Skip to main content

Advertisement

Log in

Kinetic modeling and thermogravimetric investigation of Phoenix dactylifera and Phyllanthus emblica non-edible oil seeds: artificial neural network (ANN) prediction modeling

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In the present study, Phoenix dactylifera (PD) or Indian Amla and Phyllanthus emblica (PE) or Dry dates were thermally studied to determine their potential as pyrolysis feedstocks using theoretical kinetic modeling, then the artificial neural network (ANN) was used on TGA data to predict the best fitting. TG experiments were conducted at three different heating rates of 10, 20, and 30 °C/min for both the seeds. Kinetic modeling of the PD and PE seeds was also performed using FWO, KAS, FRM, KN model-free isoconversional methods and C-R model fitting method. Further, the thermodynamic parameters were also determined for the aforementioned heating rates. The average values of activation energy were found to be in incremental pattern of KN < FRM < C-R < KAS < FWO methods and KN < KAS < FWO < C-R < FRM methods, respectively for PD and PE seeds. The values of ∆G, ∆S, and ∆H were observed in the similar range as other oilseeds utilized in pyrolysis process. The TGA data were accurately simulated by ANN modeling at three different heating rates as the value of R2 were found in the range of 0.99–1 for both the seeds. The kinetic modeling, thermodynamic parameters, and ANN modeling also proved that the PD and PE waste biomass seeds could definitely be used to obtain liquid fuels or other valuable chemicals besides reducing the environmental degradation and value-addition to waste seeds towards a circular economy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary data file.

Abbreviations

PD:

Phoenix dactylifera

PE:

Phyllan thus emblica

TGA:

Thermogravimetric analyzer

DTG:

Differential thermogravimetric

FRM:

Friedman

KAS:

Kissinger–Akahira–Sunose

FWO:

Flynn–Wall–Ozawa

KN:

Kissinger

C-R:

Coats-Redfern

ANN:

Artificial neural network

Wt :

Total weight loss

A:

Pre-exponential factor

α:

Degree of conversion

Ea :

Activation energy

β:

Heating rate

-dw/dtmax :

Maximum degradation rate

ΔG:

Gibbs free energy change

ΔH:

Enthalpy change

ΔS:

Entropy change

References

  1. Kumar A, Kumar N, Bareda P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew. Sustain Energy Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

    Article  Google Scholar 

  2. Sahoo A, Kumar S, Kumar J, Bhaskar T (2021) A detailed assessment of pyrolysis kinetics of invasive lignocellulosic biomasses (Prosopis juliflora and Lantana camara) by thermogravimetric analysis. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.124060

    Article  Google Scholar 

  3. Al-daihan S, Bhat RS (2012) Antibacterial activities of extracts of leaf, fruit, seed and bark of Phoenix dactylifera. Afr J Adv Biotechnol 11(42):10021–10025. https://doi.org/10.5897/AJB11.4309

    Article  Google Scholar 

  4. Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, El-Shazly M, Kumar V (2022) Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. J Ethnopharmacol. https://doi.org/10.1016/j.jep.2021.114570

    Article  Google Scholar 

  5. Huang YW, Chen MQ, Li Y (2017) An innovative evaluation method for kinetic parameters in distributed activation energy model and its application in thermochemical process of solid fuels. Thermochim Acta. https://doi.org/10.1016/j.tca.2017.06.009

    Article  Google Scholar 

  6. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  7. Patnaik S, Kumar S, Panda AK (2019) Kinetics of thermal degradation of non-woven plastics: model-free kinetic approach. ChemistrySelect 04(27):8054–8060. https://doi.org/10.1002/slct.201901114

    Article  Google Scholar 

  8. Gohar H, Khoja AH, Ansari AA, Naqvi SR, Liaquat R, Hassan M, Hasni K, Qazi UY, Ali I (2022) Investigating the characterisation, kinetic mechanism, and thermodynamic behaviour of coal-biomass blends in co-pyrolysis process. Process Saf Environ Prot 163:645–658. https://doi.org/10.1016/j.psep.2022.05.063

    Article  Google Scholar 

  9. Tauseef M, Ansari AA, Khoja AH, Naqvi SR, Liaquat R, Nimmo W, Daood SS (2022) Thermokinetics synergistic effects on co-pyrolysis of coal and rice husk blends for bioenergy production. Fuel 318:123685. https://doi.org/10.1016/j.fuel.2022.123685

    Article  Google Scholar 

  10. Mishra RK, Kumar V, Mohanty K (2020) Pyrolysis kinetics behaviour and thermal pyrolysis of Samanea saman seeds towards the production of renewable fuel. J Energ Inst. https://doi.org/10.1016/j.joei.2019.10.008

    Article  Google Scholar 

  11. Santos VO, Queiroz LS, Araujo RO, Ribeiro FCP, Guimaraes MN, da Costa CEF, Chaar JS, de Souza LKC (2020) Pyrolysis of acai seed biomass: kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresour Technol Rep. https://doi.org/10.1016/j.biteb.2020.100553

    Article  Google Scholar 

  12. Martín-Lara MA, Blázquez G, Zamora MC, Calero M (2017) Kinetic modeling of torrefaction of olive tree pruning. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2016.11.147

    Article  Google Scholar 

  13. Sahoo A, Gautam R, Kumar S, Mohanty K (2021) Energy optimization from a binary mixture of non-edible oilseeds pyrolysis: kinetic triplets analysis using Thermogravimetric Analyser and prediction modeling by Artificial Neural Network. J Environ Manag 297:113253. https://doi.org/10.1016/j.jenvman.2021.113253

    Article  Google Scholar 

  14. Khan M, Ullah Z, Masek O, Naqvi SR, Khan MNA (2022) Artificial neural networks for the prediction of biochar yield: a comparative study of metaheuristic algorithms. Bioresour Technol 355:127215. https://doi.org/10.1016/j.biortech.2022.127215

    Article  Google Scholar 

  15. Khan M, Naqvi SR, Ullah Z, Taqvi SAA, Khan MNA, Farooq W, Mehran MT, Juchelkova D, Stepanec L (2023) Applications of machine learning in thermochemical conversion of biomass-A review. Fuel 332:126055. https://doi.org/10.1016/j.fuel.2022.126055

    Article  Google Scholar 

  16. Kumar S, Nayan NK, Singh RK (2015) Kinetics of the pyrolysis and combustion characteristics of non-edible oilseeds (Karanja and Neem Seed) using thermogravimetric analysis. Energ Source Part A 37(21):2352–2359. https://doi.org/10.1080/15567036.2012.748106

    Article  Google Scholar 

  17. Wang B, Yao Z, Reinmoller M, Kishore N, Tesfaye F, Luque R (2023) Pyrolysis behavior, kinetics, and thermodynamics of waste pharmaceutical blisters under CO2 atmosphere. J Anal Appl Pyrol 170:105883. https://doi.org/10.1016/j.jaap.2023.105883

    Article  Google Scholar 

  18. Yao Z, Yu S, Su W, Wu W, Tang J, Qi W (2020) Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Manag Res 38(1):77–85. https://doi.org/10.1177/0734242X19897814

    Article  Google Scholar 

  19. Doyle CD (1961) Kinetic analysis of thermogravimetric data. J Appl Poly Sci. https://doi.org/10.1002/app.1961.070051506

    Article  Google Scholar 

  20. Murray P, White J (1965) Kinetics of clay dehydration. Clay Miner Bull 2(13):255–264. https://doi.org/10.1180/claymin.1955.002.13.07

  21. Friedman HL (1960) Thermal degradation of plastics. I. The kinetics of polymer chain degradation. J Polym Sci 45:119–125

    Article  Google Scholar 

  22. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  Google Scholar 

  23. Coats AW, Redfern JP (1965) Kinetic parameters from thermogravimetric data. II. J Polym Sci Part B Polym Lett 3:917–920

    Article  Google Scholar 

  24. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. https://doi.org/10.6028/jres.057.026

    Article  Google Scholar 

  25. Ahmad MS, Mehmood MA, Taqvi STH, Elkamel A, Liu CG, Xu J, Rahimuddin SA, Gull M (2017) Pyrolysis, kinetics analysis, thermodynamics parameters and reaction mechanism of Typha latifolia to evaluate its bioenergy potential. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.08.162

    Article  Google Scholar 

  26. Chen J, Liu J, He Y, Huang L, Sun S, Sun J, Chang KL, Kuo J, Huang S, Ning X (2017) Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresour Technol. https://doi.org/10.1016/J.BIORTECH.2016.11.069

    Article  Google Scholar 

  27. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of prod-uct properties and effects of pyrolysis parameters. Renew Sust Ener Rev. https://doi.org/10.1016/j.rser.2015.12.185

    Article  Google Scholar 

  28. Angın D (2013) Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Biores Technol. https://doi.org/10.1016/j.biortech.2012.10.150

    Article  Google Scholar 

  29. Duman G, Okutucu C, Ucar S, Stahl R, Yanik J (2011) The slow and fast pyrolysis of cherry seed. Biores Technol. https://doi.org/10.1016/j.biortech.2010.07.051

    Article  Google Scholar 

  30. Singh VK, Soni AB, Kumar S, Singh RK (2014) Pyrolysis of sal seed to liquid product. Biores Technol. https://doi.org/10.1016/j.biortech.2013.10.087

    Article  Google Scholar 

  31. Nayan N, Kumar S, Singh RK (2012) Characterization of the liquid product obtained by pyrolysis of karanja seed. Biores Technol. https://doi.org/10.1016/j.biortech.2012.08.004

    Article  Google Scholar 

  32. Demirbas A (2006) Effect of temperature on pyrolysis products from four nut shells. J Anal Appl Pyrol. https://doi.org/10.1016/j.jaap.2005.12.012

    Article  Google Scholar 

  33. Pradhan D, Singh RK, Bendu H, Mund R (2016) Pyrolysis of Mahua seed (Madhuca indica)-production of biofuel ad its characteriation. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2015.11.042

    Article  Google Scholar 

  34. Gravalos I, Xyradakis P, Kateris D, Gialamas T, Bartzialis D, Giannoulis K (2016) An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Nat Resour. https://doi.org/10.4236/nr.2016.71006

    Article  Google Scholar 

  35. Kumar S, Agrawalla A, Singh RK (2011) Thermogravimetric analysis of groundnut cake. Int J Chem Engg Appl 2(4):268–271. https://doi.org/10.7763/IJCEA.2011.V2.115

    Article  Google Scholar 

  36. Dhyani V, Bhaskar TA (2018) Comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Ener. https://doi.org/10.1016/j.renene.2017.04.035

    Article  Google Scholar 

  37. Cai J, Chen S (2008) Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Dry Technol. https://doi.org/10.1080/07373930802412116

    Article  Google Scholar 

  38. Roque-Diaz P, Villas L, Shemet CVZ, Lavrenko VA, Khristich VA (1985) Studies on thermal decomposition and combustion mechanism of bagasse under non-isothermal conditions. Thermo Acta. https://doi.org/10.1016/0040-6031(85)85088-7

    Article  Google Scholar 

  39. Zhang X, Xu M, Sun R, Sun L (2006) Study on biomass pyrolysis kinetics. J Eng Gas Turbine Power doi 10(1115/1):2135816

    Google Scholar 

  40. Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal App Pyrol. https://doi.org/10.1016/0165-2370(82)80017-X

    Article  Google Scholar 

  41. Alen R, Kuoppala E, Oesch P (1996) Formation of the main degradation compound groups from wood and its components during pyrolysis. J Anal App Pyrol. https://doi.org/10.1016/0165-2370(96)00932-1

    Article  Google Scholar 

  42. Pandey SP, Sahoo A, Kumar S (2021) Evaluation of kinetic and thermodynamic parameters of Argemone mexicana seed pyrolysis via thermogravimetric analyser. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01931-x

    Article  Google Scholar 

  43. Pal DB, Tiwari AK, Srivastava N, Hashem A, Allah EFA (2021) Thermal studies of biomass obtained from the seeds of Syzygium cumini and Cassia fistula L. and peel of Cassia fistula L. fruit. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01492-z

    Article  Google Scholar 

  44. Criado JM, Perez-Maqueda LA, Sanchez-Jimenez PE (2005) Dependence of the preexponential factor on temperature. J Therm Anal Calorim. https://doi.org/10.1007/s10973-005-0948-3

    Article  Google Scholar 

  45. Daugaard DE, Brown RC (2003) Enthalpy for pyrolysis for several types of biomass. Ener Fuel. https://doi.org/10.1021/ef020260x

    Article  Google Scholar 

  46. Mishra RK, Mohanty K (2021) Kinetic analysis and pyrolysis behavior of low-value waste lignocellulosic biomass for its bioenergy potential using thermogravimetric analyzer. Mat Sci Ener Technol. https://doi.org/10.1016/j.mset.2021.03.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Indra Mohan: conceptualization, formal analysis, investigation, methodology, software, visualization, data curation, writing – original draft. Abhisek Sahoo: data curation, supervision, writing – review & editing. Sandip Mandal: data curation, supervision, writing – review & editing. Sachin Kumar: project administration, supervision, validation, resources, writing – review & editing.

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An innovative approach to effectively utilize the waste biomass for the domestic carbon resource in a biorefinery concept.

• Pyrolysis kinetics was studied for two novel waste seeds such as Phoenix dactylifera and Phyllanthus emblica seed.

• Thermodynamics parameters were also estimated for pyrolysis of waste biomass.

• First study concerning the prediction modeling using Artificial Neural Network (ANN) pyrolysis of waste Phoenix dactylifera and Phyllanthus emblica seeds.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2193 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, I., Sahoo, A., Mandal, S. et al. Kinetic modeling and thermogravimetric investigation of Phoenix dactylifera and Phyllanthus emblica non-edible oil seeds: artificial neural network (ANN) prediction modeling. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04094-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04094-z

Keywords

Navigation