Skip to main content

Advertisement

Log in

Ziziphus lotus (L.) Lam. almonds nutritional potential: Evidence from proximate composition, mineral, antioxidant activity, and lipid profiling reveals a great potential for valorization

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Ziziphus lotus (L.) Lam. (Z. lotus) is used in Morocco for various purposes such as nutrition, health, and cosmetics. Its fruits are eaten fresh and Z. lotus almonds (ZLA) are underutilized biomass and usually considered as waste left after fruit consumption. The purpose of this study was to evaluate the nutritional potential of nine Moroccan origins of ZLA. They were subjected to proximate composition, elemental, fatty acid, and sterol oil profiling, total flavonoid (TFC), phenolic content (TPC), condensed tannins (CT), and antioxidant activity (AA). As findings, significant differences were observed in ZLA-measured traits according to geographical origin. ZLA had important energy value (439.31 ± 6.55–494.24 ± 0.67 kcal/100 g) associated to ash (3.77 ± 0.09–9.62 ± 0.48%), oil content (26.22 ± 0.15–31.04 ± 0.19%), proteins (26.18 ± 0.01–31.20 ± 0.03%), and carbohydrates (28.29 ± 0.60–38.94 ± 0.02%). Major macro-elements were K (5581.02 ± 20.66–6752.93 ± 93.62 mg/kg), P (5400.24 ± 24.60 6528.88 ± 88.45 mg/kg), Mg (1133.39 ± 38.91–3083.68 ± 68.34), and Ca (936.03 ± 17.20–2777.01 ± 4.23 mg/kg). The main fatty acids were oleic (60.00 ± 0.1–69.99 ± 0.1%), linoleic (10.66 ± 0.1–20.10 ± 0.1%), and palmitic (9.00 ± 0.1–10.22 ± 0.1%). The main sterols were β-sitosterol (65.94 ± 0.28–71.99 ± 0.82%), stigmasterol (10.96 ± 0.30–16.20 ± 0.26%), and campesterol (8.36 ± 0.10–9.52 ± 0.20%). Similar trends were observed for TPC (5.13 ± 0.08–10.33 ± 0.32 mg GAE/g DW), TFC (8.25 ± 0.20–12.66 ± 0.29 mg QE/g DW) and AA with FRAP (9.11 ± 0.04–43.67 ± 2.43 mg TE/g DW), ABTS (5.73 ± 0.01–5.92 ± 0.01 mg TE/g DW), and DPPH (46.83 ± 0.07–94.03 ± 0.00%), and CT (3.02 ± 0.38–7.05 ± 0.00 mg CE/g DW). ZLA composition was influenced by geographical origin and can be considered a new source of edible oil, proteins, minerals, and natural antioxidants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All the available data and materials are incorporated in the MS.

References

  1. Mintah SO, Asafo-Agyei T, Archer M-A et al (2019) Medicinal plants for treatment of prevalent diseases. In: Perveen S, Al-Taweel A (eds) Pharmacognosy - medicinal plants, pp 1–19. https://doi.org/10.5772/intechopen.82049

  2. Kachmar MR, Naceiri Mrabti H, Bellahmar M, Ouahbi A, Haloui Z, El Badaoui K, Bouyahya A, Chakir S (2021) Traditional knowledge of medicinal plants used in the Northeastern Part of Morocco. Evidence-based Complement Altern Med 2021. https://doi.org/10.1155/2021/6002949

  3. Riaz MU, Raza MA, Saeed A, Ahmed M, Hussain T (2021) Variations in Morphological Characters and Antioxidant Potential of Different Plant Parts of Four Ziziphus Mill. Species from the Cholistan. Plants 10(2734):14. https://doi.org/10.3390/plants10122734

    Article  Google Scholar 

  4. Wahmad K, Naveed M, Haroon K, Rauf A (2014) Pharmacological and phytochemical studies of Genus Zizyphus. Middle-East J Sci Res 21:1243–1263. https://doi.org/10.5829/idosi.mejsr.2014.21.08.21099

    Article  Google Scholar 

  5. Alsayari A, Wahab S (2021) Genus Ziziphus for the treatment of chronic inflammatory diseases. Saudi J Biol Sci 28:6897–6914. https://doi.org/10.1016/j.sjbs.2021.07.076

    Article  Google Scholar 

  6. El Maaiden E, El Kharrassi Y, Qarah NAS, Essamadi AK, Moustaid K, Nasser B (2020) Genus Ziziphus: A comprehensive review on ethnopharmacological, phytochemical and pharmacological properties. J Ethnopharmacol 259:112950. https://doi.org/10.1016/j.jep.2020.112950

    Article  Google Scholar 

  7. Berkani F, Serralheiro ML, Dahmoune F, Mahdjoub M, Kadri N, Dairi S, Achat S, Remini H, Abbou A, Adel K, Madani K (2021) Ziziphus lotus (L.) Lam. plant treatment by ultrasounds and microwaves to improve antioxidants yield and quality: An overview. North African J Food Nutr Res 5:53–68. https://doi.org/10.51745/najfnr.5.12.53-68

    Article  Google Scholar 

  8. Rais C, Benidir M, Chaimae S, EL-Ouazna B, Ettadili H, ElHanafi L, EL Ghadraoui L, Benjelloun M (2019) Antimicrobial and radical scavenging activities of Moroccan Ziziphus lotus L. seeds. 8:155–160. https://doi.org/10.31254/phyto.2019.8402

  9. Chouaibi M, Mahfoudhi N, Rezig L, Donsì F, Ferrari G, Hamdi S (2012) Nutritional composition of Zizyphus lotus L. seeds. J Sci Food Agric 92:1171–1177. https://doi.org/10.1002/jsfa.4659

    Article  Google Scholar 

  10. El Cadi H, EL Bouzidi H, Selama G, El Cadi A, Ramdan B, OuladMajdoub Y, Alibrando F, Dugo P, Mondello L, Fakih Lanjri A, Brigui J, Cacciola F (2020) Physico-chemical and phytochemical characterization of Moroccan Wild Jujube “Zizyphus lotus (L.)” fruit crude extract and fractions Hafssa. Molecules 25:5237. https://doi.org/10.3390/molecules25225237

    Article  Google Scholar 

  11. Yahia Y, Benabderrahim MA, Tlili N, Bagues M, Nagaz K (2020) Bioactive compounds, antioxidant and antimicrobial activities of extracts from different plant parts of two Ziziphus Mill. species. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0232599

    Article  Google Scholar 

  12. El Maaiden E, El Kharrassi Y, Moustaid K, Essamadi AK, Nasser B (2018) Comparative study of phytochemical profile between Ziziphus spina christi and Ziziphus lotus from Morocco. J Food Meas Charact 13:121–130. https://doi.org/10.1007/s11694-018-9925-y

    Article  Google Scholar 

  13. Benslama A, Harrar A, Gul F, Demirtas I (2017) Phenolic compounds, antioxidant and antibacterial activities of Zizyphus lotus L. leaves extracts. Nat Prod J 7:1–7. https://doi.org/10.2174/2210315507666170530090957

    Article  Google Scholar 

  14. Abdoul-Azize S (2016) Potential benefits of Jujube (Zizyphus Lotus L.) bioactive compounds for nutrition and health. J Nutr Metab 2016:1–13. https://doi.org/10.1155/2016/2867470

    Article  Google Scholar 

  15. El Maaiden E, El Kharrassi Y, Lamaoui M, Allai L, Essamadi AK, Nasser B (2020) Variation in minerals, polyphenolics and antioxidant activity of pulp, seed and almond of different ziziphus species grown in Morocco. Brazilian J Food Technol 23:e2019206. https://doi.org/10.1590/1981-6723.20619

    Article  Google Scholar 

  16. Saadoudi M, Hambaba L, Abdeddaim M, Lekbir A (2017) Nutritional composition, physical properties and sensory evaluation of biscuit produced from jujubes (fruits of Zizyphus lotus L.). Ann Food Sci Technol 18(3):395–401

    Google Scholar 

  17. Najjaa H, Ben AA, Elfalleh W, Zouari N, Neffati M (2020) Jujube (Zizyphus lotus L.): Benefits and its effects on functional and sensory properties of sponge cake. PLoS ONE 15:1–14. https://doi.org/10.1371/journal.pone.0227996

    Article  Google Scholar 

  18. Benidir M, El Massoudi S, El Ghadraoui L, El Lazraq A, Benjelloun M, Errachidi F (2020) Study of nutritional and organoleptic quality of formulated juices from Jujube (Ziziphus lotus L.) and Dates (Phoenix dactylifera L.) Fruits. Sci World J 2020:. https://doi.org/10.1155/2020/9872185

  19. Letaief T, Mejri J, Ressureição S, Abderrabba M, Costa R (2021) Extraction of Ziziphus lotus fruit syrups: Effect of enzymatic extraction and temperature on their rheological and chemical properties. Int Agrophys 35:31–40. https://doi.org/10.31545/INTAGR/13180

    Article  Google Scholar 

  20. Benammar C, Hichami A, Yessoufou A, Simonin AM, Belarbi M, Allali H, Khan NA (2010) Zizyphus lotus L. (Desf.) modulates antioxidant activity and human T-cell proliferation. BMC Complement Altern Med 10:. https://doi.org/10.1186/1472-6882-10-54

  21. Aya K, M’Hamed T (2020) Chemical compounds, antioxidant activity, and in vitro and in silico litholytic effects of Zizyphus lotus extracts. J Basic Clin Physiol Pharmacol 31:1–12. https://doi.org/10.1515/jbcpp-2019-0091

    Article  Google Scholar 

  22. Beaudoin F, Sayanova O, Haslam RP, Bancroft I, Napier JA (2014) Oleaginous crops as integrated production platforms for food, feed, fuel and renewable industrial feedstock. OCL 21:D606. https://doi.org/10.1051/ocl/2014042

    Article  Google Scholar 

  23. Quílez M, Ferreres F, López-Miranda S, Salazar E, Jordán MJ (2020) Seed oil from mediterranean aromatic and medicinal plants of the lamiaceae family as a source of bioactive components with nutritional. Antioxidants 9:1–16. https://doi.org/10.3390/antiox9060510

    Article  Google Scholar 

  24. Zehiroglu C, Beyza S, Sarikaya O (2019) The importance of antioxidants and place in today’s scientific and technological studies. J Food Sci Technol 56:4757–4774. https://doi.org/10.1007/s13197-019-03952-x

    Article  Google Scholar 

  25. Saint-Denis T, Goupy J (2004) Optimization of a nitrogen analyser based on the Dumas method. Anal Chim Acta 515:191–198. https://doi.org/10.1016/j.aca.2003.10.090

    Article  Google Scholar 

  26. Sharma N, Singh VK, Lee Y et al (2020) Analysis of mineral elements in medicinal plant samples using libs and ICP-OES. At Spectrosc 41:234–241. https://doi.org/10.46770/AS.2020.06.003

    Article  Google Scholar 

  27. Crisan EV, Sands A, A, (1978) Nutrition value. In: Chang ST, Hayes WA (eds) Biology And cultivation of edibles mushrooms. Academic Press, New York

    Google Scholar 

  28. Kostik V, Memeti S, Bauer B (2013) Fatty acid composition of edible oils and fats. J Hyg Eng Des 4:112–116

    Google Scholar 

  29. Schlag S, Huang Y, Vetter W (2022) GC/EI-MS method for the determination of phytosterols in vegetable oils. Anal Bioanal Chem 414:1061–1071. https://doi.org/10.1007/s00216-021-03730-9

    Article  Google Scholar 

  30. Khatoon M, Islam E, Islam R, Rahman AA, Alam AHMK, Khondkar P, Rashid M, Parvin S (2013) Estimation of total phenol and in vitro antioxidant activity of Albizia procera leaves. BMC Res Notes 6:1. https://doi.org/10.1186/1756-0500-6-121

    Article  Google Scholar 

  31. Kavitha Chandran C, Indira G (2016) Quantitative estimation of total phenolic, flavonoids, tannin and chlorophyll content of leaves of Strobilanthes Kunthiana (Neelakurinji). J Med Plants Stud 4:282–286

    Google Scholar 

  32. Benabderrahim MA, Yahia Y, Bettaieb I, Elfalleh W, Nagaz K (2019) Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Ind Crops Prod 138:111427. https://doi.org/10.1016/j.indcrop.2019.05.076

    Article  Google Scholar 

  33. Abdel Azeem SM, Al Mohesen IA, Ibrahim AMH (2020) Analysis of total phenolic compounds in tea and fruits using diazotized aminobenzenes colorimetric spots. Food Chem 332:127392. https://doi.org/10.1016/j.foodchem.2020.127392

    Article  Google Scholar 

  34. Ben Yakoub AR, Abdehedi O, Jridi M, Elfalleh W, Nasri M, Ferchichi A (2018) Flavonoids, phenols, antioxidant, and antimicrobial activities in various extracts from Tossa jute leave (Corchorus olitorus L.). Ind Crop Prod 118:206–213. https://doi.org/10.1016/j.indcrop.2018.03.047

    Article  Google Scholar 

  35. Tajner-Czopek A, Gertchen M, Rytel E, Kita A, Kucharska AZ, Sokół-Łętowska A (2020) Study of antioxidant activity of some medicinal plants having high content of caffeic acid derivatives. Antioxidants 9:412. https://doi.org/10.3390/antiox9050412

    Article  Google Scholar 

  36. Fairulnizal M, Gunasegavan RDN, Khalid NM, Vimala B, Suraiami M, Rashed AAR (2020) Recent techniques in nutrient analysis for food composition database. Molecules 25. https://doi.org/10.3390/molecules25194567

  37. Vera Zambrano M, Dutta B, Mercer DG, MacLean HL, Touchie M (2019) Assessment of moisture content measurement methods of dried food products in small-scale operations in developing countries: A review. Trends Food Sci Technol 88:484–496. https://doi.org/10.1016/j.tifs.2019.04.006

    Article  Google Scholar 

  38. Makhdar N, Anouar A, Bouyazza L (2019) Composition in fatty acids, sterols and tocopherols of vegetable oil extract from kernels of Zizyphus lotus L. J Mater Environ Sci 10:1074–1082

    Google Scholar 

  39. Abdeddaim M, Lombarkia O, Bacha A, Fahloul D, Abdeddaim D, Radhia F, Noui Y, Lekbir A (2014) Biochemcial characterization and nutritional properties of Zizyphus lotus L. fruits in Aures region, northeastern of Algeria. Ann Food Sci Techgnol 15:75–81

    Google Scholar 

  40. Assirey EAR (2015) Nutritional composition of fruit of 10 date palm ( Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J Taibah Univ Sci 9:75–79. https://doi.org/10.1016/j.jtusci.2014.07.002

    Article  Google Scholar 

  41. Stein HH, Casas GA, Abelilla JJ et al (2015) Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J Anim Sci Biotechnol 6:1–9. https://doi.org/10.1186/s40104-015-0056-6

    Article  Google Scholar 

  42. Zhou Y, Zhao W, Lai Y, Zhang B, Zhang D (2020) Edible plant oil : global status, health issues , and perspectives. 11:1–16. https://doi.org/10.3389/fpls.2020.01315

  43. Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants : A review. African J Food Sci 4:200–222. https://doi.org/10.5897/AJFS.9000287

    Article  Google Scholar 

  44. Al-fartusie FS, Mohssan SN (2017) Indian journal of advances in chemical science essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 5:127–136. https://doi.org/10.22607/IJACS.2017.503003

    Article  Google Scholar 

  45. Ullah I, Gul S, Rehman HU, Ahmad N, Ullah I, Aziz-ud-Din A, Sahibzada MJ, Jaseem A, Afzal A, Akbar MU (2017) Analysis of nutrients and minerals of some wild edible plants. Int J Fauna Biol Stud 4(6):35–39

    Google Scholar 

  46. Nagy K, Tiuca I (2017) Importance of fatty acids in physiopathology of human body. In: Angel Catala. pp 3–22

  47. Ghazghazi H, Aouadhi C, Riahi L, Maaroufi A, Hasnaoui B (2014) Fatty acids composition of Tunisian Ziziphus lotus L. (Desf.) fruits and variation in biological activities between leaf and fruit extracts. Nat Prod Res 28:1106–1110. https://doi.org/10.1080/14786419.2014.913244

    Article  Google Scholar 

  48. El Kharrassi Y, Maata N, Mazri MA et al (2018) Chemical and phytochemical characterizations of argan oil (Argania spinosa L. skeels), olive oil (Olea europaea L. cv. Moroccan picholine), cactus pear (Opuntia megacantha salm-dyck) seed oil and cactus cladode essential oil. J Food Meas Charact 12:747–754. https://doi.org/10.1007/s11694-017-9688-x

    Article  Google Scholar 

  49. Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, Espeout S, Syaputra I, Villeneuve P, Pina M, Ritter E, Leroy T, Billotte N (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés. PLoS One 9:e95412. https://doi.org/10.1371/journal.pone.0095412

    Article  Google Scholar 

  50. Jokic S, Sudar R, Svilovic S, Vidovic S, Bilic M, Velic D, Jurkovic V (2013) Fatty acid composition of oil obtained from soybeans by extraction with supercritical carbon dioxide. Czech J Food Sci 31:116–125. https://doi.org/10.17221/8/2012-cjfs

    Article  Google Scholar 

  51. Bai G, Ma C, Chen X (2021) Phytosterols in edible oil : Distribution, analysis and variation during processing. Grain Oil Sci Technol 4:33–44. https://doi.org/10.1016/j.gaost.2020.12.003

    Article  Google Scholar 

  52. Yang R, Xue L, Zhang L et al (2019) Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods 8:1–12. https://doi.org/10.3390/foods8080334

    Article  Google Scholar 

  53. Kyçyk O, Aguilera MP, Gaforio JJ, Jiméneza A, Beltrán G (2016) Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba. J Sci Food Agric 96:4143–4150. https://doi.org/10.1002/jsfa.7616

    Article  Google Scholar 

  54. Karoui IJ, Ayari J, Ghazouani N, Abderrabba M (2020) Physicochemical and biochemical characterizations of some Tunisian seed oils. OCL - Oilseeds fats, Crop Lipids 27:. https://doi.org/10.1051/ocl/2019035

  55. Ratnayake WMN, L’Abbé MR, Mueller R, Hayward S, Plouffe L, Hollywood R, Trick K (2000) Vegetable oils high in phytosterols make erythrocytes less deformable and shorten the life span of stroke-prone spontaneously hypertensive rats. J Nutr 130:1166–1178. https://doi.org/10.1093/jn/130.5.1166

    Article  Google Scholar 

  56. Jimenez-lopez C, Carpena M, Lourenço-lopes C, Gallardo-gomez M, Lorenzo JM, Barba FJ, Simal-gandara J et al (2020) Bioactive compounds and quality of extra virgin olive oil. Foods 9:1014. https://doi.org/10.3390/foods9081014

    Article  Google Scholar 

  57. Saeidnia S, Manayi A, Gohari AR, Abdollahi M (2014) The story of beta-sitosterol- a review. European J Med Plants 4:590–609. https://doi.org/10.9734/EJMP/2014/7764

    Article  Google Scholar 

  58. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018) Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects : an overview. Medicines 5:93. https://doi.org/10.3390/medicines5030093

    Article  Google Scholar 

  59. Stefanucci A, Zengin G, Llorent-martinez EJ et al (2020) Chemical characterization, antioxidant properties and enzyme inhibition of Rutabaga root’s pulp and. Arab J Chem 13:7078–7086. https://doi.org/10.1016/j.arabjc.2020.07.013

    Article  Google Scholar 

  60. Dahlia F, Barouagui S, Hemida H, Bousaadia D, Rahmoune B (2020) Influence of environment variations on anti-glycaemic, anti-cholesterolemic, antioxidant and antimicrobial activities of natural wild fruits of Ziziphus lotus (L.). South African J Bot 132:215–225. https://doi.org/10.1016/j.sajb.2020.04.033

    Article  Google Scholar 

  61. Lourenço SC, Mold M, Alves VD (2019) Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24:4132. https://doi.org/10.3390/molecules24224132

    Article  Google Scholar 

  62. Parcheta M, Swisłocka R (2021) Recent developments in effective antioxidants: the structure and antioxidant properties. Materials (Basel) 14:1984. https://doi.org/10.3390/ma14081984

    Article  Google Scholar 

  63. AitBouzid H, Sakar EH, Bijla L, Ibourki M, Zeroual A, Gagour J, Koubachi J, Majourhat K, Gharby S (2022) Physical fruit traits, proximate composition, antioxidant activity, and profiling of fatty acids and minerals of wild Jujube (Ziziphus lotus L.(Desf.)) fruits from eleven Moroccan origins. J Food Qual 2022:9362366. https://doi.org/10.1155/2022/9362366

    Article  Google Scholar 

  64. AitBouzid A, Oubannin S, Ibourki M, Bijla L, Hamdouch A, Sakar EH, Harhar H, Majourhat K, Koubachi J, Gharby S (2023) Comparative evaluation of chemical composition, antioxidant capacity, and some contaminants in six Moroccan medicinal and aromatic plants. Biocatal Agric Biotechnol 47:102569. https://doi.org/10.1016/j.bcab.2022.102569

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ibn Zohr University for providing technical support in this work.

Funding

This work was performed in the frame of “Projet Valorization of Medicinal and Aromatic Plants, 3rd Edition and financially supported by National Agency for Medicinal and Aromatic Plants-TAOUNATE and CNRST-MOROCCO (VPMA3 2021/09)”.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Hasna Ait bouzid, Laila Bijla, Mohamed Ibourki, and Samira Oubannin. The first draft of the manuscript was written by Hasna Ait bouzid. Statistical analyses, investigation, and visualization, were realized by Sara Elgadi and El Hassan Sakar. Reviewing the entire manuscript and editing were carried out by Jamal Koubachi. Methodology, project administration, supervision, validation, writing, reviewing, and editing were performed by Said Gharby, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Said Gharby.

Ethics declarations

Ethical approval

This study does not involve any human or animal testing.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, H.A., Bijla, L., Ibourki, M. et al. Ziziphus lotus (L.) Lam. almonds nutritional potential: Evidence from proximate composition, mineral, antioxidant activity, and lipid profiling reveals a great potential for valorization. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03984-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03984-6

Keywords

Navigation