Skip to main content
Log in

Selection of strains of Prorocentrum micans (Ehrenberg 1834) from Peru based on their lipid potential

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lipids (fatty acids and pigments) are sought-after bioactive compounds, with dinoflagellates such as Prorocentrum micans standing out for containing a wide variety of these compounds, including the prominent docosahexaenoic acid (DHA). The objective of the present study was to select and evaluate strains of P. micans isolated from Peru that have the highest lipid profile and greatest adaptability to the cultivation, in order to determine their lipid potential. Initially, the growth and lipid profile of two strains of P. micans (IMP-BG-062 and IMP-BG-116) were evaluated by cultivating them in three different culture media, f/2, f, and L1. Once the optimal culture medium was identified, the strains IMP-BG-036, IMP-BG-062, IMP-BG-116, IMP-BG-453, and IMP-BG-529 were evaluated in terms of growth kinetics and fatty acid profile. The study results showed that the combined culture medium (FL) was optimal for P. micans growth and fatty acid accumulation. Among the five strains evaluated, IMP-BG-036 from the north coast of Peru showed the best adaptation to culture conditions, achieving the highest cell density (1 × 105 cells mL− 1) and the highest content of DHA acid (63 mg g− 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Abalde J, Angeles Cid J, Pablo Fidalgo ET (1995) Concepción Herrero. Microalgas: Cultivo y Aplicaciones. Editor. Universidad de la Coruña. Monografía Nº26, 1995. https://doi.org/10.17979/spudc.9788497497695

  2. Lorenzen J, Igl N, Tippelt M, Stege A, Qoura F, Sohling U, Brück T (2017) Extraction of microalgae derived lipids with supercritical carbon dioxide in an industrial relevant pilot plant. Bioprocess Biosyst Eng 40:911–918. https://doi.org/10.1007/s00449-017-1755-5

    Article  Google Scholar 

  3. Rani V, Deepika S, Abarna K, Uma A (2022) Isolation, identification, and optimization of growth conditions for the marine microalgae isolated from the Gulf of Mannar, South-east coast of India. Reg Stud Mar Sci 51:102189. https://doi.org/10.1016/j.rsma.2022.102189

    Article  Google Scholar 

  4. Sexton JP, Lomas MW (2018) Microalgal systematics. In: Microalgae in Health and Disease Prevention (pp. 73–107). Academic Press. https://doi.org/10.1016/B978-0-12-811405-6.00004-9

  5. Díaz K (2012) Biotecnología De Microalgas como fuente de diversos compuestos de interés para la industria farmaceútica y alimentaria. Vitae, 19 (2), S76 – S77

  6. Peñaranda Rincón LA, Sepúlveda Ortíz KJ, Álvarez Pacheco YE, González-Delgado ÁD, Kafarov V (2011) Evaluación De rutas de obtención de lípidos y monosacáridos de biomasa de microalgas bajo El concepto de biorefinería. Rev Ion 24(2):13–21

    Google Scholar 

  7. Bellou S, Baeshen MN, Elazzazy AM, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol Adv 32(8):1476–1493. https://doi.org/10.1016/j.biotechadv.2014.10.003

    Article  Google Scholar 

  8. Fu W, Nelson DR, Yi Z, Xu M, Khraiwesh B, Jijakli K, Chaiboonchoe A, Alzahmi A, Al-Khairy D, Brynjolfsson S, Salehi-Ashtiani K (2017) Bioactive compounds from microalgae: Current development and prospects. In: Studies in natural Products Chemistry, 54, 199–225. https://doi.org/10.1016/B978-0-444-63929-5.00006-1

  9. Sathasivam R, Radhakrishnan R, Hashem A, Abd_Allah EF (2019) Microalgae metabolites: a rich source for food and medicine. Saudi J Biol Sci 26(4):709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

  10. Santoro I, Nardi M, Benincasa C, Costanzo P, Giordano G, Procopio A, Sindona G (2019) Sustainable and selective extraction of lipids and bioactive compounds from microalgae. Molecules 24(23):4347. https://doi.org/10.20944/preprints201911.0080.v1

    Article  Google Scholar 

  11. Oliveira CYB, Abreu JL, Santos EP, Matos ÂP, Tribuzi G, Oliveira CDL, Veras BO, Bezerra RS, Müller MN, Gálvez AO (2022) Light induces peridinin and docosahexaenoic acid accumulation in the dinoflagellate durusdinium glynnii. Appl Microbiol Biotechnol 106(18):6263–6276. https://doi.org/10.1007/s00253-022-12131-6

    Article  Google Scholar 

  12. Hernández I (2016) Efecto de la dieta en la composición de ácidos grasos del alimento vivo utilizado en la crianza larvaria de peces marinos. Tesis de Maestría, Centro Interdisciplinario de Ciencias Marinas - Instituto Politécnico Nacional: CICIMAR-IPN, La Paz, B.C.S

  13. Oliveira CYB, Oliveira CDL, Prasad R, Ong HC, Araujo ES, Shabnam N, Gálvez AO (2021) A multidisciplinary review of Tetradesmus Obliquus: a microalga suitable for large-scale biomass production and emerging environmental applications. Rev Aquac 13(3):1594–1618. https://doi.org/10.1111/raq.12536

    Article  Google Scholar 

  14. Peltomaa E, Hällfors H, Taipale SJ (2019) Comparison of diatoms and dinoflagellates from different habitats as sources of PUFAs. Mar Drug 17(4):233. https://doi.org/10.3390/md17040233

    Article  Google Scholar 

  15. Oliveira CYB, Brandão BCS, Jannuzzi LGS, Oliveira DWS, Yogui GT, Müller MN, Gálvez AO (2023) New insights on the role of nitrogen in the resistance to environmental stress in an endosymbiotic dinoflagellate. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-28228-y

  16. Lee KH, Jeong HJ, Kim HJ, Lim AS (2017) Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity. Algae 32(2):139–153. https://doi.org/10.4490/algae.2017.32.5.20

    Article  Google Scholar 

  17. Kattner GG (1978) U. H. Brockmann Fatty-acid composition of dissolved and Particulate Matter in Surface films. Mar Chem 6 1978 233–241

    Article  Google Scholar 

  18. Hernández Acevedo H, Flores Ramos L, Ruiz Soto A (2019) Ácidos grasos en cepas de microalgas del Banco De Germoplasma De Organismos Acuáticos Del Instituto Del Mar Del Perú (IMARPE). Rev Peru Biol 26(3):369–378. https://doi.org/10.15381/rpb.v26i3.15356

    Article  Google Scholar 

  19. Abd HM, Fatah E, Ali DM, M. I (2022) Seasonal dynamics and ecological drivers of Prorocentrum Micans Ehrenberg dinoflagellate blooms in Qarum Lake Egypt. Egypt J Aquat Res 48(4):375–382. https://doi.org/10.1016/j.ejar.2022.07.001

    Article  Google Scholar 

  20. Andersen RA (2005) Algae Culturing techniques. Phycological Society of America. Elsevier academic Press, London, England, pp 84–98

    Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chemi 226:497–509

    Article  Google Scholar 

  22. Ichihara K, Fukubayashi Y (2010) Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res Mar 51(3):635–640. https://doi.org/10.1194/jlr.D001065

    Article  Google Scholar 

  23. Bruland KW, Rue EL, Smith GJ, DiTullio GR (2005) Iron, macronutrients and diatom blooms in the Peru upwelling regime: brown and blue waters of Peru. Mar Chem 93:81–103. https://doi.org/10.1016/j.marchem.2004.06.011

    Article  Google Scholar 

  24. Rodriguez IB, Ho TY (2018) Trace Metal Requirements and Interactions in Symbiodinium kawagutii. Front. Microbiol., 9, 142, 2018. https://doi.org/10.3389/fmicb.2018.00142

  25. Sofen LE, Antipova OA, Ellwood MJ, Gilbert NE, LeCleir GR, Lohan MC, Mahaffey C, Mann EL, Ohnemus DC, Wihelm SW, Twining BS (2022) Trace metal contents of autotrophic flagellates from contrasting open-ocean ecosystems. Limnol Oceanogr Let 7(4):354–362. https://doi.org/10.1002/lol2.10258

    Article  Google Scholar 

  26. Sun XM, Ren LJ, Zhao QY, Zhang LH, Huang H (2019) Application of chemicals for enhancing lipid production in microalgae-a short review. Bioresour Technol 293:122135. https://doi.org/10.1016/j.biortech.2019.122135

    Article  Google Scholar 

  27. Gómez VJ (2015) Estudio de elementos esenciales y tóxicos en microalgas: uso de Chlorella sorokiniana en la preparación de alimentos funcionales. Tesis doctoral, Departamento de Química Profesor José Carlos Vílchez Martín, Universidad de Huelva

  28. Dritsas P, Asimakis E, Lianou A, Efstratiou M, Tsiamis G, Aggelis G (2023) Microalgae from the Ionian Sea (Greece): isolation, molecular identification and biochemical features of biotechnological interest. Algal Res 74:103210. https://doi.org/10.1016/j.algal.2023.103210

    Article  Google Scholar 

  29. Zimmermann LA (2006) Environmental regulation of toxin production: comparison of hemolytic activity of Amphidinium carterae and Amphidinium klebsii (Doctoral dissertation, University of North Carolina at Wilmington). https://nsgl.gso.uri.edu/ncu/ncuy06005.pdf

  30. Ikawa M (2004) Algal polyunsaturated fatty acids and effects on plankton ecology and other organisms. UNH Cent Freshw Biology Res 6(2):17–44

    Google Scholar 

Download references

Funding

This work was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

CAS: Investigation, Methodology, Data curation, Formal Analysis, Writing – original draft; HHA: Methodology, Formal Analysis, Writing – review & editing; LF: Formal Analysis, Writing – review & editing; AR: Formal Analysis, Writing – review & editing; RBS: Supervision, Writing – review & editing; CYBO: Formal Analysis, Writing – review & editing; AOG: Supervision, Writing – review & editing.

Corresponding author

Correspondence to Carlos Yure B. Oliveira.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanamud, C.A., Acevedo, H.H., Ramos, L.F. et al. Selection of strains of Prorocentrum micans (Ehrenberg 1834) from Peru based on their lipid potential. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05310-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05310-0

Keywords

Navigation