Skip to main content

Advertisement

Log in

Structural elucidation of pectin extracted from cocoa pod husk (Theobroma Cacao L.): Evaluation of the degree of esterification using FT-IR and 1H NMR

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Nowadays, the increasing demand for cocoa derivatives is generating a serious disposal problem in close proximity to cultivated lands and farms owing to the huge quantity of cocoa pod husk (CPH) waste. Based on this context, this paper deals with the utilization of CPH as raw material for pectin extraction using citric acid and its structural characterization by NMR and FT-IR. Regarding the FT-IR technique, pectin from CPH was compared with commercial pectin by the ATR-IR method, while the second-derivative FT-IR method was conducted to explore masked bands in the normal CPH pectin spectrum. In addition, a deconvolution process was carried out for estimating the degree of esterification through the bands at 1725 cm−1 and 1610 cm−1. On the other hand, structural elucidation of CPH pectin was performed by 1D and 2D NMR to validate the presence of rhamnose groups attached to galacturonic acid groups suggesting a RG-I structure. Besides, the degree of esterification was evaluated using 1H NMR and compared with the FT-IR method, which showed similar values around 35–37% and depicted a low degree of esterification in CPH pectin. Additionally, the antioxidant activity of CPH pectin was explored reaching a value of 11.79 ± 1.10%, a bit higher compared with the average value for polygalacturonic acid (10.31 ± 3.29) and other pectin-based materials. Finally, an amorphous structure was observed by XRD, and also, the presence of cadmium on pectin surface was discarded by EDX analysis, whereas the morphology was explored by FESEM observing a sheet-like structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Cristina L, Francisco R, Lúcia C, Petkowicz DO (2011) Optimization of nitric acid-mediated extraction of pectin from cacao pod husks (Theobroma cacao L.) using response surface methodology. Carbohydrate Polymers 84:1230–1236. https://doi.org/10.1016/j.carbpol.2011.01.009

    Article  Google Scholar 

  2. Campos-vega R, Nieto-figueroa KH, Oomah BD (2018) Cocoa ( Theobroma cacao L.) pod husk : renewable source of bioactive compounds, Trends in Food Science & Technology Cocoa ( Theobroma cacao L.) pod husk : renewable source of bioactive compounds. Trends Food Sci Technol 81:172–184. https://doi.org/10.1016/j.tifs.2018.09.022

    Article  Google Scholar 

  3. Arévalo-Gardini E, Arévalo-Hernández CO, Baligar VC, He ZL (2017) Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. Sci. Total Environ 605–606:792–800. https://doi.org/10.1016/j.scitotenv.2017.06.122

    Article  Google Scholar 

  4. Priyangini F, Walde SG, Chidambaram R (2018) Extraction optimization of pectin from cocoa pod husks (Theobroma cacao L.) with ascorbic acid using response surface methodology. Carbohydr. Polym 202:497–503. https://doi.org/10.1016/j.carbpol.2018.08.103

    Article  Google Scholar 

  5. Zayed A, Badawy MT, Farag MA (2021) Valorization and extraction optimization of Citrus seeds for food and functional food applications. Food Chem 355:129609. https://doi.org/10.1016/j.foodchem.2021.129609

    Article  Google Scholar 

  6. Srivastava N, Srivastava M, Alhazmi A, Kausar T, Haque S, Singh R, Ramteke PW, Mishra PK, Tuohy M, Leitgeb M, Gupta VK (2021) Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: a review. Environ. Pollut 287:117370. https://doi.org/10.1016/j.envpol.2021.117370

    Article  Google Scholar 

  7. Nguyen LT, Phan DP, Sarwar A, Tran MH, Lee OK, Lee EY (2021) Valorization of industrial lignin to value-added chemicals by chemical depolymerization and biological conversion. Ind. Crops Prod 161:113219. https://doi.org/10.1016/j.indcrop.2020.113219

    Article  Google Scholar 

  8. Ganguly P, Sengupta S, Das P, Bhowal A (2020) Valorization of food waste: extraction of cellulose, lignin and their application in energy use and water treatment. Fuel 280:118581. https://doi.org/10.1016/j.fuel.2020.118581

    Article  Google Scholar 

  9. Paulraj Gundupalli M, Bhattacharyya D (2021) Effect of different mineral acids on coconut coir for recovery of reducing sugar: process optimization using Response Surface Methodology (RSM), Mater Today Proc 68:327–332. https://doi.org/10.1016/j.matpr.2021.06.225

  10. Vásquez ZS, de CarvalhoNeto DP, Pereira GVM, Vandenberghe LPS, de Oliveira PZ, Tiburcio PB, Rogez HLG, GóesNeto A, Soccol CR (2019) Biotechnological approaches for cocoa waste management: A review. Waste Manag 90:72–83. https://doi.org/10.1016/j.wasman.2019.04.030

    Article  Google Scholar 

  11. Dranca F, Oroian M (2018) Extraction, purification and characterization of pectin from alternative sources with potential technological applications. Food Res Int 113:327–350. https://doi.org/10.1016/j.foodres.2018.06.065

    Article  Google Scholar 

  12. Shaiful M, Hua C, Zakaria S, Abdul I (2013) Journal of Environmental Chemical Engineering. Alkaline-treated cocoa pod husk as adsorbent for removing methylene blue from aqueous solutions. Biochem. Pharmacol 1:460–465. https://doi.org/10.1016/j.jece.2013.06.012

    Article  Google Scholar 

  13. Ziegler-Rodriguez K, Margallo M, Aldaco R, Vázquez-Rowe I, Kahhat R (2019) Transitioning from open dumpsters to landfilling in Peru: environmental benefits and challenges from a life-cycle perspective. J Clean Prod 229:989–1003. https://doi.org/10.1016/j.jclepro.2019.05.015

    Article  Google Scholar 

  14. Njoku VO (2014) Biosorption potential of cocoa pod husk for the removal of Zn(II) from aqueous phase. J Environ Chem Eng 2:881–887. https://doi.org/10.1016/j.jece.2014.03.003

  15. Córdova BM, Santa Cruz JP, Ocampo TVM, Huamani-Palomino RG, Baena-Moncada AM (2020) Simultaneous adsorption of a ternary mixture of brilliant green, rhodamine B and methyl orange as artificial wastewater onto biochar from cocoa pod husk waste. Quantification of dyes using the derivative spectrophotometry method. New J Chem 44:8303–8316. https://doi.org/10.1039/d0nj00916d

    Article  Google Scholar 

  16. Muñoz-Almagro N, Valadez-Carmona L, Mendiola JA, Ibáñez E, Villamiel M (2019) Structural characterisation of pectin obtained from cacao pod husk. Comparison of conventional and subcritical water extraction. Carbohydr Polym 217:69–78. https://doi.org/10.1016/j.carbpol.2019.04.040

    Article  Google Scholar 

  17. SUNAT, Operatividad Aduanera, (2021). http://www.aduanet.gob.pe/operatividadaduana/

  18. Yang X, Yuan K, Descallar FBA, Li A, Yang X, Yang H (2022) Gelation behaviors of some special plant-sourced pectins: a review inspired by examples from traditional gel foods in China. Trends Food Sci Technol 126:26–40. https://doi.org/10.1016/j.tifs.2022.06.012

    Article  Google Scholar 

  19. Fidalgo A, Ciriminna R, Carnaroglio D, Tamburino A, Cravotto G, Grillo G, Ilharco LM, Pagliaro M (2016) Eco-friendly extraction of pectin and essential oils from orange and lemon peels. ACS Sustain Chem Eng 4:2243–2251. https://doi.org/10.1021/acssuschemeng.5b01716

    Article  Google Scholar 

  20. Ismail NSM, Ramli N, Hani NM, Meon Z (2012) Extraction and characterization of pectin from dragon fruit (Hylocereus polyrhizus) using various extraction conditions. Sains Malaysiana 41:41–45

  21. Chan SY, Choo WS (2013) Effect of extraction conditions on the yield and chemical properties of pectin from cocoa husks. Food Chem 141:3752–3758. https://doi.org/10.1016/j.foodchem.2013.06.097

    Article  Google Scholar 

  22. Niu H, Chen X, Luo T, Chen H, Fu X (2022) The interfacial behavior and long-term stability of emulsions stabilized by gum arabic and sugar beet pectin. Carbohyd Polym 291:119623. https://doi.org/10.1016/j.carbpol.2022.119623

    Article  Google Scholar 

  23. Niu H, Chen X, Luo T, Chen H, Fu X (2022) Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocoll 128:107566. https://doi.org/10.1016/j.foodhyd.2022.107566

    Article  Google Scholar 

  24. Yang X, Nisar T, Hou Y, Gou X, Sun L, Guo Y (2018) Pomegranate peel pectin can be used as an effective emulsifier. Food Hydrocoll 85:30–38. https://doi.org/10.1016/j.foodhyd.2018.06.042

    Article  Google Scholar 

  25. Grasdalen H, EinarBakøy O, Larsen B (1988) Determination of the degree of esterification and the distribution of methylated and free carboxyl groups in pectins by 1H-n.m.r. spectroscopy. Carbohydr Res 184:183–191. https://doi.org/10.1016/0008-6215(88)80016-8

    Article  Google Scholar 

  26. Pereira PHF, Oliveira TÍS, Rosa MF, Cavalcante FL, Moates GK, Wellner N, Waldron KW, Azeredo HMC (2016) Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol 88:373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074

    Article  Google Scholar 

  27. Manrique GD, Lajolo FM (2002) FT-IR spectroscopy as a tool for measuring degree of methyl esterification in pectins isolated from ripening papaya fruit. Postharvest Biol Technol 25:99–107. https://doi.org/10.1016/S0925-5214(01)00160-0

  28. Sriamornsak P (2003) Chemistry of pectin and its pharmaceutical uses: a review. Silpakorn University International Journal 3(1-2):206–28 

  29. Yin S, Sim W, James D, Jun X (2017) Pectin as a rheology modifier : origin, structure, commercial production and rheology. Carbohydr Polym 161:118–139. https://doi.org/10.1016/j.carbpol.2016.12.033

    Article  Google Scholar 

  30. Cristina L, Dias R, Castanho DM, Lúcia C, Petkowicz DO (2011) Cacao pod husks ( Theobroma cacao L): composition and hot-water-soluble pectins. Ind Crops Prod 34:1173–1181. https://doi.org/10.1016/j.indcrop.2011.04.004

    Article  Google Scholar 

  31. Kumar A, Chauhan GS (2010) Extraction and characterization of pectin from apple pomace and its evaluation as lipase ( steapsin ) inhibitor. Carbohydr Polym 82:454–459. https://doi.org/10.1016/j.carbpol.2010.05.001

    Article  Google Scholar 

  32. Kazemi M, Khodaiyan F, Hosseini SS (2019) Eggplant peel as a high potential source of high methylated pectin: ultrasonic extraction optimization and characterization. Lwt 105:182–189. https://doi.org/10.1016/j.lwt.2019.01.060

    Article  Google Scholar 

  33. Austarheim I, Christensen BE, Thi H, Aas N, Thöle C, Diallo D, Paulsen BS (2014) Chemical characterization and complement fixation of pectins from Cola cordifolia leaves. Carbohydr Polym 102:472–480. https://doi.org/10.1016/j.carbpol.2013.11.046

    Article  Google Scholar 

  34. Mamani DC, Nole KSO, Montoya EEC, Huiza DAM, Alta RYP, Vitorino HA (2020) Minimizing organic waste generated by pineapple crown: a simple process to obtain cellulose for the preparation of recyclable containers. Recycling 5:1–12. https://doi.org/10.3390/recycling5040024

    Article  Google Scholar 

  35. Ramos J, Villacrés NA, Cavalheiro ÉTG, Alarcón HA, Valderrama AC (2022) Preparation of sodium alginate films incorporated with hydroalcoholic extract of Macrocystis pyrifera. Foods Raw Mater 11:64–71. https://doi.org/10.21603/2308-4057-2023-1-553

    Article  Google Scholar 

  36. Vriesmann LC, Teófilo RF, Lúcia de Oliveira Petkowicz C (2012) Extraction and characterization of pectin from cacao pod husks (Theobroma cacao L.) with citric acid. LWT - Food Sci Technol 49:108–116. https://doi.org/10.1016/j.lwt.2012.04.018

    Article  Google Scholar 

  37. Oloye MT, Jabar JM, Adetuyi AO, Lajide L (2021) Extraction and characterization of pectin from fruit peels of Irvingia gabonensis and pulp of Cola milleni and Theobroma cacao as precursor for industrial applications. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01366-4

    Article  Google Scholar 

  38. Marsiglia DE, Ojeda KA, Ramírez MC, Sánchez E (2016) Pectin extraction from cocoa pod husk (Theobroma cacao L.) by hydrolysis with citric and acetic acid. Int J ChemTech Res 9:497–507

  39. Hennessey-Ramos L, Murillo-Arango W, Vasco-Correa J, Paz Astudillo I.C (2021) Enzymatic extraction and characterization of pectin from cocoa pod husks (Theobroma cacao L.) using Celluclast® 1.5 L. Molecules 26:1473. https://doi.org/10.3390/molecules26051473

  40. Sarah M, Hasibuan IM, Misran E, Maulina S (2022) Optimization of microwave-assisted pectin extraction from cocoa pod husk. Molecules 27:6544. https://doi.org/10.3390/molecules27196544

  41. Pangestu R, Amanah S, Juanssilfero AB, Yopi U. Perwitasari (2020) Response surface methodology for microwave-assisted extraction of pectin from cocoa pod husk (Theobroma cacao) mediated by oxalic acid. J Food Meas Charact 14:2126–2133. https://doi.org/10.1007/s11694-020-00459-4

    Article  Google Scholar 

  42. Beasley MM, Bartelink EJ, Taylor L, Miller RM (2014) Comparison of transmission FTIR, ATR, and DRIFT spectra : implications for assessment of bone bioapatite diagenesis. J Archaeol Sci 46:16–22. https://doi.org/10.1016/j.jas.2014.03.008

    Article  Google Scholar 

  43. Ghoshal G, Negi P. (2020) Isolation of pectin from kinnow peels and its characterization. Food Bioprod Process 124:342–353. https://doi.org/10.1016/j.fbp.2020.09.008

  44. Gnanasambandam R, Proctor A (2000) Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chem 68:327–332. https://doi.org/10.1016/S0308-8146(99)00191-0

    Article  Google Scholar 

  45. Abid M, Cheikhrouhou S, Renard CMGC, Bureau S, Cuvelier G, Attia H, Ayadi MA (2017) Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem 215:318–325. https://doi.org/10.1016/j.foodchem.2016.07.181

    Article  Google Scholar 

  46. Haj Romdhane M, Beltifa A, Mzoughi Z, Rihouey C, Ben Mansour H, Majdoub H, Le Cerf D (2020) Optimization of extraction with salicylic acid, rheological behavior and antiproliferative activity of pectin from Citrus sinensis peels. Int J Biol Macromol 159:547–556. https://doi.org/10.1016/j.ijbiomac.2020.05.125

    Article  Google Scholar 

  47. Adjin-tetteh M, Asiedu N, Dodoo-arhin D, Karam A, Nana P (2018) Industrial Crops & Products Thermochemical conversion and characterization of cocoa pod husks a potential agricultural waste from Ghana. Ind Crop Prod 119:304–312. https://doi.org/10.1016/j.indcrop.2018.02.060

    Article  Google Scholar 

  48. Henrique P, Pereira F, Ítalo T, Oliveira S, Rosa MF, Lima F, Moates GK, Wellner N, Waldron KW, Azeredo HMC (2016) International Journal of Biological Macromolecules Pectin extraction from pomegranate peels with citric acid. Int J Biol Macromol 88:373–379. https://doi.org/10.1016/j.ijbiomac.2016.03.074

    Article  Google Scholar 

  49. Gaitán-Alvarez J, Berrocal A, Mantanis GI et al (2020) Acetylation of tropical hardwood species from forest plantations in Costa Rica: an FTIR spectroscopic analysis. J Wood Sci 66:49. https://doi.org/10.1186/s10086-020-01898-9

  50. Córdova BM, Infantas GC, Mayta S, Huamani-Palomino RG, Kock FVC, Montes de Oca J, Valderrama AC (2021) Xanthate-modified alginates for the removal of Pb(II) and Ni(II) from aqueous solutions: a brief analysis of alginate xanthation. Int J Biol Macromol 179:557–566. https://doi.org/10.1016/j.ijbiomac.2021.02.190

    Article  Google Scholar 

  51. Huamani-Palomino RG, Córdova BM, Pichilingue LER, Venâncio T, Valderrama AC (2021) Functionalization of an alginate-based material by oxidation and reductive amination. Polymers 13:255. https://doi.org/10.3390/polym13020255

  52. Taboada E, Fisher P, Jara R, Zúñiga E, Gidekel M, Cabrera JC, Pereira E, Gutiérrez-Moraga A, Villalonga R, Cabrera G (2010) Isolation and characterisation of pectic substances from murta (Ugni molinae Turcz) fruits. Food Chem 123:669–678. https://doi.org/10.1016/j.foodchem.2010.05.030

    Article  Google Scholar 

  53. Leitermann F, Syldatk C, Hausmann R (2008) Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR Spectroscopy. J Biol Eng 2:13. https://doi.org/10.1186/1754-1611-2-13

  54. Wan JQ, Wang Y, Xiao Q (2010) Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresour Technol 101:4577–4583. https://doi.org/10.1016/j.biortech.2010.01.026

    Article  Google Scholar 

  55. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely P, Militz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Als Roh - Und Werkst 56:149–153. https://doi.org/10.1007/s001070050287

    Article  Google Scholar 

  56. Brosse N, El Hage R, Chaouch M, Pétrissans M, Dumarçay S, Gérardin P (2010) Investigation of the chemical modifications of beech wood lignin during heat treatment. Polym Degrad Stab 95:1721–1726. https://doi.org/10.1016/j.polymdegradstab.2010.05.018

    Article  Google Scholar 

  57. Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106. https://doi.org/10.1016/j.carres.2004.10.022

    Article  Google Scholar 

  58. Liu CF, Xu F, Sun JX, Ren JL, Curling S, Sun RC, Fowler P, Baird MS (2006) Physicochemical characterization of cellulose from perennial ryegrass leaves (Lolium perenne). Carbohydr Res 341:2677–2687. https://doi.org/10.1016/j.carres.2006.07.008

    Article  Google Scholar 

  59. Santoni I, Callone E, Sandak A, Sandak J, Dirè S (2015) Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydr Polym 117:710–721. https://doi.org/10.1016/j.carbpol.2014.10.057

  60. Cipriano DF, Chinelatto LS, Nascimento SA, Rezende CA, de Menezes SMC, Freitas JCC (2020) Potential and limitations of 13C CP/MAS NMR spectroscopy to determine the lignin content of lignocellulosic feedstock. Biomass Bioenergy 142:105792. https://doi.org/10.1016/j.biombioe.2020.105792

    Article  Google Scholar 

  61. Zhi Z, Chen J, Li S, Wang W, Huang R, Liu D, DIng T, Linhardt RJ, Chen S, Ye X (2017) Fast preparation of RG-I enriched ultra-low molecular weight pectin by an ultrasound accelerated Fenton process. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-00572-3

    Article  Google Scholar 

  62. Barbieri SF, da Costa Amaral S, Ruthes AC, de Oliveira Petkowicz CL, Kerkhoven NC, da Silva ERA, Silveira JLM (2019) Pectins from the pulp of gabiroba (Campomanesia xanthocarpa Berg): structural characterization and rheological behavior. Carbohydr Polym 214:250–258. https://doi.org/10.1016/j.carbpol.2019.03.045

    Article  Google Scholar 

  63. Bédouet L, Courtois B, Courtois J (2003) Rapid quantification of O-acetyl and O-methyl residues in pectin extracts. Carbohydr Res 338:379–383. https://doi.org/10.1016/S0008-6215(02)00500-1

    Article  Google Scholar 

  64. He L, Yan X, Liang J, Li S, He H, Xiong Q (2018) Comparison of different extraction methods for polysaccharides from Dendrobium officinale stem. Carbohydr Polym 198:101–108. https://doi.org/10.1016/j.carbpol.2018.06.073

    Article  Google Scholar 

  65. Sun D, Chen X, Zhu C (2020) Physicochemical properties and antioxidant activity of pectin from hawthorn wine pomace: a comparison of different extraction methods. Int J Biol Macromol 158:1239–1247. https://doi.org/10.1016/j.ijbiomac.2020.05.052

    Article  Google Scholar 

  66. Gharibzahedi SMT, Smith B, Guo Y (2019) Ultrasound-microwave assisted extraction of pectin from fig (Ficus carica L.) skin: Optimization, characterization and bioactivity. Carbohydr Polym 222:114992. https://doi.org/10.1016/j.carbpol.2019.114992

    Article  Google Scholar 

  67. Machoy M, Seeliger J, Lipski M, Wójcicka A, Gedrange T, Woźniak K (2016) SEM-EDS-Based elemental identification on the enamel surface after the completion of orthodontic treatment: In vitro studies. Biomed Res Int 2016:1–5. https://doi.org/10.1155/2016/7280535

  68. Barraza F, Schreck E, Lévêque T, Uzu G, López F, Ruales J, Prunier J, Marquet A, Maurice L (2017) Cadmium bioaccumulation and gastric bioaccessibility in cacao: a field study in areas impacted by oil activities in Ecuador. Environ Pollut 229:950–963. https://doi.org/10.1016/j.envpol.2017.07.080

    Article  Google Scholar 

  69. Gramlich A, Tandy S, Andres C, ChincherosPaniagua J, Armengot L, Schneider M, Schulin R (2017) Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Sci Total Environ 580:677–686. https://doi.org/10.1016/j.scitotenv.2016.12.014

    Article  Google Scholar 

  70. Hosseini SS, Khodaiyan F, Kazemi M, Najari Z (2019) Optimization and characterization of pectin extracted from sour orange peel by ultrasound assisted method. Int J Biol Macromol 125:621–629. https://doi.org/10.1016/j.ijbiomac.2018.12.096

    Article  Google Scholar 

  71. Córdova BM, Venâncio T, Olivera M, Huamani-Palomino RG, Valderrama AC (2021) Xanthation of alginate for heavy metal ions removal. Characterization of xanthate-modified alginates and its metal derivatives. Int J Biol Macromol 169:130–142. https://doi.org/10.1016/j.ijbiomac.2020.12.022

    Article  Google Scholar 

  72. Iwashita N, Park CR, Fujimoto H, Shiraishi M, Inagaki M (2004) Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon N Y 42:701–714. https://doi.org/10.1016/j.carbon.2004.02.008

    Article  Google Scholar 

  73. Guo C, Li X, Gong T, Yang X, Wang G, Yang X, Guo Y (2021) Gelation of Nicandra physalodes (Linn.) Gaertn polysaccharide induced by calcium hydroxide: a novel potential pectin source. Food Hydrocoll 118:106756. https://doi.org/10.1016/j.foodhyd.2021.106756

  74. Gharibzahedi SMT, Smith B, Guo Y (2019) Pectin extraction from common fig skin by different methods: the physicochemical, rheological, functional, and structural evaluations. Int J Biol Macromol 136:275–283. https://doi.org/10.1016/j.ijbiomac.2019.06.040

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Vice-rectorate for Research (VRI) of the National University of Engineering through the project FIA-FI-21-2020. In addition, F.V.C.K would like to thank the Sao Paulo Research Foundation – FAPESP (Proc. 2018/165040-5) and the University of Toronto Scarborough (UTSC) Canadian Excellence Provost Fellowship for their financial and academic support. Also, all authors express their gratitude to C-Innovation program directed by KOICA – INHA University from South Korea.

Funding

This study was financially supported by Project FIA-FI-21–2020 (National University of Engineering, Lima -Peru).

Author information

Authors and Affiliations

Authors

Contributions

Ronny G. Huamani-Palomino, conceptualization (original idea), writing-original draft, methodology and discussions; Pedro Ramos, funding acquisition, project administration, and resources; Glenda Oliveira, NMR experiments; Flavio C. Kock, methylation degree and review; Tiago Venâncio, NMR experiments, and review; Bryan M. Córdova, conceptualization (original idea) and writing-original draft.

Corresponding author

Correspondence to Bryan M. Córdova.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1222 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huamani-Palomino, R.G., M., P.R., Oliveira, G. et al. Structural elucidation of pectin extracted from cocoa pod husk (Theobroma Cacao L.): Evaluation of the degree of esterification using FT-IR and 1H NMR. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04082-3

Keywords

Navigation