Skip to main content
Log in

Isolation, characterization, and valorization of hemicelluloses from olive solid residue as biomaterial, partial kaolin hydrolysis, and antiproliferative activity

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is considered the feedstock of the future to produce bioactive oligosaccharides, due to its low cost and increased availability. In this study, the valorization of the hemicellulose from olive solid residue through structural characterization, oligosaccharide production, and antiproliferative activity was investigated. Three hemicellulose fractions (A, B1, and B2) were isolated by alkaline extraction (NaOH, 10–17.5%). It was observed that the extraction yield of hemicelluloses varied between 0.9 and 32.5% on the basis of the raw materials. The results of FT-IR, 1H and 13C NMR, and MALDI-TOF analyses on the hemicellulose HEM A17.5 supported a structure based on a linear polymer of xylopyranose units linked β-(1 → 4) bonds substituted at C2 by glucuronic acid units. The hydrolysis conditions performed by an acid kaolin catalyst (0.05 N HCl) at 80 °C gave access to ketooligosaccharide (OS1). OS1 and HEM A17.5 were more potent on human breast cancer cells MDA-MB 231 (IC50 ≈ 175 µg, IC50 = 125 µg) and MDA-MB435 (IC50 ≈ 375, IC50 = 500) than neridronate, which was more cytotoxic against epidermoid carcinoma cells A 431. Overall, the findings suggested that olive solid residue presents a promising natural source of bioactive polysaccharides and anticancer agents.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Additional information can be found in the Supplementary Material.

References

  1. Şensöz S, Demiral İ, Ferdi Gerçel H (2006) Olive bagasse (Olea europea L.) pyrolysis. Biores Technol 97:429–436. https://doi.org/10.1016/j.biortech.2005.03.007

    Article  Google Scholar 

  2. Neifar M, Jaouani A, Ayari A et al (2013) Improving the nutritive value of Olive Cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere 91:110–114. https://doi.org/10.1016/j.chemosphere.2012.12.015

    Article  Google Scholar 

  3. Nunes MA, Palmeira JD, Melo D et al (2021) Chemical composition and antimicrobial activity of a new olive pomace functional ingredient. Pharmaceuticals 14:913. https://doi.org/10.3390/ph14090913

    Article  Google Scholar 

  4. Fadel M, El-Ghonemy DH (2015) Biological fungal treatment of olive cake for better utilization in ruminants nutrition in Egypt. Int J Recycl Org Waste Agricult 4:261–271. https://doi.org/10.1007/s40093-015-0105-3

    Article  Google Scholar 

  5. Dorbane Z, Kadi SA, Boudouma D et al (2019) Nutritive value of two types of olive cake (Olea europaea l.) for growing rabbit. World Rabbit Sci 27:69. https://doi.org/10.4995/wrs.2019.11499

    Article  Google Scholar 

  6. Calvano CD, Tamborrino A (2022) Valorization of olive by-products: innovative strategies for their production, treatment and characterization. Foods 11:768. https://doi.org/10.3390/foods11060768

    Article  Google Scholar 

  7. Derriche R, Berrahmoune K (2007) Valorisation of olive oil cake by extraction of hemicelluloses. J Food Eng 78:1149–1154. https://doi.org/10.1016/j.jfoodeng.2005.12.026

    Article  Google Scholar 

  8. Herrero M, Temirzoda TN, Segura-Carretero A et al (2011) New possibilities for the valorization of olive oil by-products. J Chromatogr A 1218:7511–7520. https://doi.org/10.1016/j.chroma.2011.04.053

    Article  Google Scholar 

  9. Ismaili-Alaoui M, Kademi A, Morin A et al (2003) Valorization of Moroccan olive cake using solid state fermentation. In: Roussos S, Soccol CR, Pandey A, Augur C (eds) New horizons in biotechnology. Springer Netherlands, Dordrecht, pp 35–41

  10. Khdair A, Abu-Rumman G (2020) Sustainable environmental management and valorization options for olive mill byproducts in the Middle East and North Africa (MENA) Region. Processes 8:671. https://doi.org/10.3390/pr8060671

    Article  Google Scholar 

  11. López MJ, Moreno J, Ramos-Cormenzana A (2001) Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res 35:1828–1830. https://doi.org/10.1016/S0043-1354(00)00430-9

    Article  Google Scholar 

  12. Ramos P, Santos SAO, Guerra ÂR et al (2013) Valorization of olive mill residues: antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Ind Crops Prod 46:359–368. https://doi.org/10.1016/j.indcrop.2013.02.020

    Article  Google Scholar 

  13. Ebringerová A, Heinze T (2000) Xylan and xylan derivatives - biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556. https://doi.org/10.1002/1521-3927(20000601)21:9%3c542::AID-MARC542%3e3.0.CO;2-7

    Article  Google Scholar 

  14. Aboughe Angone S, Bardor M, Nguema-Ona E et al (2009) Structural characterization of cell wall polysaccharides from two plant species endemic to central Africa, Fleurya aestuans and Phragmenthera capitata. Carbohyd Polym 75:104–109. https://doi.org/10.1016/j.carbpol.2008.07.003

    Article  Google Scholar 

  15. Gil-Serrano A, Tejero-Mateo P (1988) A xyloglucan from olive pulp. Carbohyd Res 181:278–281. https://doi.org/10.1016/0008-6215(88)84048-5

    Article  Google Scholar 

  16. Vierhuis E, Schols HA, Beldman G, Voragen AGJ (2000) Isolation and characterisation of cell wall material from olive fruit (Olea europaea cv koroneiki) at different ripening stages. Carbohyd Polym 43:11–21. https://doi.org/10.1016/S0144-8617(99)00204-0

    Article  Google Scholar 

  17. Vierhuis E, Schols HA, Beldman G, Voragen A (2001) Structural characterisation of xyloglucan and xylans present in olive fruit (Olea europaea cv koroneiki). Carbohyd Polym 44:51–62. https://doi.org/10.1016/S0144-8617(00)00199-5

    Article  Google Scholar 

  18. Ebringerová A, Hromádková Z, Heinze T (2005) Hemicellulose. In: Heinze T (ed) Polysaccharides I: structure, characterization and use. Springer, Berlin, Heidelberg, pp 1–67

    Google Scholar 

  19. Barbat A, Gloaguen V, Moine C et al (2008) Structural characterization and cytotoxic properties of a 4- methylglucuronoxylan from Castanea sativa. 2. Evidence of a structure−activity relationship. J Nat Prod 71:1404–1409. https://doi.org/10.1021/np800207g

    Article  Google Scholar 

  20. Zhao H, Liu H, Chen Y et al (2006) Oligomannurarate sulfate, a novel heparanase inhibitor simultaneously targeting basic fibroblast growth factor, combats tumor angiogenesis and metastasis. Cancer Res 66:8779–8787. https://doi.org/10.1158/0008-5472.CAN-06-1382

    Article  Google Scholar 

  21. Hu K, Liu Q, Wang S, Ding K (2009) New oligosaccharides prepared by acid hydrolysis of the polysaccharides from Nerium indicum Mill and their anti-angiogenesis activities. Carbohydr Res 344:198–203. https://doi.org/10.1016/j.carres.2008.10.019

    Article  Google Scholar 

  22. Świątek K, Gaag S, Klier A et al (2020) Acid hydrolysis of lignocellulosic biomass: sugars and furfurals formation. Catalysts 10:437. https://doi.org/10.3390/catal10040437

    Article  Google Scholar 

  23. Kosinov N, Liu C, Hensen EJM, Pidko EA (2018) Engineering of transition metal catalysts confined in zeolites. Chem Mater 30:3177–3198. https://doi.org/10.1021/acs.chemmater.8b01311

    Article  Google Scholar 

  24. Kassaye S, Pagar C, Pant KK et al (2016) Depolymerization of microcrystalline cellulose to value added chemicals using sulfate ion promoted zirconia catalyst. Bioresour Technol 220:394–400. https://doi.org/10.1016/j.biortech.2016.08.109

    Article  Google Scholar 

  25. Carà PD, Pagliaro M, Elmekawy A et al (2013) Hemicellulose hydrolysis catalysed by solid acids. Catal Sci Technol 3:2057. https://doi.org/10.1039/c3cy20838a

    Article  Google Scholar 

  26. Sakamoto Y, Imamura K, Onda A (2020) Hydrolysis of oligosaccharides and polysaccharides on sulfonated solid acid catalysts: relations between adsorption properties and catalytic activities. ACS Omega 5:24964–24972. https://doi.org/10.1021/acsomega.0c03932

    Article  Google Scholar 

  27. Li X, Shu F, He C et al (2018) Preparation and investigation of highly selective solid acid catalysts with sodium lignosulfonate for hydrolysis of hemicellulose in corncob. RSC Adv 8:10922–10929. https://doi.org/10.1039/C7RA13362F

    Article  Google Scholar 

  28. Ormsby R, Kastner JR, Miller J (2012) Hemicellulose hydrolysis using solid acid catalysts generated from biochar. Catal Today 190:89–97. https://doi.org/10.1016/j.cattod.2012.02.050

    Article  Google Scholar 

  29. Belver C, Bañares Muñoz MA, Vicente MA (2002) Chemical activation of a kaolinite under acid and alkaline conditions. Chem Mater 14:2033–2043. https://doi.org/10.1021/cm0111736

    Article  Google Scholar 

  30. Lenarda M, Storaro L, Talon A et al (2007) Solid acid catalysts from clays: preparation of mesoporous catalysts by chemical activation of metakaolin under acid conditions. J Colloid Interface Sci 311:537–543. https://doi.org/10.1016/j.jcis.2007.03.015

    Article  Google Scholar 

  31. Panda AK, Mishra BG, Mishra DK, Singh RK (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf, A 363:98–104. https://doi.org/10.1016/j.colsurfa.2010.04.022

    Article  Google Scholar 

  32. Bouanani S, Delimi A (2022) Valorization of galactomannan of carob seeds (ceratonia siliqua) by total heterogenous hydrolysis with protonated kaolin and computer program simulattion. Ukrainian J Ecol 12:28–38. https://doi.org/10.15421/2022_411

    Article  Google Scholar 

  33. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489. https://doi.org/10.1016/0003-2697(73)90377-1

    Article  Google Scholar 

  34. Martı́nGarcia AI, Moumen A, YáñezRuiz DR, Molina Alcaide E (2003) Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Animal Feed Sci Technol 107:61–74. https://doi.org/10.1016/S0377-8401(03)00066-X

    Article  Google Scholar 

  35. Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13:275–283. https://doi.org/10.1016/S0268-005X(98)00084-8

    Article  Google Scholar 

  36. Godon B, Loisel W (1997) Guide pratique d’analyses dans les industries des céréales, 2e éd. Tec & doc-Lavoisier, Paris, pp 276–296

  37. Whistler RL, Sannella JL (1965) Fractionnal precipitation with ethanol purification of hemmicellulose", General isolations procedures. Meth Carbohydr Chem 5:34–36

    Google Scholar 

  38. Adams GA (1965) Complet acid hydrolyisis. In: Whistler RL, BeMiller JN, Wolform ML (eds) Methods in carbohydrate chemistry: general polysaccharides. Academic Press, London, pp 209–279

  39. Kim KS, Song YH, Lee BH, Hahn CS (1986) Efficient and selective cleavage of acetals and ketals using ferric chloride adsorbed on silica gel. J Org Chem 51:404–407. https://doi.org/10.1021/jo00353a027

    Article  Google Scholar 

  40. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  Google Scholar 

  41. Li K, Li S, Wang D et al (2019) Extraction, characterization, antitumor and immunological activities of hemicellulose polysaccharide from Astragalus radix herb residue. Molecules 24:3644. https://doi.org/10.3390/molecules24203644

    Article  Google Scholar 

  42. Ouaini R, Estephan N, Chebib H et al (2010) Chemical composition of olive cakes resulting from various mills in Lebanon. Agrochimica 54:321–330

    Google Scholar 

  43. Sansoucy R, Alibes X, Berge P (1985) Olive by-products for animal feed. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  44. Matos M, Barreiro MF, Gandini A (2010) Olive stone as a renewable source of biopolyols. Ind Crops Prod 32:7–12. https://doi.org/10.1016/j.indcrop.2010.02.010

    Article  Google Scholar 

  45. Rodríguez G, Lama A, Rodríguez R et al (2008) Olive stone an attractive source of bioactive and valuable compounds. Bioresour Technol 99:5261–5269. https://doi.org/10.1016/j.biortech.2007.11.027

    Article  Google Scholar 

  46. Maes C, Delcour JA (2001) Alkaline hydrogen peroxide extraction of wheat bran non-starch polysaccharides. J Cereal Sci 34:29–35. https://doi.org/10.1006/jcrs.2001.0377

    Article  Google Scholar 

  47. Whistler RL, Bachrach J, Bowman DR (1948) Preparation and properties of corn cob holocellulose. Arch Biochem 19:25–33

    Google Scholar 

  48. Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188. https://doi.org/10.1007/BF02228800

    Article  Google Scholar 

  49. Sun RC, Hughes S (1999) Fractional isolation and physico-chemical characterization of alkali-soluble polysaccharides from sugar beet pulp. Carbohyd Polym 38:273–281. https://doi.org/10.1016/S0144-8617(98)00102-7

    Article  Google Scholar 

  50. Sun RC, Fang JM, Mott L, Bolton J (1999) Extraction and characterization of hemicelluloses and cellulose from oil palm trunk and empty fruit bunch fibres. J Wood Chem Technol 19:167–185. https://doi.org/10.1080/02773819909349606

    Article  Google Scholar 

  51. Peng P, Peng F, Bian J et al (2011) Isolation and structural characterization of hemicelluloses from the bamboo species Phyllostachys incarnata Wen. Carbohyd Polym 86:883–890

    Article  Google Scholar 

  52. Joiselau P (1980) Hemicellulose. In: Monties B (ed) Les Polymères végétaux: polymères pariétaux et alimentaires non azotés. Gauthier-Villars, Paris, pp 88–121

  53. Kacuráková M (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohyd Polym 43:195–203. https://doi.org/10.1016/S0144-8617(00)00151-X

    Article  Google Scholar 

  54. Sun RC, Sun XF (2002) Fractional and structural characterization of hemicelluloses isolated by alkali and alkaline peroxide from barley straw. Carbohyd Polym 49:415–423. https://doi.org/10.1016/S0144-8617(01)00349-6

    Article  Google Scholar 

  55. Cao W, Li X-Q, Liu L et al (2006) Structural analysis of water-soluble glucans from the root of Angelica sinensis (Oliv.) Diels. Carbohydr Res 341:1870–1877. https://doi.org/10.1016/j.carres.2006.04.017

    Article  Google Scholar 

  56. Kacuráková M, Mathlouthi M (1996) FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydr Res 284:145–157. https://doi.org/10.1016/0008-6215(95)00412-2

    Article  Google Scholar 

  57. Ni̇konenko NA, Buslov DK, Sushko NI, Zhbankov RG (2002) Analysis of the structure of carbohydrates with use of the regularized deconvolution method of vibrational spectra. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4:13–16

    Google Scholar 

  58. Zhang Y, Yu G, Li B et al (2016) Hemicellulose isolation, characterization, and the production of xylo-oligosaccharides from the wastewater of a viscose fiber mill. Carbohydr Polym 141:238–243. https://doi.org/10.1016/j.carbpol.2016.01.022

    Article  Google Scholar 

  59. Barker SA, Bourne EJ, Stacey M, Whiffen DH (1954) Infra-red spectra of carbohydrates. Part I. Some derivatives of D-glucopyranose. J Chem Soc 171–176. https://doi.org/10.1039/jr9540000171

  60. Habibi Y, Mostafa M, Vignon M (2006) Isolation and structure characterization of a (4-O-methyl-d-glucurono)-d-xylan from the skin of Opuntia ficus-indica prickly pear fruits. J Carbohydr Chem 22(5):331–337. https://doi.org/10.1081/CAR-120023476

    Article  Google Scholar 

  61. Peña MJ, Kulkarni AR, Backe J et al (2016) Structural diversity of xylans in the cell walls of monocots. Planta 244:589–606. https://doi.org/10.1007/s00425-016-2527-1

    Article  Google Scholar 

  62. Urbanowicz BR, Peña MJ, Ratnaparkhe S et al (2012) 4 -methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci USA 109:14253–14258. https://doi.org/10.1073/pnas.1208097109

    Article  Google Scholar 

  63. Yamagaki T, Maeda M, Kanazawa K et al (1997) Structural clarificcation of caulerpa cell wall/M,3-Xylan by NMR spectroscopy. Biosci Biotechnol Biochem 61:1077–1080. https://doi.org/10.1271/bbb.61.1077

    Article  Google Scholar 

  64. Kovac P, Hirsch J, Shashkov A et al (1980) 13C-n.m.r. spectra of xylo-oligosaccharides and their application to the elucidation of xylan structures. Carbohyd Res 85:177–185. https://doi.org/10.1016/S0008-6215(00)84669-8

    Article  Google Scholar 

  65. Geresh S, Arad SM, Levy-Ontman O et al (2009) Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr Res 344:343–349. https://doi.org/10.1016/j.carres.2008.11.012

    Article  Google Scholar 

  66. Watt DK, Brasch DJ, Larsen DS, Melton LD (1999) Isolation, characterisation, and NMR study of xyloglucan from enzymatically depectinised and non-depectinised apple pomace. Carbohyd Polym 2:165–180. https://doi.org/10.1016/S0144-8617(99)00002-8

    Article  Google Scholar 

  67. Chong S-L, Virkki L, Maaheimo H et al (2014) O-acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 24:494–506. https://doi.org/10.1093/glycob/cwu017

    Article  Google Scholar 

  68. Wu M, Wu Y, Zhou J, Pan Y (2009) Structural characterisation of a water-soluble polysaccharide with high branches from the leaves of Taxus chinensis var. mairei. Food Chem 113:1020–1024. https://doi.org/10.1016/j.foodchem.2008.08.055

    Article  Google Scholar 

  69. Aspinall GO (1981) Constitution of Plant Cell Wall Polysaccharides. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 3–8

    Chapter  Google Scholar 

  70. Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2:51–68. https://doi.org/10.25165/ijabe.v2i3.168

    Article  Google Scholar 

  71. Sun RC, Fang JM, Goodwin A et al (1998) Isolation and characterization of polysaccharides from abaca fiber. J Agric Food Chem 46:2817–2822. https://doi.org/10.1021/jf9710894

    Article  Google Scholar 

  72. Biely P (2015) Glucuronoyl esterases are active on the polymeric substrate methyl esterified glucuronoxylan. FEBS Lett 589:2334–2339

    Article  Google Scholar 

  73. Chawananorasest K, Saengtongdee P, Kaemchantuek P (2016) Extraction and characterization of tamarind (Tamarind indica L.) seed polysaccharides (TSP) from three difference sources. Molecules 21:775. https://doi.org/10.3390/molecules21060775

    Article  Google Scholar 

  74. Jansson P-E, Stenutz R, Widmalm G (2006) Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel Web-based version of the computer program CASPER. Carbohydr Res 341:1003–1010. https://doi.org/10.1016/j.carres.2006.02.034

    Article  Google Scholar 

  75. Coimbra MA, Waldron KW, Selvendran RR (1995) Isolation and characterisation of cell wall polymers from the heavily lignified tissues of olive (Olea europaea) seed hull. Carbohyd Polym 27:285–294. https://doi.org/10.1016/0144-8617(95)00068-2

    Article  Google Scholar 

  76. Gil-Serrano A, Mateos-Matos MI, Tejero-Mateo MP (1986) Acidic xylan from olive pulp. Phytochemistry 25:2653–2654. https://doi.org/10.1016/S0031-9422(00)84529-X

    Article  Google Scholar 

  77. Reis A, Coimbra MA, Domingues P et al (2002) Structural characterisation of underivatised olive pulp xylo-oligosaccharides by mass spectrometry using matrix-assisted laser desorption/ionisation and electrospray ionisation. Rapid Commun Mass Spectrom 16:2124–2132. https://doi.org/10.1002/rcm.839

    Article  Google Scholar 

  78. Reis A, Domingues MRM, Domingues P et al (2003) Positive and negative electrospray ionisation tandem mass spectrometry as a tool for structural characterisation of acid released oligosaccharides from olive pulp glucuronoxylans. Carbohydr Res 338:1497–1505. https://doi.org/10.1016/s0008-6215(03)00196-4

    Article  Google Scholar 

  79. Reis A, Domingues MRM, Ferrer-Correia AJ, Coimbra MA (2003) Structural characterisation by MALDI-MS of olive xylo-oligosaccharides obtained by partial acid hydrolysis. Carbohyd Polym 53:101–107. https://doi.org/10.1016/S0144-8617(03)00007-9

    Article  Google Scholar 

  80. Chamayou H, Legros JP (1989) Les bases physiques, chimiques et minéralogiques de la science du sol., Agence de coopération culturelle et technique. Masson, Paris, pp 90–112

  81. Blair R, Hick S, Truitt J (2011) Solid acid catalyzed hydrolysis of cellulosic materials. UCF Patents. 529. https://stars.library.ucf.edu/patents/529

  82. Cérantola S, Kervarec N, Pichon R et al (2004) NMR characterisation of inulin-type fructooligosaccharides as the major water-soluble carbohydrates from Matricaria maritima (L.). Carbohydr Res 339:2445–2449. https://doi.org/10.1016/j.carres.2004.07.020

    Article  Google Scholar 

  83. Fu Y-L (2009) Isolation, purification, and structural elucidation of a fructan from Arctium lappa L. J Med Plants Res 3:171–173

    Google Scholar 

  84. Fujishima M, Furuyama K, Ishihiro Y et al (2009) Isolation and structural analysis in vivo of newly synthesized Fructooligosaccharides in onion bulbs tissues Allium cepa L.) during storage. Int J Carbohydr Chem 2009:1–9. https://doi.org/10.1155/2009/493737

    Article  Google Scholar 

  85. Lopez MG, Mancilla-Margalli NA, Mendoza-Diaz G (2003) Molecular structures of fructans from Agave tequilana Weber var. azul. J Agric Food Chem 51:7835–7840. https://doi.org/10.1021/jf030383v

    Article  Google Scholar 

  86. Chebbi I, Migianu-Griffoni E, Sainte-Catherine O et al (2010) In vitro assessment of liposomal neridronate on MDA-MB-231 human breast cancer cells. Int J Pharm 383:116–122. https://doi.org/10.1016/j.ijpharm.2009.09.011

    Article  Google Scholar 

  87. Groult H, Cousin R, Chot-Plassot C et al (2019) λ-Carrageenan oligosaccharides of distinct anti-heparanase and anticoagulant activities inhibit MDA-MB-231 breast cancer cell migration. Mar Drugs 17:140. https://doi.org/10.3390/md17030140

    Article  Google Scholar 

  88. Cai J-P, Wu Y-J, Li C et al (2013) Panax ginseng polysaccharide suppresses metastasis via modulating Twist expression in gastric cancer. Int J Biol Macromol 57:22–25. https://doi.org/10.1016/j.ijbiomac.2013.03.010

    Article  Google Scholar 

  89. Pierre F, Perrin P, Champ M et al (1997) Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Res 57:225–228

    Google Scholar 

  90. Seifert S, Watzl B (2007) Inulin and oligofructose: review of experimental data on immune modulation. J Nutr 137:2563S-2567S. https://doi.org/10.1093/jn/137.11.2563S

    Article  Google Scholar 

  91. Korbelik M, Cooper PD (2007) Potentiation of photodynamic therapy of cancer by complement: the effect of γ-inulin. Br J Cancer 96:67–72. https://doi.org/10.1038/sj.bjc.6603508

    Article  Google Scholar 

  92. Moine C, Krausz P, Chaleix V et al (2007) Structural characterization and cytotoxic properties of a 4- O -methylglucuronoxylan from Castanea sativa. J Nat Prod 70:60–66. https://doi.org/10.1021/np060354p

    Article  Google Scholar 

  93. Cai L, Qin X, Xu Z et al (2019) Comparison of cytotoxicity evaluation of anticancer drugs between real-time cell analysis and CCK-8 method. ACS Omega 4:12036–12042. https://doi.org/10.1021/acsomega.9b01142

    Article  Google Scholar 

  94. Kelly GS (1999) Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern Med Rev 4:96–103

    Google Scholar 

  95. Green JR (2003) Antitumor effects of bisphosphonates. Cancer 97:840–847. https://doi.org/10.1002/cncr.11128

    Article  Google Scholar 

  96. Di Benedetto M, Starzec A, Vassy R et al (2003) Inhibition of epidermoid carcinoma A431 cell growth and angiogenesis in nude mice by early and late treatment with a novel dextran derivative. Br J Cancer 88:1987–1994. https://doi.org/10.1038/sj.bjc.6600985

    Article  Google Scholar 

  97. Tan X-L, Guo L, Wang G-H (2016) Polyporus umbellatus inhibited tumor cell proliferation and promoted tumor cell apoptosis by down-regulating AKT in breast cancer. Biomed Pharmacother 83:526–535. https://doi.org/10.1016/j.biopha.2016.06.049

    Article  Google Scholar 

  98. Liu M-M, Zeng P, Li X-T, Shi L-G (2016) Antitumor and immunomodulation activities of polysaccharide from Phellinus baumii. Int J Biol Macromol 91:1199–1205. https://doi.org/10.1016/j.ijbiomac.2016.06.086

    Article  Google Scholar 

Download references

Acknowledgements

The structural analysis and antiproliferative tests depicted in this report were conducted at the CSPBAT Laboratory at Paris 13 University. We acknowledge Odile Saint Catherine, for her technical assistance. Professeur Aouadi Saoudi is thanked for catalysis by kaolin assistance and structural analysis of oligosaccharides.

Funding

This study in funded by the Algerian Ministry of Higher Education and Scientific Research (exceptional national program grant to research teachers PNE).

Author information

Authors and Affiliations

Authors

Contributions

Material preparation and analysis were performed by Bouanani Samia and Marc Lecouvey. Specific visualization of the published work and data presentation were performed by Zeggar Mehdi. The first draft of the manuscript was written by Bouanani Samia. All authors commented on previous versions of the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Samia Bouanani.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of novelty

The originality and new contributions of this work involve the extraction of hemicellulose and the production of oligosaccharides (OS) from an olive by-product (olive solid residues). Olive by-products are generated in substantial amounts by agro-industrial activity. The hydrolysis of polysaccharides or oligosaccharides from agro-industrial by-products into new medicinal drugs has become a challenge. The use of environmentally friendly hydrolyzing methods may represent an innovative opportunity to sustainably face this challenge. The hydrolysis of the O-glycosidic connection of hemicelluloses was performed with different activated kaolin catalysts, which allowed the specific hydrolysis of interosidic bonds at temperatures below 100 °C and gave access to highly added bioproducts (such as OS1) with antiproliferative activity.

Highlights

• Food by-products could be valorized for the production of polysaccharides with different properties in the pharmaceutical or food industry;.

• Hemicelluosic HEM A17.5 structure was characterized using sugar analysis, infrared, and both 1D and 2D NMR spectroscopy complemented by mass spectroscopy MALDI-TOF. It was confirmed that HEM A17.5 was mainly glucuronoxylan;.

• Specific hydrolysis of HEM interosidic bonds by kaolin catalysts at 80°C gave access to ketooligosaccharide OS1;.

• Antiproliferative activity of HEM A17.5 and OS1 was tested against human cancer cells (A 431, MDA-MB 231, and MDA-MB 435);.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1250 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouanani, S., Zeggar, M. & Lecouvey, M. Isolation, characterization, and valorization of hemicelluloses from olive solid residue as biomaterial, partial kaolin hydrolysis, and antiproliferative activity. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03962-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03962-y

Keywords

Navigation