Skip to main content
Log in

Integrated alkaline-solid/liquid separation-thermal multiple-step pretreatment of lignocellulosic biomass for biogas production enhancement

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Multiple-step pretreatment showed the benefits of improved biomass fractionation, maximized cellulose/hemicelluloses utilization, and enhanced anaerobic digestion performance. This study proposed a pretreatment concept, the integrated alkaline-solid/liquid separation-thermal multiple-step pretreatment (AK-SL-TP), to pretreat spent mushroom substrate (SMS), Napier grass (NP), rice straw (RS), and rice husk (RH) for enhancing anaerobic digestion performance. The integrated alkaline-solid/liquid separation pretreatment (AK-SL) was also compared to evaluate the effect of integrated thermal pretreatment in AK-SL-TP. The pretreatment effect toward enzymatic hydrolysis was also assessed. Multiple pretreatment (AK-SL-TP) showed better performance in terms of biogas production, in which biogas yield was 485 L/kg-VS for SMS, 660 L/kg-VS for NP, 564 L/kg-VS for RS and 101 L/kg-VS for RH, respectively. A linear relationship between biogas production and released glucose/total sugar (glucose and xylose) was observed, with regression coefficient (R2) in the range of 0.88–0.92, indicating enzymatic hydrolysis performance could serve as one promising index for evaluating biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used or analyzed in this study are available from the corresponding author on reasonable request.

References

  1. Schwingel AW, Orrico ACA, de Lucas Junior J, Junior MAPO, Borquis RRA, Fava AF (2019) Laying hen manure in anaerobic Co-Digestion with glycerin containing different glycerol and impurity levels. J Clean Prod 215:1437–1444. https://doi.org/10.1016/j.jclepro.2019.01.125

    Article  Google Scholar 

  2. Ewunie GA, Morken J, Yigezu ZD (2021) Alkaline and co-digestion pretreatments: process optimization for enhancing the methane yield of Jatropha press cake. Biomass Convers Biorefin 11(3):971–988. https://doi.org/10.1007/s13399-020-00732-y

    Article  Google Scholar 

  3. Khan MU, Ahring BK (2021) Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment. Energies 14(18):5940. https://doi.org/10.3390/en14185940

    Article  Google Scholar 

  4. Song ZL, Yang GH, Liu XF, Yan ZY, Yuan YX, Liao YZ (2014) Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion. PLoS ONE 9(4):e101617. https://doi.org/10.1371/journal.pone.0093801

    Article  Google Scholar 

  5. Sawatdeenarunat C, Surendra K, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  Google Scholar 

  6. Dahmen N, Lewandowski I, Zibek S, Weidtmann A (2019) Integrated lignocellulosic value chains in a growing bioeconomy: Status quo and perspectives. Glob Change Biol Bioenergy 11(1):107–117. https://doi.org/10.1111/gcbb.12586

    Article  Google Scholar 

  7. Lee J, Kim S, You S, Park Y-K (2023) Bioenergy generation from thermochemical conversion of lignocellulosic biomass-based integrated renewable energy systems. Renew Sust Energ Rev 178:113240. https://doi.org/10.1016/j.rser.2023.113240

    Article  Google Scholar 

  8. Karami K, Karimi K, Mirmohamadsadeghi S, Kumar R (2022) Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood. Energy 239:122361. https://doi.org/10.1016/j.energy.2021.122361

    Article  Google Scholar 

  9. Kamperidou V, Terzopoulou P (2021) Anaerobic digestion of lignocellulosic waste materials. Sustainability 13(22):12810. https://doi.org/10.3390/su132212810

    Article  Google Scholar 

  10. Kainthola J, Kalamdhad AS, Goud VV (2019) A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem 84:81–90. https://doi.org/10.1016/j.procbio.2019.05.023

    Article  Google Scholar 

  11. Khan MU, Ahring BK (2019) Lignin degradation under anaerobic digestion: Influence of lignin modifications-A review. Biomass Bioenerg 128:105325. https://doi.org/10.1016/j.biombioe.2019.105325

    Article  Google Scholar 

  12. Huang C, Jiang X, Shen X, Hu J, Tang W, Wu X, Ragauskas A, Jameel H, Meng X, Yong Q (2022) Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics. Renew Sustain Energy Rev 154:111822. https://doi.org/10.1016/j.rser.2021.111822

    Article  Google Scholar 

  13. Choi W-I, Park J-Y, Lee J-P, Oh Y-K, Park YC, Kim JS, Park JM, Kim CH, Lee J-S (2013) Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnol Biofuels 6:1–8. https://doi.org/10.1186/1754-6834-6-170

    Article  Google Scholar 

  14. Tang SY, Xu CM, Vu LTK, Liu SC, Ye P, Li LC, Wu YX, Chen MY, Xiao Y, Wu Y, Wang YN, Yan Q, Cheng XY (2019) Enhanced Enzymatic Hydrolysis of Pennisetum alopecuroides by Dilute Acid Alkaline and Ferric Chloride Pretreatments. Molecules 24(9):1715. https://doi.org/10.3390/molecules24091715

    Article  Google Scholar 

  15. Bandgar P, Jain S, Panwar N (2022) A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass Bioenergy 161:106479. https://doi.org/10.1016/j.biombioe.2022.106479

    Article  Google Scholar 

  16. Sambusiti C, Ficara E, Malpei F, Steyer J-P, Carrère H (2013) Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production. Bioresour Technol 144:149–155. https://doi.org/10.1016/j.biortech.2013.06.095

    Article  Google Scholar 

  17. Li RF, Tan WB, Zhao XY, Dang QL, Song QD, Xi BD, Zhang XH (2019) Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure. Catalysts 9(6):539. https://doi.org/10.3390/catal9060539

    Article  Google Scholar 

  18. Jiang H, Liu T, Ding JT, Nie H, Zhou HJ (2018) Optimization and Performance of Moderate Combined Alkali and Microwave Pretreatment for Anaerobic Digestion of Waste-Activated Sludge. Pol. J Environ. Stud 27(2):689–697. https://doi.org/10.15244/pjoes/76138

    Article  Google Scholar 

  19. Bolado-Rodríguez S, Toquero C, Martín-Juárez J, Travaini R, García-Encina PA (2016) Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour Technol 201:182–190. https://doi.org/10.1016/j.biortech.2015.11.047

    Article  Google Scholar 

  20. Edwiges T, Bastos JA, Alino JHL, Frare LM, Somer JG (2019) Comparison of various pretreatment techniques to enhance biodegradability of lignocellulosic biomass for methane production. J Environ Chem Eng 7(6):103495. https://doi.org/10.1016/j.jece.2019.103495

    Article  Google Scholar 

  21. Li L, Ye P, Chen M, Tang S, Luo Y, Gao Y, Yan Q, Cheng X (2020) A two-step ferric chloride and dilute alkaline pretreatment for enhancing enzymatic hydrolysis and fermentable sugar recovery from Miscanthus sinensis. Molecules 25(8):1843. https://doi.org/10.3390/molecules25081843

    Article  Google Scholar 

  22. Bhalla A, Fasahati P, Particka CA, Assad AE, Stoklosa RJ, Bansal N, Semaan R, Saffron CM, Hodge DB, Hegg EL (2018) Integrated experimental and technoeconomic evaluation of two-stage Cu-catalyzed alkaline–oxidative pretreatment of hybrid poplar. Biotechnol Biofuels 11:1–10. https://doi.org/10.1186/s13068-018-1124-x

    Article  Google Scholar 

  23. Antunes FAF, Rajan K, Djioleu A, Rocha TM, Brumano LP, de Souza Melo YC, dos Santos JC, Rosa CA, Carrier DJ, da Silva SS (2022) Sustainable second-generation ethanol production from switchgrass biomass via co-fermentation of pentoses and hexoses using novel wild yeasts. Bioenergy Res 15:1157–1168. https://doi.org/10.1007/s12155-021-10302-3

    Article  Google Scholar 

  24. Ávila-Lara AI, Camberos-Flores JN, Mendoza-Pérez JA, Messina-Fernández SR, Saldaña-Duran CE, Jimenez-Ruiz EI, Sánchez-Herrera LM, Pérez-Pimienta JA (2015) Optimization of alkaline and dilute acid pretreatment of agave bagasse by response surface methodology. Front Bioeng Biotechnol 3:146. https://doi.org/10.3389/fbioe.2015.00146

    Article  Google Scholar 

  25. Guo B, Zhang Y, Yu G, Lee W-H, Jin Y-S, Morgenroth E (2013) Two-stage acidic–alkaline hydrothermal pretreatment of lignocellulose for the high recovery of cellulose and hemicellulose sugars. Appl Biochem Biotechnol 169:1069–1087. https://doi.org/10.1007/s12010-012-0038-5

    Article  Google Scholar 

  26. Singh R, Banerjee J, Sasmal S, Muir J, Arora A (2018) High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresour Technol 256:110–117. https://doi.org/10.1016/j.biortech.2018.02.009

    Article  Google Scholar 

  27. Chang C-W, Yu W-C, Chen W-J, Chang R-F, Kao W-S (2011) A study on the enzymatic hydrolysis of steam exploded napiergrass with alkaline treatment using artificial neural networks and regression analysis. J Taiwan Inst Chem Eng 42(6):889–894. https://doi.org/10.1016/j.jtice.2011.04.002

    Article  Google Scholar 

  28. Monlau F, Trably E, Barakat A, Hamelin J, Steyer J-P, Carrere H (2013) Two-stage alkaline–enzymatic pretreatments to enhance biohydrogen production from sunflower stalks. Environ Sci Technol 47(21):12591–12599. https://doi.org/10.1021/es402863v

    Article  Google Scholar 

  29. Tang S, Cao Y, Xu C, Wu Y, Li L, Ye P, Luo Y, Gao Y, Liao Y, Yan Q (2020) One-Step or Two-Step Acid/Alkaline Pretreatments to Improve Enzymatic Hydrolysis and Sugar Recovery from Arundo Donax L. Energies 13(4):948. https://doi.org/10.3390/en13040948

    Article  Google Scholar 

  30. Kang X, Sun Y, Li L, Kong X, Yuan Z (2018) Improving methane production from anaerobic digestion of Pennisetum Hybrid by alkaline pretreatment. Biores Technol 255:205–212. https://doi.org/10.1016/j.biortech.2017.12.001

    Article  Google Scholar 

  31. Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, Bougrier C, Buffière P, Carballa M, De Wilde V (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74(11):2515–2522. https://doi.org/10.2166/wst.2016.336

    Article  Google Scholar 

  32. Jung W, Savithri D, Sharma-Shivappa R, Kolar P (2020) Effect of sodium hydroxide pretreatment on lignin monomeric components of Miscanthus× giganteus and enzymatic hydrolysis. Waste Biomass Valor 11:5891–5900. https://doi.org/10.1007/s12649-019-00859-8

    Article  Google Scholar 

  33. McIntosh S, Vancov T (2010) Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Biores Technol 101(17):6718–6727. https://doi.org/10.1016/j.biortech.2010.03.116

    Article  Google Scholar 

  34. Rice EW, Bridgewater L, Association, A.P.H. (2012) Standard methods for the examination of water and wastewater. American public health association, Washington, DC. https://doi.org/10.2105/SMWW.2882.002

    Book  Google Scholar 

  35. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Lab Anal Procedure 1617(1):1–16

    Google Scholar 

  36. Hierholtzer A, Akunna JC (2012) Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol 66(7):1565–1573. https://doi.org/10.2166/wst.2012.345

    Article  Google Scholar 

  37. Ishizawa CI, Jeoh T, Adney WS, Himmel ME, Johnson DK, Davis MF (2009) Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 16:677–686. https://doi.org/10.1007/s10570-009-9313-1

    Article  Google Scholar 

  38. Dahunsi SO (2022) Valorization of pineapple peel and poultry manure for clean energy generation. Food Energy Secur 11(1):e228. https://doi.org/10.1002/fes3.228

    Article  Google Scholar 

  39. Xiao X, Zhang R, He Y, Li Y, Feng L, Chen C, Liu G (2013) Influence of particle size and alkaline pretreatment on the anaerobic digestion of corn stover. Bioresources 8(4):5850–5860. https://doi.org/10.15376/biores.8.4.5850-5860

    Article  Google Scholar 

  40. Karam DS, Nagabovanalli P, Rajoo KS, Ishak CF, Abdu A, Rosli Z, Muharam FM, Zulperi D (2022) An overview on the preparation of rice husk biochar, factors affecting its properties, and its agriculture application. J Saudi Soc Agric Sci 21(3):149–159. https://doi.org/10.1016/j.jssas.2021.07.005

    Article  Google Scholar 

  41. Todkar BS, Deorukhkar OA, Deshmukh SM (2016) Extraction of silica from rice husk. Int J Eng Res Dev 12(3):69–74

    Google Scholar 

  42. Ates A, Akgül G (2016) Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technol 287:285–291. https://doi.org/10.1016/j.powtec.2015.10.021

    Article  Google Scholar 

  43. Li X, Li M, Pu Y, Ragauskas AJ, Klett AS, Thies M, Zheng Y (2018) Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renew Energy 123:664–674. https://doi.org/10.1016/j.renene.2018.02.079

    Article  Google Scholar 

  44. Lai C, Tu M, Shi Z, Zheng K, Olmos LG, Yu S (2014) Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Biores Technol 163:320–327. https://doi.org/10.1016/j.biortech.2014.04.065

    Article  Google Scholar 

  45. Ikeda S, Watari T, Yamauchi M, Hatamoto M, Hara H, Maki S, Yamada M, Yamaguchi T (2019) Evaluation of pretreatment effect for spent mushroom substrate on methane production. J Water Environ Technol 17(3):174–179. https://doi.org/10.2965/jwet.18-069

    Article  Google Scholar 

  46. Kim M, Kim B-C, Nam K, Choi Y (2018) Effect of pretreatment solutions and conditions on decomposition and anaerobic digestion of lignocellulosic biomass in rice straw. Biochem Eng J 140:108–114. https://doi.org/10.1016/j.bej.2018.09.012

    Article  Google Scholar 

  47. Olugbemide AD, Lajide L, Adebayo A, Owolabi BJ (2020) Enhanced biogas production from rice husk through solid-state chemical pretreatments. Waste Biomass Valor 11:2397–2407. https://doi.org/10.1007/s12649-018-00567-9

    Article  Google Scholar 

  48. Dar SA, Kleerebezem R, Stams AJ, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055. https://doi.org/10.1007/s00253-008-1391-8

    Article  Google Scholar 

  49. Wyman CE (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. John Wiley & Sons.https://doi.org/10.1002/9780470975831

  50. He D, Zheng S, Xiao J, Ye Y, Liu X, Yin Z, Wang D (2022) Effect of lignin on short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Water Res 212:118082. https://doi.org/10.1016/j.watres.2022.118082

    Article  Google Scholar 

  51. Li W, Khalid H, Zhu Z, Zhang R, Liu G, Chen C, Thorin E (2018) Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin. Appl Energy 226:1219–1228. https://doi.org/10.1016/j.apenergy.2018.05.055

    Article  Google Scholar 

  52. Song Y, Pei L, Chen G, Mu L, Yan B, Li H, Zhou T (2023) Recent advancements in strategies to improve anaerobic digestion of perennial energy grasses for enhanced methane production. Sci Total Environ 861:160552. https://doi.org/10.1016/j.scitotenv.2022.160552

    Article  Google Scholar 

  53. Nkemka VN, Li Y, Hao X (2016) Effect of thermal and alkaline pretreatment of giant miscanthus and Chinese fountaingrass on biogas production. Water Sci Technol 73(4):849–856. https://doi.org/10.2166/wst.2015.559

    Article  Google Scholar 

  54. Yadav M, Singh A, Balan V, Pareek N, Vivekanand V (2019) Biological treatment of lignocellulosic biomass by Chaetomium globosporum: process derivation and improved biogas production. Int J Biol Macromol 128:176–183. https://doi.org/10.1016/j.ijbiomac.2019.01.118

    Article  Google Scholar 

  55. Arıç A, Karagöz SC, Öğüt TC, Dağlıoğlu ST, Duman G, Yanık J, Azbar N (2022) The effect of various thermochemical pretreatment methods on the biomethanisation of hemp (Cannabis sativa) hurd and kinetic analysis. Biomass Conv Bioref 1–12. https://doi.org/10.1007/s13399-022-02667-y

  56. Bala R, Mondal MK (2018) Exhaustive characterization on chemical and thermal treatment of sawdust for improved biogas production. Biomass Conv Bioref 8:991–1003. https://doi.org/10.1007/s13399-018-0342-6

    Article  Google Scholar 

  57. Wang B, Wang X, Feng H (2010) Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101(2):752–760. https://doi.org/10.1016/j.biortech.2009.08.063

    Article  Google Scholar 

  58. Wang X, Feng H, Li Z (2012) Pretreatment of switchgrass with electrolyzed water and a two-stage method for bioethanol production. Biotechnol Bioprocess Eng 17:624–633. https://doi.org/10.1007/s12257-011-0583-8

    Article  Google Scholar 

  59. Nunui K, Boonsawang P, Chaiprapat S, Charnnok B (2022) Using organosolv pretreatment with acid wastewater for enhanced fermentable sugar and ethanol production from rubberwood waste. Renew Energ 198:723–732. https://doi.org/10.1016/j.renene.2022.08.068

    Article  Google Scholar 

  60. Yin Y, Zhang Z, Yang K, Gu P, Liu S, Jia Y, Zhang Z, Wang T, Yin J, Miao H (2022) Deeper insight into the effect of salinity on the relationship of enzymatic activity, microbial community and key metabolic pathway during the anaerobic digestion of high strength organic wastewater. Bioresour Technol 363:127978. https://doi.org/10.1016/j.biortech.2022.127978

    Article  Google Scholar 

  61. Vaz FL, da Rocha Lins J, Alencar BRA, de Abreu ÍBS, Vidal EE, Ribeiro E, Sampaio EVDSB, Menezes RSC, Dutra ED (2021) Chemical pretreatment of sugarcane bagasse with liquid fraction recycling. Renew Energ 174:666–673. https://doi.org/10.1016/j.renene.2021.04.087

    Article  Google Scholar 

  62. Nie E, He P, Zhang H, Hao L, Shao L, Lü F (2021) How does temperature regulate anaerobic digestion? Renew Sust Energ Rev 150:111453. https://doi.org/10.1016/j.rser.2021.111453

    Article  Google Scholar 

  63. Shrestha S, Fonoll X, Khanal SK, Raskin L (2017) Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: Current status and future perspectives. Bioresour Technol 245:1245–1257. https://doi.org/10.1016/j.biortech.2017.08.089

    Article  Google Scholar 

  64. Wu P, Kang X, Wang W, Yang G, He L, Fan Y, Cheng X, Sun Y, Li L (2021) Assessment of coproduction of ethanol and methane from pennisetum purpureum: Effects of pretreatment, process performance, and mass balance. ACS Sustain Chem Eng 9(32):10771–10784. https://doi.org/10.1021/acssuschemeng.1c02010

    Article  Google Scholar 

  65. Temudo MF, Mato T, Kleerebezem R, Van Loosdrecht MC (2009) Xylose anaerobic conversion by open-mixed cultures. Appl Microbiol Biotechnol 82:231–239. https://doi.org/10.1007/s00253-008-1749-y

    Article  Google Scholar 

  66. Khanal SK (2011) Anaerobic biotechnology for bioenergy production: principles and applications. John Wiley & Sons.https://doi.org/10.1002/9780813804545

  67. Le DM, Nielsen AD, Sørensen HR, Meyer AS (2017) Characterisation of authentic lignin biorefinery samples by Fourier transform infrared spectroscopy and determination of the chemical formula for lignin. BioEnergy Res 10:1025–1035. https://doi.org/10.1007/s12155-017-9861-4

    Article  Google Scholar 

  68. Chen R, Li Z, Feng J, Zhao L, Yu J (2020) Effects of digestate recirculation ratios on biogas production and methane yield of continuous dry anaerobic digestion. Biores Technol 316:123963. https://doi.org/10.1016/j.biortech.2020.123963

    Article  Google Scholar 

  69. Stiles WA, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Grünewald CF, Lovitt R (2018) Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. Biores Technol 267:732–742. https://doi.org/10.1016/j.biortech.2018.07.100

    Article  Google Scholar 

  70. Quan C, Zhou Y, Wu C, Xu G, Feng D, Zhang Y, Gao N (2023) Valorization of solid digestate into activated carbon and its potential for CO2 capture. J Anal Appl Pyrol 169:105874. https://doi.org/10.1016/j.jaap.2023.105874

    Article  Google Scholar 

Download references

Funding

This work was supported by the Energy Administration, Ministry of Economic Affairs (EA, MOEA), Taiwan (112-D0110).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Wei Wang; Methodology: Wei Wang, Ming-Feng Jiang, Jian-Rong Hsu; Formal analysis and investigation: Wei Wang, Ming-Feng Jiang, Jian-Rong Hsu, Writing—original draft preparation: Wei Wang; Writing—review and editing: Wei Wang, Gia-Luen Guo; Supervision: Gia-Luen Guo.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Jiang, MF., Hsu, JR. et al. Integrated alkaline-solid/liquid separation-thermal multiple-step pretreatment of lignocellulosic biomass for biogas production enhancement. Biomass Conv. Bioref. (2024). https://doi.org/10.1007/s13399-024-05288-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-024-05288-9

Keywords

Navigation