of activator to precursor (1:1 to 3:1) on the pore structure of the prepared carbons were investigated. Results showed that hemp fiber-derived carbon (HFC-2–500) having a BET surface area of 2518 ± 19.59 m2/g was obtained at a carbonization temperature of 500 °C for 1 h with ZnCl2 to HF mass ratio of 2:1. The surface area of HFC-2–500 was significantly higher than that of commercially available granular (1005 m2/g) and powder-activated carbon (876 m2/g). The prepared HFC-2–500 was found to be very effective for the removal of model naphthenic acids (2-naphthoic acid and benzoic acid) from contaminated aqueous streams. Almost 100% removal efficiency of 2-naphthoic acid (NA) and 94% removal efficiency of benzoic acid were achieved using HFC-2–500 compared to the commercial granular-activated carbon (92.75%).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The authors confirm that the data generated and analyzed in support of the findings of this study are available within this article.

References

  1. Sun L, Gong Y, Li D, Pan C (2022) Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chem 24(10):3864–3894

    Article  CAS  Google Scholar 

  2. Liu C-F, Liu Y-C, Yi T-Y, Hu C-C (2019) Carbon materials for high-voltage supercapacitors. Carbon 145:529–548

    Article  CAS  Google Scholar 

  3. Chen Q, Tan X, Liu Y, Liu S, Li M, Gu Y, Zhang P, Ye S, Yang Z, Yang Y (2020) Biomass-derived porous graphitic carbon materials for energy and environmental applications. J Mater Chem A 8(12):5773–5811

    Article  CAS  Google Scholar 

  4. Tian W, Zhang H, Duan X, Sun H, Shao G, Wang S (2020) Porous carbons: structure-oriented design and versatile applications. Adv Funct Mater 30(17):1909265

    Article  CAS  Google Scholar 

  5. Perreault LL, Giret S, Gagnon M, Florek J, Lariviere D, Kleitz F (2017) Functionalization of mesoporous carbon materials for selective separation of lanthanides under acidic conditions. ACS Appl Mater Interfaces 9(13):12003–12012

    Article  CAS  PubMed  Google Scholar 

  6. Sayğılı H, Güzel F (2016) High surface area mesoporous activated carbon from tomato processing solid waste by zinc chloride activation: process optimization, characterization and dyes adsorption. J Cleaner Prod 113:995–1004

    Article  Google Scholar 

  7. Abdulrazak S, Hussaini K, Sani H (2017) Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit. Appl Water Sci 7:3151–3155

    Article  ADS  CAS  Google Scholar 

  8. Auta M, Hameed B (2011) Optimized waste tea activated carbon for adsorption of methylene blue and acid blue 29 dyes using response surface methodology. Chem Eng J 175:233–243

    Article  CAS  Google Scholar 

  9. Nabais JV, Laginhas C, Carrott MR, Carrott P, Amorós JC, Gisbert AN (2013) Surface and porous characterisation of activated carbons made from a novel biomass precursor, the esparto grass. Appl Surf Sci 265:919–924

    Article  ADS  CAS  Google Scholar 

  10. Khezami L, Chetouani A, Taouk B, Capart R (2005) Production and characterisation of activated carbon from wood components in powder: cellulose, lignin, xylan. Powder Technol 157(1–3):48–56

    Article  CAS  Google Scholar 

  11. Muniandy L, Adam F, Mohamed AR, Ng E-P (2014) The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater 197:316–323

    Article  CAS  Google Scholar 

  12. Li S, Han K, Li J, Li M, Lu C (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater 243:291–300

    Article  CAS  Google Scholar 

  13. Rosas JM, Bedia J, Rodríguez-Mirasol J, Cordero T (2008) Preparation of hemp-derived activated carbon monoliths. Adsorption of water vapor. Ind Eng Chem Res 47(4):1288–1296

  14. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King’Ondu CK, Holt CM, Olsen BC (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7(6):5131–5141

    Article  CAS  PubMed  Google Scholar 

  15. Rajbhandari R, Shrestha LK, Pokharel BP, Pradhananga RR (2013) Development of nanoporous structure in carbons by chemical activation with zinc chloride. J Nanosci Nanotechnol 13(4):2613–2623

    Article  CAS  PubMed  Google Scholar 

  16. Ozdemir I, Şahin M, Orhan R, Erdem M (2014) Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process Technol 125:200–206

    Article  CAS  Google Scholar 

  17. Kılıç M, Apaydın-Varol E, Pütün AE (2012) Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Appl Surf Sci 261:247–254

    Article  ADS  Google Scholar 

  18. Liu Z, Huang Y, Zhao G (2016) Preparation and characterization of activated carbon fibers from liquefied wood by ZnCl2 activation. BioResources 11(2):3178–3190

    Article  CAS  Google Scholar 

  19. Yorgun S, Yıldız D (2015) Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J Taiwan Inst Chem Eng 53:122–131

    Article  CAS  Google Scholar 

  20. Yorgun S, Vural N, Demiral H (2009) Preparation of high-surface area activated carbons from Paulownia wood by ZnCl2 activation. Microporous Mesoporous Mater 122(1–3):189–194

    Article  CAS  Google Scholar 

  21. Rosas J, Bedia J, Rodríguez-Mirasol J, Cordero T (2009) HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel 88(1):19–26

    Article  CAS  Google Scholar 

  22. Hossain MZ, Wu W, Xu WZ, Chowdhury MB, Jhawar AK, Machin D, Charpentier PA (2018) High-surface-area mesoporous activated carbon from hemp bast fiber using hydrothermal processing. C 4(3):38

  23. Allen EW (2008) Process water treatment in Canada’s oil sands industry: I Target pollutants and treatment objectives. J Environ Eng Sci 7(2):123–138

    Article  CAS  Google Scholar 

  24. Allen EW (2008) Process water treatment in Canada’s oil sands industry: II A review of emerging technologies. J Environ Eng Sci 7(5):499–524

    Article  CAS  Google Scholar 

  25. Niasar HS, Li H, Kasanneni TVR, Ray MB, Xu CC (2016) Surface amination of activated carbon and petroleum coke for the removal of naphthenic acids and treatment of oil sands process-affected water (OSPW). Chem Eng J 293:189–199

    Article  CAS  Google Scholar 

  26. Alam MS, Cossio M, Robinson L, Wang X, Kenney JP, Konhauser KO, MacKenzie MD, Ok YS, Alessi DS (2016) Removal of organic acids from water using biochar and petroleum coke. Environ Technol Innov 6:141–151

    Article  Google Scholar 

  27. Scott AC, Zubot W, MacKinnon MD, Smith DW, Fedorak PM (2008) Ozonation of oil sands process water removes naphthenic acids and toxicity. Chemosphere 71(1):156–160

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Quesnel DM, Bhaskar IM, Gieg LM, Chua G (2011) Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta. Chemosphere 84(4):504–511

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Shi LJ, Shen BX, Wang GQ (2008) Removal of naphthenic acids from Beijiang crude oil by forming ionic liquids. Energy Fuels 22(6):4177–4181

    Article  CAS  Google Scholar 

  30. Wang Y-z, Li J-y, Sun X-y, Duan H-l, Song C-m, Zhang M-m, Liu Y-p (2014) Removal of naphthenic acids from crude oils by fixed-bed catalytic esterification. Fuel 116:723–728

    Article  CAS  Google Scholar 

  31. Theerthagiri J, Madhavan J, Lee SJ, Choi MY, Ashokkumar M, Pollet BG (2020) Sonoelectrochemistry for energy and environmental applications. Ultrason Sonochem 63:104960

    Article  CAS  PubMed  Google Scholar 

  32. Martínez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2023) A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl Catal B 328:122430

  33. AlJaberi FY, Ahmed SA, Makki HF, Naje AS, Zwain HM, Salman AD, Juzsakova T, Viktor S, Van B, Le P-C (2023) Recent advances and applicable flexibility potential of electrochemical processes for wastewater treatment. Sci Total Environ 867:161361

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Doggaz A, Attour A, Mostefa MLP, Côme K, Tlili M, Lapicque F (2019) Removal of heavy metals by electrocoagulation from hydrogenocarbonate-containing waters: compared cases of divalent iron and zinc cations. J Water Process Eng 29:100796

    Article  Google Scholar 

  35. Poonguzhali E, Kapoor A, Kumar PS, Prabhakar S (2021) Effective separation of toxic phenol from aquatic system using membrane assisted solvent extraction system. Desalin Water Treat 221:316–327

    Article  CAS  Google Scholar 

  36. Theerthagiri J, Lee SJ, Karuppasamy K, Arulmani S, Veeralakshmi S, Ashokkumar M, Choi MY (2021) Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. J Hazard Mater 412:125245

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor D, Hou D, Ok YS, Song Y, Sarmah AK, Li X, Tack FM (2018) Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. J Control Release 283:200–213

    Article  CAS  PubMed  Google Scholar 

  38. Garcia-Segura S, Keller J, Brillas E, Radjenovic J (2015) Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater 283:551–557

    Article  CAS  PubMed  Google Scholar 

  39. Othmani A, Kesraoui A, Elaissaoui I, Seffen M (2020) Coupling anodic oxidation, biosorption and alternating current as alternative for wastewater purification. Chemosphere 249:126480

    Article  CAS  PubMed  Google Scholar 

  40. Othmani A, Magdouli S, Kumar PS, Kapoor A, Chellam PV, Gökkuş Ö (2022) Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: a review. Environ Res 204:111916

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh S, Malloum A, Igwegbe CA, Ighalo JO, Ahmadi S, Dehghani MH, Othmani A, Gökkuş Ö, Mubarak NM (2022) New generation adsorbents for the removal of fluoride from water and wastewater: a review. J Mol Liq 346:118257

    Article  CAS  Google Scholar 

  42. Sarkar B, Fricska H, Gao Q, Tong S, Jia CQ (2023) Adsorption of single-ring model naphthenic acid from oil sands tailings pond water using physically activated petroleum coke. Can J Chem Eng 101(8):4374–4384

    Article  CAS  Google Scholar 

  43. Taheripak O, Fathi S (2023) Removal of heavy crude oil from wastewater using activated carbon obtained from oak seed husk biodegradable lignocellulosic biomass. Water Air Soil Pollut 234(5):295

    Article  ADS  CAS  Google Scholar 

  44. Hsu Y-C, Sil MC, Lin C-H, Chen C-M (2023) Modification of covalent organic framework by hydrolysis for efficient and selective removal of organic dye. Appl Surf Sci 612:155890

    Article  CAS  Google Scholar 

  45. Abdelwahab O, Amin N (2013) Adsorption of phenol from aqueous solutions by Luffa cylindrica fibers: kinetics, isotherm and thermodynamic studies. Egypt J Aquat Res 39(4):215–223

    Article  Google Scholar 

  46. Quinlan PJ, Tam KC (2015) Water treatment technologies for the remediation of naphthenic acids in oil sands process-affected water. Chem Eng J 279:696–714

    Article  CAS  Google Scholar 

  47. Niasar HS, Das S, Xu CC, Ray MB (2019) Continuous column adsorption of naphthenic acids from synthetic and real oil sands process-affected water (OSPW) using carbon-based adsorbents. Chemosphere 214:511–518

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Chen S, Tian M, Tao Z, Fu Y, Wang Y, Liu Y, Xiao B (2020) Effect of swing on removing CO2 from offshore natural gas by adsorption. Chem Eng J 382:122932

    Article  CAS  Google Scholar 

  49. Qian Q, Machida M, Tatsumoto H (2007) Preparation of activated carbons from cattle-manure compost by zinc chloride activation. Bioresour Technol 98(2):353–360

    Article  CAS  PubMed  Google Scholar 

  50. Ji H, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38(13):1873–1878

    Article  Google Scholar 

  51. Kumar A, Jena HM (2015) High surface area microporous activated carbons prepared from fox nut (Euryale ferox) shell by zinc chloride activation. Appl Surf Sci 356:753–761

    Article  ADS  CAS  Google Scholar 

  52. Yang J, Qiu K (2011) Development of high surface area mesoporous activated carbons from herb residues. Chem Eng J 167(1):148–154

    Article  CAS  Google Scholar 

  53. Uçar S, Erdem M, Tay T, Karagöz S (2009) Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl2 activation. Appl Surf Sci 255(21):8890–8896

    Article  ADS  Google Scholar 

  54. Acharya J, Sahu J, Sahoo B, Mohanty C, Meikap B (2009) Removal of chromium (VI) from wastewater by activated carbon developed from tamarind wood activated with zinc chloride. Chem Eng J 150(1):25–39

    Article  CAS  Google Scholar 

  55. Gonzalez-Serrano E, Cordero T, Rodríguez-Mirasol J, Rodríguez J (1997) Development of porosity upon chemical activation of kraft lignin with ZnCl2. Ind Eng Chem Res 36(11):4832–4838

    Article  CAS  Google Scholar 

  56. Li Y, Du Q, Wang X, Zhang P, Wang D, Wang Z, Xia Y (2010) Removal of lead from aqueous solution by activated carbon prepared from Enteromorpha prolifera by zinc chloride activation. J Hazard Mater 183(1–3):583–589

    Article  CAS  PubMed  Google Scholar 

  57. Önal Y, Akmil-Başar C, Sarıcı-Özdemir Ç, Erdoğan S (2007) Textural development of sugar beet bagasse activated with ZnCl2. J Hazard Mater 142(1–2):138–143

    Article  PubMed  Google Scholar 

  58. Olivares-Marín M, Fernández-González C, Macías-García A, Gómez-Serrano V (2006) Preparation of activated carbon from cherry stones by chemical activation with ZnCl2. Appl Surf Sci 252(17):5967–5971

    Article  ADS  Google Scholar 

  59. Liou T-H (2010) Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J 158(2):129–142

    Article  CAS  Google Scholar 

  60. Williams PT, Reed AR (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 30(2):144–152

    Article  CAS  Google Scholar 

  61. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18(16):2073–2094

    Article  CAS  Google Scholar 

  62. Ma T-Y, Liu L, Yuan Z-Y (2013) Direct synthesis of ordered mesoporous carbons. Chem Soc Rev 42(9):3977–4003

    Article  CAS  PubMed  Google Scholar 

  63. Palanisamy S, Shyma AP, Srinivasan S, Venkatachalam R (2019) Novel modified nano-activated carbon and its influence on the metal–O2 battery system. J Storage Mater 22:283–294

    Google Scholar 

  64. Tsubouchi N, Xu C, Ohtsuka Y (2003) Carbon crystallization during high-temperature pyrolysis of coals and the enhancement by calcium. Energy Fuels 17(5):1119–1125

    Article  CAS  Google Scholar 

  65. Adinata D, Daud WMAW, Aroua MK (2007) Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour Technol 98(1):145–149

    Article  CAS  PubMed  Google Scholar 

  66. McKee DW (1983) Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 62(2):170–175

    Article  CAS  Google Scholar 

  67. Raymundo-Pinero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43(4):786–795

    Article  CAS  Google Scholar 

  68. Frank RA, Fischer K, Kavanagh R, Burnison BK, Arsenault G, Headley JV, Peru KM, Kraak GVD, Solomon KR (2009) Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids. Environ Sci Technol 43(2):266–271

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Zhu S, Li Z, Yu M, Wang Q, Chen C, Ma J (2023) Efficient removal of naphthenic acids from real petroleum wastewater by natural pyrite activated persulfate system. J Environ Manag 348:119239

    Article  CAS  Google Scholar 

  70. Messele SA, Chelme-Ayala P, El-Din MG (2021) Catalytic ozonation of naphthenic acids in the presence of carbon-based metal-free catalysts: performance and kinetic study. Catal Today 361:102–108

    Article  CAS  Google Scholar 

  71. Santos DF, Chaves AR, Ostroski IC (2021) Naphthenic acid removal in model and real aviation kerosene mixture. Chem Eng Commun 208(10):1405–1418

    Article  CAS  Google Scholar 

  72. Iranmanesh S, Harding T, Abedi J, Seyedeyn-Azad F, Layzell DB (2014) Adsorption of naphthenic acids on high surface area activated carbons. J Environ Sci Health Part A 49(8):913–922

    Article  CAS  Google Scholar 

  73. Azad FS, Abedi J, Iranmanesh S (2013) Removal of naphthenic acids using adsorption process and the effect of the addition of salt. J Environ Sci Health Part A 48(13):1649–1654

    Article  CAS  Google Scholar 

  74. Martinez-Iglesias A, Niasar HS, Xu C, Ray MB (2015) Adsorption of model naphthenic acids in water with granular activated carbon. Adsorpt Sci Technol 33(10):881–894

    Article  CAS  Google Scholar 

Download references

Funding

The present work was financially supported by the Natural Sciences & Engineering Research Councils (NSERC) of Canada and the Mitacs Accelerate grant, the latter in association with the industry partner Origin Materials, Sarnia, Canada.

Author information

Authors and Affiliations

Authors

Contributions

MG: conceptualization, validation, investigation, methodology, and writing—original manuscript; MZH: methodology and writing—review and editing; AM: investigation and methodology; WZX: writing—review and editing; PC: resources, writing–review and editing, supervision, and funding acquisition.

Corresponding authors

Correspondence to Md Zakir Hossain or Paul A. Charpentier.

Ethics declarations

Ethical approval

Not available.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurung, M., Hossain, M.Z., Mumin, A. et al. Hemp fibers derived porous carbon for naphthenic acids removal from contaminated aqueous stream. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05361-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05361-3

Keywords

Navigation