Skip to main content

Advertisement

Log in

A comprehensive review on the technical aspects of biomass briquetting

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biomass briquetting is gradually emerging as a means of sustainable energy production. The interest in briquetting has been occasioned by the continuous rise in the cost of energy coupled with the need to harness efficient and affordable alternatives. Briquettes are produced through various means, ranging from a simple low-pressured technique to a high-pressured technique. This, including the large-scale availability of biomass materials in many regions of the world, has made the process practicable and affordable. The technology has gained acceptance across the scientific community as it is a means of attaining a circular and green economy especially as it helps to curtail deforestation. Briquetting has advanced and now incorporates the blending of biomass with animal and municipal wastes such as dung, microalgae, plastics, sludge, and food waste. This paper reviewed recent literature spanning over a decade on the technical aspects of biomass briquetting to establish the current state of research. It contains a brief on renewable energy with a focus on biomass energy, as well as the impact of solid fuels on households and the environment. It reviewed briquettes and briquetting technology by highlighting key processes and quality parameters. The paper also reports the economic aspects of various briquetting technology to assess their viability and also reports the combustion process to evaluate the extent of toxic gas emissions and their impact on coal-based power plants. To this end, an overview of recent studies was made followed by a highlight of recent advancements in briquetting technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kakodkar R, He G, Demirhan CD, Arbabzadeh M, Baratsas SG, Avraamidou S (2022) A review of analytical and optimization methodologies for transitions in multi-scale energy systems. Renew Sustain Energy Rev 160:112277. https://doi.org/10.1016/j.rser.2022.112277

    Article  Google Scholar 

  2. Mucha-Leszko B, Kakol MK, Jarosz-Angowska A (2022) Structural Changes in the Energy Sector versus Economic Growth, Energy Consumption and CO2 Emissions in 2000–2018 – the Global and Regional Perspective. J East Eur Res Bus Econ. https://doi.org/10.5171/2022.540561

    Article  Google Scholar 

  3. Zhao J, Dong K, Dong X, Shahbaz M (2022) How renewable energy alleviate energy poverty ? A global analysis. Renew Energy 186:299–311. https://doi.org/10.1016/j.renene.2022.01.005

    Article  Google Scholar 

  4. Blondeel M, Bradshaw MJ, Bridge G, Kuzemko C (2021) The geopolitics of energy system transformation : A review. Geogr Compass 15:1–22. https://doi.org/10.1111/gec3.12580

    Article  Google Scholar 

  5. Rawat S, Kumar S (2021) Critical review on processing technologies and economic aspect of bio-coal briquette production. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2021.2001754

    Article  Google Scholar 

  6. Kpalo SY, Zainuddin MF, Manaf LA, Roslan AM (2020) A review of technical and economic aspects of biomass briquetting. Sustainability 12:4609. https://doi.org/10.3390/su12114609

  7. Komarova AV, Filimonova IV, Kartashevich AA (2022) Energy consumption of the countries in the context of economic development and energy transition. Energy Rep 8:683–690. https://doi.org/10.1016/j.egyr.2022.07.072

    Article  Google Scholar 

  8. Niu X, Liu X, Zhang B, Zhang Q, Xu H, Zhang H, Sun J, Ho KF, Chuang HC, Shen Z, Cao J (2023) Health benefits from substituting raw biomass fuels for charcoal and briquette fuels: In vitro toxicity analysis. Sci Total Environ 866:161332. https://doi.org/10.1016/j.scitotenv.2022.161332

    Article  Google Scholar 

  9. Das D, Qadri A, Tak P, Gupta T (2022) Effect of processing on emission characteristics of coal briquettes in cookstoves. Energy Sustain Dev 69:77–86. https://doi.org/10.1016/j.esd.2022.06.001

    Article  Google Scholar 

  10. Boafo-mensah G, Darkwa MK, Laryea G (2020) Effect of combustion chamber material on the performance of an improved biomass cookstove. Case Stud Therm Eng 21:100688. https://doi.org/10.1016/j.csite.2020.100688

  11. Tumuluru JS, Wright CT, Hess R, Kenney KL (2011) A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels. Bioprod Biorefining 5:683–707. https://doi.org/10.1002/bbb.324

    Article  Google Scholar 

  12. Mwampamba TH, Owen M, Pigaht M (2013) Opportunities, challenges and way forward for the charcoal briquette industry in Sub-Saharan Africa. Energy Sustain Dev 17:158–170. https://doi.org/10.1016/j.esd.2012.10.006

    Article  Google Scholar 

  13. Ferronato N, Calle Mendoza IJ, Gorritty Portillo MA, Conti F, Torretta V (2022) Are waste-based briquettes alternative fuels in developing countries? A critical review Energy Sustain Dev 68:220–241. https://doi.org/10.1016/j.esd.2022.03.013

    Article  Google Scholar 

  14. Nagarajan J, Prakash L (2021) Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Mater Today Proc 47:4194–4198. https://doi.org/10.1016/j.matpr.2021.04.457

    Article  Google Scholar 

  15. Suryani A, Bezama A, Mair-Bauernfeind C, Makenzi M, Thrän D (2022) Drivers and barriers to substituting firewood with biomass briquettes in the Kenyan Tea Industry. Sustainability 14:5611. https://doi.org/10.3390/su14095611

  16. Thabuot M, Pagketanang T, Panyacharoen K, Mongkut P, Wongwicha P (2015) Effect of applied pressure and binder proportion on the fuel properties of holey bio-briquettes. Energy Procedia 79:890-895. https://doi.org/10.1016/j.egypro.2015.11.583

  17. Ifa L, Yani S, Nurjannah N, Darnengsih D, Rusnaenah A, Mel M, Mahfud M, Kusuma HS (2020) Techno-economic analysis of bio-briquette from cashew nut shell waste. Heliyon 6:e05009. https://doi.org/10.1016/j.heliyon.2020.e05009

    Article  Google Scholar 

  18. Asamoah B, Nikiema J, Gebrezgabher S, Odonkor E, Njenga M (2016) A review on production, marketing and use of fuel briquettes. Resource Recovery and Reuse Series 7:51. https://doi.org/10.5337/2017.200

  19. Silva DAL, Filleti RAP, Musule R, Matheus TT, Freire F (2022) A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America. Renew Sustain Energy Rev 157:112042. https://doi.org/10.1016/j.rser.2021.112042

  20. Schnürer A, Jarvis Å (2018) Microbiology of the biogas process. Uppsala, Sweden. https://biogasbloggen.files.wordpress.com/2019/04/schnc3bcrer-and-jarvis-2018-microbiology-of-the-biogas-process.pdf

  21. Kefalew T, Tilinti B, Betemariyam M (2021) The potential Of biogas technology in fuelwood saving and carbon emission reduction in Central Rift Valley, Ethiopia. Heliyon 7:e07971. https://doi.org/10.1016/j.heliyon.2021.e07971

  22. Ibitoye SE, Jen TC, Mahamood RM, Akinlabi ET (2021) Densification of agro-residues for sustainable energy generation: an overview. Bioresour Bioprocess 8:75. https://doi.org/10.1186/s40643-021-00427-w

  23. Obi OF, Pecenka R, Clifford MJ (2022) A review of biomass briquette binders and quality parameters. Energies 15:2426. https://doi.org/10.3390/en15072426

  24. Guan Y, Tai L, Cheng Z, Chen G, Yan B (2020) Science of the Total Environment Biomass molded fuel in China : Current status, policies and suggestions. Sci Total Environ 724:138345. https://doi.org/10.1016/j.scitotenv.2020.138345

    Article  Google Scholar 

  25. Zhang G, Sun Y, Xu Y (2018) Review of briquette binders and briquetting mechanism. Renew Sustain Energy Rev 82:477–487. https://doi.org/10.1016/j.rser.2017.09.072

    Article  Google Scholar 

  26. Marreiro HMP, Peruchi RS, Lopes RMBP, Andersen SLF, Eliziário SA, Junior PR (2021) Empirical studies on biomass briquette production: A literature review. Energies 14:8320. https://doi.org/10.3390/en14248320

  27. Yank A, Ngadi M, Kok R (2016) Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenerg 84:22–30. https://doi.org/10.1016/j.biombioe.2015.09.015

    Article  Google Scholar 

  28. Obi OF, Akubuo CO, Okonkwo WI (2013) Development of an Appropriate Briquetting Machine for Use in Rural Communities. Int J Eng Adv Technol 2:578–582

    Google Scholar 

  29. Kyayesimira J, Florence M (2021) Health concerns and use of biomass energy in households: voices of women from rural communities in Western Uganda. Energy Sustain Soc 11:42. https://doi.org/10.1186/s13705-021-00316-2

  30. Imran M, Zahid A, Mouneer S, Özçatalbaş O, Ul Haq S, Shahbaz P, Muzammil M, Murtaza MR (2022) Relationship between household dynamics, biomass consumption, and carbon emissions in Pakistan. Sustainability 14:6762. https://doi.org/10.3390/su14116762

  31. Padhi A, Bansal M, Habib G, Samiksha S, Raman RS (2022) Physical, chemical and optical properties of PM2.5 and gaseous emissions from cooking with biomass fuel in the Indo-Gangetic Plain. Sci Total Environ 841:156730. https://doi.org/10.1016/j.scitotenv.2022.156730

    Article  Google Scholar 

  32. Adeleke AA, Odusote JK, Ikubanni PP, Orhadahwe TA, Lasode OA, Ammasi A, Kumar K (2021) Ash analyses of bio-coal briquettes produced using blended binder. Sci Rep 11:547. https://doi.org/10.1038/s41598-020-79510-9

  33. Adeeyo RO, Edokpayi JN, Volenzo TE, Odiyo JO, Piketh SJ (2022) Determinants of Solid Fuel Use and Emission Risks among Households: Insights from Limpopo, South Africa. Toxics 10:1–16. https://doi.org/10.3390/toxics10020067

    Article  Google Scholar 

  34. Schilmann A, Ruiz-García V, Serrano-Medrano M, La Sierra De, De La Vega LA, Olaya-García B, Estevez-García JA, Berrueta V, Riojas-Rodríguez H, Masera O (2021) Just and fair household energy transition in rural Latin American households: Are we moving forward? Environ Res Lett 16:105012. https://doi.org/10.1088/1748-9326/ac28b2

    Article  Google Scholar 

  35. Clean Cooking Alliance CCA (2021) Climate, Environment, and Clean Cooking. https://cleancooking.org/the-issues/climate-environment/. Accessed 5 Oct 2022

  36. Adria O, Bethge J (2013) What users can save with energy-efficient cooking stoves and ovens. BigEE. https://bigee.net/media/filer_public/2014/03/17/appliance__residential_cookingstoves__user_savings__20140220__8.pdf. Accessed 1 Aug 2018

  37. Aggarwal RK, Chandel SS (2022) A comprehensive review of four decades of thermally efficient biomass cookstove initiatives for sustainable development in India. Int J Ambient Energy. https://doi.org/10.1080/01430750.2022.2086915

  38. Witinok-huber R, Clark ML, Volckens J, Young BN, Benka-coker ML, Walker E, Peel JL, Quinn C, Keller JP (2022) Effects of household and participant characteristics on personal exposure and kitchen concentration of fine particulate matter and black carbon in rural Honduras. Environ Res 214:113869. https://doi.org/10.1016/j.envres.2022.113869

    Article  Google Scholar 

  39. Qin L, Wang M, Zhu J, Wei Y, Zhou X, He Z (2021) Towards Circular Economy through Waste to Biomass Energy in Madagascar. Complexity. https://doi.org/10.1155/2021/5822568

    Article  Google Scholar 

  40. Woolley KE, Dickinson-Craig E, Lawson HL, Sheikh J, Day R, Pope FD, Greenfield SM, Bartington SE, Warburton D, Manaseki-Holland S, Price MJ, Moore DJ, Thomas GN (2022) Effectiveness of interventions to reduce household air pollution from solid biomass fuels and improve maternal and child health outcomes in low- and middle-income countries: A systematic review and meta-analysis. Indoor Air. https://doi.org/10.1111/ina.12958

    Article  Google Scholar 

  41. United Nations (2022). Progress Towards the Sustainable Development Goals. https://doi.org/10.1017/S0020818300010845

    Article  Google Scholar 

  42. Akolgo GA, Awafo EA, Essandoh EO, Owusu PA, Uba F, Adu-Poku KA (2021) Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests. Sci. African 12:e00789. https://doi.org/10.1016/j.sciaf.2021.e00789

    Article  Google Scholar 

  43. Wongwuttanasatian T, Sakkampang C (2016) Combustion Characteristics and Emission of Briquette Fuel from Biomass Mixed with Glycerin. Combust Sci Technol 188:1011–1019. https://doi.org/10.1080/00102202.2015.1136298

    Article  Google Scholar 

  44. International Energy Agency (IEA) (2020) Global Energy Review 2021: Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021. https://doi.org/10.1787/90c8c125-en

  45. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  46. Christophers B (2022) Fossilised Capital : Price and Profit in the Energy Transition. New Polit Econ 27:146–159. https://doi.org/10.1080/13563467.2021.1926957

    Article  Google Scholar 

  47. Ding Q, Khattak SI, Ahmad M (2021) Towards sustainable production and consumption : Assessing the impact of energy productivity and eco-innovation on consumption-based carbon dioxide emissions ( CCO2) in G-7 nations. Sustain Prod Consum 27:254–268. https://doi.org/10.1016/j.spc.2020.11.004

    Article  Google Scholar 

  48. Adeleke AA, Odusote JK, Ikubanni PP, Lasode OA, Malathi M, Paswan D (2021) Essential basics on biomass torrefaction, densification and utilization. Int J Energy Res 45:1375–1395. https://doi.org/10.1002/er.5884

    Article  Google Scholar 

  49. Niño A, Arzola N, Araque O (2020) Experimental study on the mechanical properties of biomass briquettes from a mixture of rice husk and pine sawdust. Energies 13:1060. https://doi.org/10.3390/en13051060

  50. Nazari MM, Idroas MY, Ayuni FA (2020) Carbonization effect on EFB briquettes prepared with different type of binders. IOP Conf Ser Earth Environ Sci 476:012072. https://doi.org/10.1088/1755-1315/476/1/012072

  51. Koppejan J, Cremers M (2019) Biomass pre-treatment for bioenergy. IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2019/04/Pretreatment_PolicyReport.pdf. Accessed 18 Jul 2022

  52. Narra S, Glaser C, Gusovius HJ, Ay P (2010) Pelletisation of cereal straws as a source of energy after specific communition processes, in: 18th Eur Biomass Conf Exhib. Lyon, France 1585-1591

  53. Sugebo B (2022) A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Mater Renew Sustain Energy 11:91-103. https://doi.org/10.1007/s40243-022-00209-0

  54. Costa SE de L, Dos Santos RC, Castro RVO, Castro AFNM, Magalhães MA de, Carneiro A de CO, Santos CP de S, Gomes IRF, Rocha SMG (2019) Briquettes quality produced with the macauba epicarp (acrocomia aculeata) and pinus sp. wood. Rev Arvore 43:e430501. https://doi.org/10.1590/1806-90882019000500001

  55. Abdelrahim A, Nguyen H, Omran M, Kinnunen P, Iljana M, Illikainen M, Fabritius T (2022) Development of Cold-Bonded Briquettes Using By-Product-Based Ettringite Binder from Ladle Slag. J Sustain Metall 8:468–487. https://doi.org/10.1007/s40831-022-00511-1

    Article  Google Scholar 

  56. Mousa E, Ahmed H, Söderström D (2022) Potential of alternative organic binders in briquetting and enhancing residue recycling in the steel industry. Recycling 7:21. https://doi.org/10.3390/recycling7020021

  57. Adeleke AA, Odusote JK, Ikubanni PP, Olabisi AS, Nzerem P (2022) Briquetting of subbituminous coal and torrefied biomass using bentonite as inorganic binder. Sci Rep 12:8716. https://doi.org/10.1038/s41598-022-12685-5

  58. Tulepov M, Sassykova L, Kerimkulova A, Tureshova G, Abdrakova F, Zhapekova A, Sultanova Z, Spanova G, Tolep D, Gabdrashova S, Baiseitov D (2022) Preparation of Briquettes on the Basis of Sub-Standard Coal of Kazakhstan Fields. Chem Chem Technol 16:118–125. https://doi.org/10.23939/chcht16.01.118

    Article  Google Scholar 

  59. Jovanovic V, Nisic D, Milisavljevic V, Todorovic D, Radulovic D, Ivosevic B, Milicevic S (2022) Effects of production conditions on the properties of limestone briquettes aimed for acid soil liming. Hem Ind 76:97–107. https://doi.org/10.2298/hemind220211011j

    Article  Google Scholar 

  60. Miao Z, Zhang P, Li M, Wan Y, Meng X (2019) Briquette preparation with biomass binder. Energy Sources, Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2019.1682722

  61. Bazargan A, Rough SL, McKay G (2018) Fine tuning of process parameters for improving briquette production from palm kernel shell gasification waste. Environ Technol (United Kingdom) 39:931–938. https://doi.org/10.1080/09593330.2017.1317835

    Article  Google Scholar 

  62. Gilbert P, Ryu C, Sharifi V, Swithenbank J (2009) Effect of process parameters on pelletisation of herbaceous crops. Fuel 88:1491–1497. https://doi.org/10.1016/j.fuel.2009.03.015

    Article  Google Scholar 

  63. Orisaleye JI, Jekayinfa SO, Pecenka R, Onifade TB (2019) Effect of densification variables on water resistance of corn cob briquettes. Agron Res 17:1722–1734. https://doi.org/10.15159/AR.19.171

    Article  Google Scholar 

  64. Kpalo SY, Zainuddin MF, Halim HBA, Ahmad AF, Abbas Z (2022) Physical characterization of briquettes produced from paper pulp and Mesua ferrea mixtures. Biofuels 13:333–340. https://doi.org/10.1080/17597269.2019.1695361

    Article  Google Scholar 

  65. Antwi-Boasiako C, Acheampong BB (2016) Strength properties and calorific values of sawdust-briquettes as wood-residue energy generation source from tropical hardwoods of different densities. Biomass Bioenerg 85:144–152. https://doi.org/10.1016/j.biombioe.2015.12.006

    Article  Google Scholar 

  66. Khlifi S, Lajili M, Belghith S, Mezlini S, Tabet F, Jeguirim M (2020) Briquettes production from olive mill waste under optimal temperature and pressure conditions: Physico-chemical and mechanical characterizations. Energies 13:1214. https://doi.org/10.3390/en13051214

  67. Obi OF (2015) Effect of briquetting temperature on the properties of biomass briquettes. African J Sci Technol Innov Dev 7:386–394. https://doi.org/10.1080/20421338.2015.1096508

    Article  Google Scholar 

  68. Rahaman SA, Salam PA (2017) Characterization of cold densified rice straw briquettes and the potential use of sawdust as binder. Fuel Process Technol 158:9–19. https://doi.org/10.1016/j.fuproc.2016.12.008

    Article  Google Scholar 

  69. Okot DK, Bilsborrow PE, Phan AN (2018) Effects of operating parameters on maize cob briquette quality. Biomass Bioenerg 112:61–72. https://doi.org/10.1016/j.biombioe.2018.02.015

    Article  Google Scholar 

  70. Zhang J, Zheng D, Wu K, Zhang X (2019) The optimum conditions for preparing briquette made from millet bran using Generalized Distance Function. Renew Energy 140:692–703. https://doi.org/10.1016/j.renene.2019.03.079

    Article  Google Scholar 

  71. Nurek T, Gendek A, Dabrowska M (2021) Influence of the die height on the density of the briquette produced from shredded logging residues. Materials 14:3698. https://doi.org/10.3390/ma14133698

  72. Orisaleye JI, Jekayinfa SO, Adebayo AO, Ahmed NA, Pecenka R (2018) Effect of densification variables on density of corn cob briquettes produced using a uniaxial compaction biomass briquetting press. Energy Sources. Part A Recover Util Environ Eff 40:3019–3028. https://doi.org/10.1080/15567036.2018.1516007

    Article  Google Scholar 

  73. Martinez Mendoza LC, Sermyagina E, de Oliveira Carneiro A, C, Vakkilainen E, Cardoso M, (2019) Biomass and Bioenergy Production and characterization of coffee-pine wood residue briquettes as an alternative fuel for local firing systems in Brazil. Biomass Bioenerg 123:70–77. https://doi.org/10.1016/j.biombioe.2019.02.013

    Article  Google Scholar 

  74. Orisaleye JI, Jekayinfa SO, Braimoh OM, Edhere VO (2022) Empirical models for physical properties of abura (mitragyna ciliata) sawdust briquettes using response surface methodology. Clean Eng Technol 7:100447. https://doi.org/10.1016/j.clet.2022.100447

  75. Navalta CJLG, Banaag KGC, Raboy VAO, Go AW, Cabatingan LK, Ju YH (2020) Solid fuel from Co-briquetting of sugarcane bagasse and rice bran. Renew Energy 147:1941–1958. https://doi.org/10.1016/j.renene.2019.09.129

    Article  Google Scholar 

  76. Mitchual SJ, Frimpong-mensah K, Darkwa NA, Akowuah JO (2013) Briquettes from maize cobs and ceiba pentandra at room temperature and low compacting pressure without a binder. Int J Energy Environ 4:38

  77. Kpalo SY, Zainuddin MF, Manaf LA, Roslan AM (2020) Production and characterization of hybrid briquettes from corncobs and oil palm trunk bark under a low pressure densification technique. Sustain 12:2468. https://doi.org/10.3390/su12062468

  78. Eriksson S, Prior M (1990) The briquetting of agricultural wastes for fuel, in: FAO Environ Energy, 11th ed., Food and Agriculture Organization, Rome 11:137

  79. Magnago RF, Costa SC, Assunção Ezirio MJ de, Godoy Saciloto V de, Cremona Parma GO, Gasparotto ES, Gonçalves AC, Tutida AY, Barcelos RL (2020) Briquettes of citrus peel and rice husk. J Clean Prod 276:123820. https://doi.org/10.1016/j.jclepro.2020.123820

  80. Kaliyan N, Morey RV (2009) Factors affecting strength and durability of densified biomass products. Biomass Bioenerg 33:337–359. https://doi.org/10.1016/j.biombioe.2008.08.005

    Article  Google Scholar 

  81. Handra N, Hafni, (2017) Effect of Binder on Combustion Quality on EFB Bio-briquettes. IOP Conf Ser Earth Environ Sci 97:012031. https://doi.org/10.1088/1755-1315/97/1/012031

    Article  Google Scholar 

  82. Ibitoye SE, Mahamood RM, Jen TC, Akinlabi ET (2022) Combustion, Physical, and Mechanical Characterization of Composites Fuel Briquettes from Carbonized Banana Stalk and Corncob. Int. J. Renew Energy Dev 11:435–447. https://doi.org/10.14710/ijred.2022.41290

    Article  Google Scholar 

  83. Sunnu AK, Adu-Poku KA, Ayetor GK (2021) Production and Characterization of Charred Briquettes from Various Agricultural Waste. Combust Sci Technol. https://doi.org/10.1080/00102202.2021.1977803

    Article  Google Scholar 

  84. Ak TT, Mech N, Ramesh ST, Gandhimathi R (2022) Evaluation of composite briquettes from dry leaves in energy applications for agrarian communities in India. J Clean Prod 350:131312. https://doi.org/10.1016/j.jclepro.2022.131312

    Article  Google Scholar 

  85. Mitchual SJ, Frimpong-mensah K, Darkwa NA (2013) Effect of species , particle size and compacting pressure on relaxed density and compressive strength of fuel briquettes. Int J Energy Environ Eng 4:30

  86. Granado MPP, Suhogusoff YVM, Santos LRO, Yamaji FM, De Conti AC (2021) Effects of pressure densification on strength and properties of cassava waste briquettes. Renew Energy 167:306–312. https://doi.org/10.1016/j.renene.2020.11.087

    Article  Google Scholar 

  87. Aransiola EF, Oyewusi TF, Osunbitan JA, Ogunjimi LAO (2019) Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Rep 5:909–918. https://doi.org/10.1016/j.egyr.2019.07.011

    Article  Google Scholar 

  88. Fehse F, Kummich J, Schröder HW (2021) Influence of pre-treatment and variation of briquetting parameters on the mechanical refinement of spent coffee grounds. Biomass and Bioenergy 152:106201. https://doi.org/10.1016/j.biombioe.2021.106201

    Article  Google Scholar 

  89. Adeleke A, Odusote J, Ikubanni P, Lasode O, Malathi M, Pasawan D (2021) Physical and mechanical characteristics of composite briquette from coal and pretreated wood fines. Int J Coal Sci Technol 8:1088–1098. https://doi.org/10.1007/s40789-021-00438-0

    Article  Google Scholar 

  90. Essien UA, Oke PK (2019) Modelling the effect of compaction pressure on the densification of agricultural waste briquettes. African J Sci Technol Innov Dev 11:579–588. https://doi.org/10.1080/20421338.2018.1556456

    Article  Google Scholar 

  91. Law HC, Gan LM, Gan HL (2018) Experimental study on the mechanical properties of biomass briquettes from different agricultural residues combination. MATEC Web Conf 225:04026. https://doi.org/10.1051/matecconf/201822504026

  92. Anggraeni S, Girsang GCS, Nandiyanto ABD, Bilad MR (2021) Effects of particle size and composition of sawdust/carbon from rice husk on the briquette performance. J Eng Sci Technol 16:2298–2311

    Google Scholar 

  93. Amrullah A, Syarief A, Saifudin M (2020) Combustion Behavior of Fuel Briquettes Made from Ulin Wood and Gelam Wood Residues. Int J Eng 33:2365–2371. https://doi.org/10.5829/ije.2020.33.11b.27

    Article  Google Scholar 

  94. Saeed AAH, Harun NY, Bilad MR, Afzal MT, Parvez AM, Roslan FAS, Rahim SA, Vinayagam VD, Afolabi HK (2021) Moisture content impact on properties of briquette produced from rice husk waste. Sustainability 13:3069. https://doi.org/10.3390/su13063069

  95. Arewa ME, Daniel IC, Kuye A (2016) Characterisation and comparison of rice husk briquettes with cassava peels and cassava starch as binders. Biofuels 7:671–675. https://doi.org/10.1080/17597269.2016.1187541

    Article  Google Scholar 

  96. Ajimotokan HA, Ehindero AO, Ajao KS, Adeleke AA, Ikubanni PP, Shuaib-Babata YL (2019) Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Sci African 6:e00202. https://doi.org/10.1016/j.sciaf.2019.e00202

  97. Chen T, Jia H, Zhang S, Sun X, Song Y, Yuan H (2020) Optimization of cold pressing process parameters of chopped corn straws for fuel. Energies 13:1–21. https://doi.org/10.3390/en13030652

    Article  Google Scholar 

  98. Alade OS, Betiku E (2014) Potential utilization of grass as solid-fuel (Briquette) in Nigeria. Energy Sources. Part A Recover Util Environ Eff 36:2519–2526. https://doi.org/10.1080/15567036.2011.569843

    Article  Google Scholar 

  99. Sanjika T, Chipula G (2021) Technical feasibility of producing binder-free water hyacinth briquettes for domestic energy use. African J Sci Technol Innov Dev . https://doi.org/10.1080/20421338.2021.1988417

  100. Cabrales H, Arzola N, Araque O (2020) The effects of moisture content, fiber length and compaction time on African oil palm empty fruit bunches briquette quality parameters. Heliyon 6:e05607. https://doi.org/10.1016/j.heliyon.2020.e05607

    Article  Google Scholar 

  101. Ito H, Tokunaga R, Nogami S, Miura M, Ito H, Tokunaga R, Nogami S, Miura M (2022) Influence of Biomass Raw Materials on Combustion Behavior of Highly Densified Single Cylindrical Biomass Briquette. Combust Sci Technol 194:2072–2086. https://doi.org/10.1080/00102202.2020.1858286

    Article  Google Scholar 

  102. Thekedar K, Karale S, Awari G (2021) A systematic review on the future potential of tea waste and other admixtures in bio briquetting from rice husk. AIP Conf Proc 2417:020008. https://doi.org/10.1063/5.0073221

    Article  Google Scholar 

  103. Anggono W, Sutrisno, Suprianto FD, Evander J (2017) Biomass briquette investigation from pterocarpus indicus leaves waste as an alternative renewable energy. IOP Conf Ser Mater Sci Eng 241:012043. https://doi.org/10.1088/1757-899X/241/1/012043

  104. Mitchual SJ (2014) Densification of sawdust of tropical hardwoods and maize cobs at room temperature using low compaction pressure without a binder. (Ph.D. Thesis, Kwame Nkrumah University of Science and Technology). http://hdl.handle.net/123456789/7204

  105. Zepeda-Cepeda CO, Goche-Télles JR, Palacios-Mendoza C, Moreno-Anguiano O, Núñez-Retana VD, Heya MN, Carrillo-Parra A (2021) Effect of sawdust particle size on physical, mechanical, and energetic properties of pinus durangensis briquettes. Appl Sci 11:3805. https://doi.org/10.3390/app11093805

    Article  Google Scholar 

  106. Chukwuneke JL, Umeji AC, Obika EN, Fakiyesi OB (2021) Optimisation of Composite Briquette Made From Sawdust / Rice Husk Using Starch and Clay Binder. Int J Integr Eng 13:208–21. https://doi.org/10.30880/ijie.2021.13.04.019

    Article  Google Scholar 

  107. Ojediran JO, Adeboyejo K, Adewumi AD, Okonkwo CE (2020) Evaluation of briquettes produced from maize cob and stalk. IOP Conf Ser Earth Environ Sci 445:012052. https://doi.org/10.1088/1755-1315/445/1/012052

  108. Ajimotokan HA, Ibitoye SE, Odusote JK, Adesoye OA, Omoniyi PO (2019) Physico-mechanical Properties of Composite Briquettes from Corncob and Rice Husk. J Bioresour Bioprod 4:159–165. https://doi.org/10.12162/jbb.v4i3.004

    Article  Google Scholar 

  109. Okwu MO, Samuel OD (2018) Adapted hyacinth briquetting machine for mass production of briquettes. Energy Sources. Part A Recover Util Environ Eff 40:2853–2866. https://doi.org/10.1080/15567036.2018.1512681

    Article  Google Scholar 

  110. de Oliveira Maia BG, de Oliveira APN, de Oliveira TMN, Marangoni C, Souza O, Sellin N (2018) Characterization and production of banana crop and rice processing waste briquettes. Environ Prog Sustain Energy 37:1266–1273. https://doi.org/10.1002/ep.12798

    Article  Google Scholar 

  111. Dinesha P, Kumar S, Rosen MA (2019) Biomass briquettes as an alternative Fuel: A comprehensive review. Energy Technol 7:1801011. https://doi.org/10.1002/ente.201801011

  112. Mitchual SJ, Frimpong-mensah K, Darkwa NA (2014) Evaluation of Fuel Properties of Six Tropical Hardwood Timber Species for Briquettes. J Sustain Bioenergy Syst 4:1–9

    Article  Google Scholar 

  113. Narra S, Narra M, Ay P (2012) Particle size distribution of comminuted and liberated cereal straws measured with different image analysis systems and their characteristic influence on mechanical pellets quality. Miner Process Congr Proc 85:03740-03761

  114. Oncel SS (2013) Microalgae for a macroenergy world. Renew Sustain Energy Rev 26:241–264. https://doi.org/10.1016/j.rser.2013.05.059

    Article  Google Scholar 

  115. Olugbade T (2019) Influence of binders on combustion properties of biomass briquettes : a recent review. Bioenergy Res. https://doi.org/10.1007/s12155-019-09973-w

  116. Muazu RI, Stegemann JA (2017) Biosolids and microalgae as alternative binders for biomass fuel briquetting. Fuel 194:339–347. https://doi.org/10.1016/j.fuel.2017.01.019

    Article  Google Scholar 

  117. Cui X, Yang J, Shi X, Lei W, Huang T (2019) Consumption, physical, and thermal properties of a novel pellet fuel made from wood residues with microalgae as a binder. Energies 12:3425. https://doi.org/10.3390/en12183425

  118. Ranaraja DMCO, Miyuranga KAV, Weerasekara NA (2022) Palm Oil Sludge as a Binding Agent for Briquette Production. Int J Sci Eng Sci 6:39–42

    Google Scholar 

  119. Ndindeng SA, Mbassi JEG, Mbacham WF, Manful J, Graham-Acquaah S, Moreira J, Dossou J, Futakuchi K (2015) Quality optimization in briquettes made from rice milling by-products. Energy Sustain Dev 29:24–31. https://doi.org/10.1016/j.esd.2015.09.003

    Article  Google Scholar 

  120. Ajimotokan HA, Ibitoye SE, Odusote JK, Adesoye OA, Omoniyi PO (2019) Physico-mechanical characterisation of fuel briquettes made from blends of corncob and rice husk. J Phys Conf Ser IOP 1378:022008. https://doi.org/10.1088/1742-6596/1378/2/022008

  121. Kongprasert N, Wangphanich P, Jutilarptavorn A (2019) Charcoal briquettes from Madan wood waste as an alternative energy in Thailand. Procedia Manuf 30:128–135. https://doi.org/10.1016/j.promfg.2019.02.019

    Article  Google Scholar 

  122. Nyathi L, Charis G, Chigondo M, Maposa M, Nyenyayi K (2022) FABRICATION OF SAWDUST BRIQUETTES USING LOCAL BANANA PULP AS A BINDER. Multidiscip J Waste Resour Residues 19:84–93

    Google Scholar 

  123. Arifianti QAMO, Gabriel AA, Hidayatulloh S, Ummatin KK (2020) Characteristics of woody cutting waste briquette with paper waste pulp as binder. E3S Web Conf 190:00030. https://doi.org/10.1051/e3sconf/202019000030

  124. Benk A, Delibaş A, Çoban A (2021) Economical biobinders and their blends suitable for the production of coal briquettes, heat insulating materials and other industrial applications. Int J Coal Prep Util. https://doi.org/10.1080/19392699.2021.1974849

    Article  Google Scholar 

  125. Mili M, Hashmi SAR, Ather M, Hada V, Markandeya N, Kamble S, Mohapatra M, Rathore SKS, Srivastava AK, Verma S (2022) Novel lignin as natural-biodegradable binder for various sectors—A review. J Appl Polym Sci 139:1–24. https://doi.org/10.1002/app.51951

    Article  Google Scholar 

  126. Okello C, Kasisira LL, Okure M (2011) Optimising densification condition of coffee husks briquettes using response surface methodology. Proc Second Int Conf Adv Eng Technol 214–220

  127. Onyango J, Babu K, Njuguna S, Wanzala W, Yan X (2020) Harnessing the potential of common water hyacinth as an industrial raw material for the production of quality biofuel briquettes. SN Appl Sci 2:1316. https://doi.org/10.1007/s42452-020-3109-1

  128. Mitchual SJ, Frimpong-mensah K, Darkwa NA (2014) Relationship between Physico-Mechanical Properties, Compacting Pressure and Mixing Proportion of Briquettes Produced from Maize Cobs and Sawdust. J Sustain Bioenergy Syst 4:50–60

    Article  Google Scholar 

  129. Ujjinappa S, Sreepathi LK (2018) Evaluation of physico-mechanical-combustion characteristics of fuel briquettes made from blends of areca nut husk, simarouba seed shell and black liquor. Int J Renew Energy Dev 7:131–137. https://doi.org/10.14710/ijred.7.2.131-137

  130. Richards SR (1990) Physical Testing of Fuel Briquettes. Fuel Process Technol 25:89–100

    Article  Google Scholar 

  131. Afra E, Abyaz A, Saraeyan A (2021) The production of bagasse biofuel briquettes and the evaluation of natural binders (LNFC, NFC, and lignin) effects on their technical parameters. J Clean Prod 278:123543. https://doi.org/10.1016/j.jclepro.2020.123543

    Article  Google Scholar 

  132. Gendek A, Aniszewska M, Malaťák J, Velebil J (2018) Evaluation of selected physical and mechanical properties of briquettes produced from cones of three coniferous tree species. Biomass Bioenerg 117:173–179. https://doi.org/10.1016/j.biombioe.2018.07.025

    Article  Google Scholar 

  133. Akogun OA, Waheed MA, Ismaila SO, Dairo OU (2022) Physical and Combustion Indices of Thermally Treated Cornhusk and Sawdust Briquettes for Heating Applications in Nigeria. J Nat Fibers 19:1201–1216. https://doi.org/10.1080/15440478.2020.1764445

    Article  Google Scholar 

  134. Ikubanni PP, Agboola OO, Olabamiji TS, Adediran AA, Anisere T, Oladimeji S (2020) Development and performance assessment of piston-type briquetting machine. IOP Conf Ser Earth Environ Sci 445:012005. https://doi.org/10.1088/1755-1315/445/1/012005

  135. Narra S, Dasgupta S, Ay P, Zheng T, Weller N (2011) Pelletisation of rye- and wheat straw with additives. 19th Eur Biomass Conf Exhib 1878–1883. https://doi.org/10.13140/2.1.2429.7760

  136. Narra S, Glaser C, Ay P (2011) Abrasion and strength of biomass pellets as main mechanical stability characteristics. 19th Eur Biomass Conf Exhib 1947–1951

  137. Yang I, Cooke-willis M, Song B, Hall P (2021) Densification of torrefied Pinus radiata sawdust as a solid biofuel : Effect of key variables on the durability and hydrophobicity of briquettes. Fuel Process Technol 214:106719. https://doi.org/10.1016/j.fuproc.2020.106719

    Article  Google Scholar 

  138. Brunerová A, Roubík H, Brožek M, Van Dung D, Phung LD, Hasanudin U, Iryani DA, Herák D (2020) Briquetting of sugarcane bagasse as a proper waste management technology in Vietnam. Waste Manag Res 38:1239–1250. https://doi.org/10.1177/0734242X20938438

    Article  Google Scholar 

  139. Kpalo SY, Zainuddin MF, Manaf LA, Roslan AM, Nik Ab Rahim NNR (2022) Techno-Economic Viability Assessment of a Household Scale Agricultural Residue Composite Briquette Project for Rural Communities in Nigeria. Sustainability 14:9399. https://doi.org/10.3390/su14159399

    Article  Google Scholar 

  140. Bot BV, Axaopoulos PJ, Sakellariou EI, Sosso OT, Tamba JG (2022) Energetic and economic analysis of biomass briquettes production from agricultural residues. Appl Energy 321:119430. https://doi.org/10.1016/j.apenergy.2022.119430

    Article  Google Scholar 

  141. Sahoo K, Bilek E, Bergman R, Mani S (2019) Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Appl Energy 235:578–590. https://doi.org/10.1016/j.apenergy.2018.10.076

    Article  Google Scholar 

  142. Liu S, Gao Y, Wang L, Chen X (2019) Study on combustion mechanism of biomass briquette and its application. IOP Conf Ser Earth Environ Sci 227:022008. https://doi.org/10.1088/1755-1315/227/2/022008

  143. Velusamy S, Subbaiyan A, Kandasamy S, Shanmugamoorthi M, Thirumoorthy P (2022) Combustion characteristics of biomass fuel briquettes from onion peels and tamarind shells. Arch Environ Occup Heal 77:251–262. https://doi.org/10.1080/19338244.2021.1936437

    Article  Google Scholar 

  144. Lubwama M, Yiga VA, Muhairwe F, Kihedu J (2020) Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renew Energy 148:1002–1016. https://doi.org/10.1016/j.renene.2019.10.085

    Article  Google Scholar 

  145. Zhao N, Li B, Ahmad R, Ding F, Zhou Y, Li G, Zayan AMI, Dong R (2021) Dynamic relationships between real-time fuel moisture content and combustion-emission-performance characteristics of wood pellets in a top-lit updraft cookstove. Case Stud Therm Eng 28:101484. https://doi.org/10.1016/j.csite.2021.101484

    Article  Google Scholar 

  146. Kipngetich P, Kiplimo R, Tanui JK, Chisale PC (2022) Optimization of combustion parameters of carbonized rice husk briquettes in a fixed bed using RSM technique. Renew Energy 198:61–74. https://doi.org/10.1016/j.renene.2022.07.130

    Article  Google Scholar 

  147. Qi J, Li H, Wang Q, Han K (2021) Combustion characteristics, kinetics, so2 and no release of low-grade biomass materials and briquettes. Energies 14:1–13. https://doi.org/10.3390/en14092655

    Article  Google Scholar 

  148. Guo Z, Wu J, Zhang Y, Wang F, Guo Y, Chen K, Liu H (2020) Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel 272:117632. https://doi.org/10.1016/j.fuel.2020.117632

    Article  Google Scholar 

  149. Hu B Bin, Lin ZL, Chen Y, Zhao GK, Su JE, Ou YJ, Liu R, Wang T, Yu YB, Zou CM (2020) Evaluation of biomass briquettes from agricultural waste on industrial application of flue-curing of tobacco. Energy Sources, Part A Recover Util Environ Eff. https://doi.org/10.1080/15567036.2020.1796852

  150. Zhang R, Wang Y, Sun Y, Wang Z, Gao J, Guo HQ, Cheng S, Xu G, Li B, Xu G (2022) An analysis of China’s biomass briquette fuel large-scale steam heating system. Biofuels Bioprod 1–15. https://doi.org/10.1002/bbb.2398

  151. Kristin A, Raymer P (2006) A comparison of avoided greenhouse gas emissions when using different kinds of wood energy. Biomass Bioenerg 30:605–617. https://doi.org/10.1016/j.biombioe.2006.01.009

    Article  Google Scholar 

  152. Sadrul Islama AKM, Ahiduzzamanb M (2012) Biomass Energy : Sustainable Solution for Greenhouse Gas. AIP Conf Proc 1440:23–32. https://doi.org/10.1063/1.4704200

    Article  Google Scholar 

  153. Sastry MKS, Bridge J, Brown A, Williams R (2013) Biomass Briquettes : A Sustainable and Environment Friendly Energy Option for the Caribbean, in: Fifth Int. Symp. Energy,Puerto Rico Energy Center-Laccei, Puerto Rico

  154. Yadav VK, Gacem A, Choudhary N, Rai A, Kumar P, Yadav KK, Abbas M, Khedher NB, Awwad NS, Barik D, Islam S (2022) Status of coal-based thermal power plants, coal fly ash production, utilization in India and their emerging applications. Minerals 12:1503. https://doi.org/10.3390/min12121503

  155. Cormos C (2014) Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle. Energy 78:665–673. https://doi.org/10.1016/j.energy.2014.10.054

    Article  Google Scholar 

  156. Yadav R, Chauhan PN, Yudhveer P, Verma K (1990) Pellets Processing and Co-Firing in a Thermal Power Plant. Int J Sci Res Sci Eng Technol 9:389–395. https://doi.org/10.32628/IJSRSET2293141

    Article  Google Scholar 

  157. Purohit P, Chaturvedi V (2018) Biomass pellets for power generation in India : a techno-economic evaluation. Environ Sci Pollut Res 25:29614–29632. https://doi.org/10.1007/s11356-018-2960-8

    Article  Google Scholar 

  158. Song B, Hall P (2020) Densification of Biomass and Waste Plastic Blends as a Solid Fuel: Hazards, Advantages, and Perspectives. Front Energy Res 8:1–7. https://doi.org/10.3389/fenrg.2020.00058

    Article  Google Scholar 

  159. Mursito AT, Widodo ADN (2020) Characterization of bio-coal briquettes blended from low quality coal and biomass waste treated by Garant® bio-activator and its application for fuel combustion. Int J Coal Sci Technol 7:796–806. https://doi.org/10.1007/s40789-020-00309-0

    Article  Google Scholar 

  160. Nikiema J, Asamoah B, Egblewogbe MNYH, Akomea-agyin J, Cofie OO, Felix A, Gebreyesus G, Zipporah K, Njenga M (2022) Impact of material composition and food waste decomposition on characteristics of fuel briquettes. Resour. Conserv Recycl Adv 15:200095. https://doi.org/10.1016/j.rcradv.2022.200095

  161. Hu M, Deng W, Hu M, Chen G, Zhou P, Zhou Y, Su Y (2021) Preparation of binder-less activated char briquettes from pyrolysis of sewage sludge for liquid-phase adsorption of methylene blue. J Environ Manage 299:113601. https://doi.org/10.1016/j.jenvman.2021.113601

    Article  Google Scholar 

  162. Garrido MA, Conesa JA, Garcia MD (2017) Characterization and production of fuel briquettes made from biomass and plastic wastes. Energies 10:850. https://doi.org/10.3390/en10070850

  163. Zannikos F, Kalligeros S, Anastopoulos G, Lois E (2013) Converting Biomass and Waste Plastic to Solid Fuel Briquettes. J Renew Energy. https://doi.org/10.1155/2013/360368

    Article  Google Scholar 

  164. Nwabue FI, Unah U, Itumoh EJ (2017) Production and characterisation of smokeless bio-coal briquettes incorporating plastic waste materials. Environ Technol Innov 8:233–245. https://doi.org/10.1016/j.eti.2017.02.008

Download references

Acknowledgements

The authors are grateful to the German Federal Ministry of Education and Research (BMBF) for funding the study through the West African Science Service Centre on Climate Change and Adapted Land use (WASCAL), under the Graduate Research Programme on Climate Change & Land Use (CCLU), College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.

Funding

This study was funded by the West African Science Service Centre on Climate Change and Adapted Land use (WASCAL).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Suleiman Usman Yunusa: conceptualization, literature search, writing; Ebenezer Mensah, Kwasi Preko: supervision, visualization, writing—editing; Satyanarayana Narra, Aminu Saleh, Safietou Sanfo: writing—original draft preparation, editing, methodology. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to S. U. Yunusa.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunusa, S.U., Mensah, E., Preko, K. et al. A comprehensive review on the technical aspects of biomass briquetting. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04387-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04387-3

Keywords

Navigation