Skip to main content

Advertisement

Log in

Rice husk pyrolysis polygeneration of levoglucosan-rich bio-oil and functional bio-char: roles of hydrothermal pretreatment and acidic hydrothermal pretreatment on products

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract 

Positive roles of hydrothermal pretreatment and acidic hydrothermal pretreatment were researched in this study. Results of pyrolysis indicated that hydrothermal pretreatment not only significantly enriched levoglucosan (LG) content in bio-oil, but also increased specific surface area of bio-char. When acid was introduced into hydrothermal pretreatment process, the top-quality liquid and solid products acquired at a relatively low pretreatment temperature. For bio-oil, the LG content increased from 0% in rice husk (RH) to 32.68% in the sample hydrothermal pretreated in deionized water at 170 ℃ (TRH170). The highest LG content of 43.0% obtained from the sample hydrothermal pretreated in phosphoric acid solution at 115 ℃ (PTRH115). The BET of bio-char after activation increased from 2135.6 m2/g in RH to 2508.3 m2/g in TRH170. And acid addition optimized the pore distribution of activated bio-char. Both of the average pore size and efficient pore volume in micro-pore section were noticeably increased.

Graphical Abstract 

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

There is no dataset provided with this submission.

Abbreviations

AAEMs:

Alkali and alkaline earth metals

AC:

Activated bio-char

HHV:

High heat value

HP:

Hydrothermal pretreatment

LG:

Levoglucosan

References 

  1. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  2. Sarker T, Pattnaik F, Nanda S, Dalai A, Meda V, Naik S (2021) Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis. Chemosphere 284:131372. https://doi.org/10.1016/j.chemosphere.2021.131372

    Article  Google Scholar 

  3. Zheng A, Xia S, Cao F, Liu S, Yang X, Zhao Z, Tian Y, Li H (2021) Directional valorization of eucalyptus waste into value-added chemicals by a novel two-staged controllable pyrolysis process. Chem Eng J 404:127045. https://doi.org/10.1016/j.cej.2020.127045

    Article  Google Scholar 

  4. Liu Z, Tan X, Zhuang X, Yang H, Chen X, Wang Q, Chen H (2022) Coupling of pretreatment and pyrolysis improving the production of levoglucosan from corncob. Fuel Process Technol 228:107157. https://doi.org/10.1016/j.fuproc.2021.107157

    Article  Google Scholar 

  5. Chen D, Gao A, Cen K, Zhang J, Cao X, Ma Z (2018) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manag 169:228–237. https://doi.org/10.1016/j.enconman.2018.05.063

    Article  Google Scholar 

  6. Yang Z, Guo F, Xia Y, Xing Y, Gui X (2020) Improved floatability of low-rank coal through surface modification by hydrothermal pretreatment J Clean. Prod 246:119025. https://doi.org/10.1016/j.jclepro.2019.119025

    Article  Google Scholar 

  7. Alayont Ş, Kayan D, Durak H, Alayont E, Genel S (2022) The role of acidic, alkaline and hydrothermal pretreatment on pyrolysis of wild mustard (Sinapis arvensis) on the properties of bio-oil and bio-char. Bioresour Technol Rep 17:100980. https://doi.org/10.1016/j.biteb.2022.100980

    Article  Google Scholar 

  8. Liu Y, Wang W, Wang Y, Liu L, Li G, Hu C (2022) Enhanced pyrolysis of lignocellulosic biomass by room-temperature dilute sulfuric acid pretreatment. J Anal Appl Pyrolysis 166:105588. https://doi.org/10.1016/j.jaap.2022.105588

    Article  Google Scholar 

  9. Dai L, Wang Y, Liu Y, Ruan R, He C, Duan D, Zhao Y, Yu Z, Jiang L, Wu Q (2019) Bridging the relationship between hydrothermal pretreatment and co-pyrolysis: effect of hydrothermal pretreatment on aromatic production. Energy Convers Manag 180:36–43. https://doi.org/10.1016/j.enconman.2018.10.079

    Article  Google Scholar 

  10. Zhang J, Gu J, Yuan H, Chen Y (2020) Thermal behaviors and kinetics for fast pyrolysis of chemical pretreated waste cassava residues. Energy (Oxf) 208:118192. https://doi.org/10.1016/j.energy.2020.118192

    Article  Google Scholar 

  11. Jiang H, Deng S, Chen J, Zhang M, Li S, Shao Y, Yang J, Li J (2017) Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale. Energy Convers Manag 143:505–512. https://doi.org/10.1016/j.enconman.2017.04.037

    Article  Google Scholar 

  12. Olszewski M, Nicolae S, Arauzo P, Titirici M, Kruse A (2020) Wet and dry? Influence of hydrothermal carbonization on the pyrolysis of spent grains. J Clean Prod 260:121101. https://doi.org/10.1016/j.jclepro.2020.121101

    Article  Google Scholar 

  13. Zheng A, Jiang L, Zhao Z, Chang S, Huang Z, Zhao K, He F, Li H (2016) Effect of hydrothermal treatment on chemical structure and pyrolysis behavior of eucalyptus wood. Energy Fuels 30:3057–3065. https://doi.org/10.1021/acs.energyfuels.5b03005

    Article  Google Scholar 

  14. Lu X, Han T, Jiang J, Sun K, Sun Y, Yang W (2020) Comprehensive insights into the influences of acid-base properties of chemical pretreatment reagents on biomass pyrolysis behavior and wood vinegar properties. J Anal Appl Pyrolysis 151:104907. https://doi.org/10.1016/j.jaap.2020.104907

    Article  Google Scholar 

  15. Messina L, Bonelli P, Cukierman A (2017) Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew Energy 114:697–707. https://doi.org/10.1016/j.renene.2017.07.065

    Article  Google Scholar 

  16. Marzialetti T, Olarte M, Sievers C, Hoskins T, Agrawal P, Jones C (2008) Ind Eng Chem Res 47:7131–7140. https://doi.org/10.1021/ie800455f

    Article  Google Scholar 

  17. Saha S, Jeon B, Kurade M, Jadhav S, Chatterjee P, Chang S, Govindwar S, Kim S (2018) Optimization of dilute acetic acid pretreatment of mixed fruit waste for increased methane production. J Clean Prod 190:411–421. https://doi.org/10.1016/j.jclepro.2018.04.193

    Article  Google Scholar 

  18. Gan Y, Ong H, Chen W, Sheen H, Chang J, Chong C, Ling T (2020) Microwave-assisted wet torrefaction of microalgae under various acids for coproduction of biochar and sugar. J Clean Prod 253:119944. https://doi.org/10.1016/j.jclepro.2019.119944

    Article  Google Scholar 

  19. Zhang J, Li C, Gu J, Yuan H, Chen Y (2021) Synergistic effects for fast co-pyrolysis of strong-acid cation exchange resin and cellulose using Py-GC/MS. Fuel (Lond) 302:121232. https://doi.org/10.1016/j.fuel.2021.121232

    Article  Google Scholar 

  20. Wu K, Wu H, Zhang H, Zhang B, Wen C, Hu C, Liu C, Liu Q (2020) Enhancing levoglucosan production from waste biomass pyrolysis by Fenton pretreatment. Waste Manag 108:70–77. https://doi.org/10.1016/j.wasman.2020.04.023

    Article  Google Scholar 

  21. Du Z, Mohr M, Ma X, Cheng Y, Lin X, Liu Y, Zhou W, Chen P, Ruan R (2012) Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Bioresour Technol 120:13–18. https://doi.org/10.1016/j.biortech.2012.06.007

    Article  Google Scholar 

  22. Su Y, Liu L, Zhang S, Xu D, Du H, Cheng Y, Wang Z, Xiong Y (2020) A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide. Bioresour Technol 295:122243. https://doi.org/10.1016/j.biortech.2019.122243

    Article  Google Scholar 

  23. Mathimani T, Mallick N (2019) A review on the hydrothermal processing of microalgal biomass to bio-oil - knowledge gaps and recent advances. J Clean Prod 217:69–84. https://doi.org/10.1016/j.jclepro.2019.01.129

    Article  Google Scholar 

  24. Shen Y, Zhao P, Shao Q, Ma D, Takahashi F, Yoshikawa K (2014) In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl Catal B 152–153:140–151. https://doi.org/10.1016/j.apcatb.2014.01.032

    Article  Google Scholar 

  25. Shen Y, Zhao P, Shao Q, Takahashi F, Yoshikawa K (2015) In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Appl Energy 160:808–819. https://doi.org/10.1016/j.apenergy.2014.10.074

    Article  Google Scholar 

  26. Li J, Han K, Li S (2018) Porous carbons from Sargassum muticum prepared by H3PO4 and KOH activation for supercapacitors. J Mater Sci-Mater Electron 29:8480–8491. https://doi.org/10.1007/s10854-018-8861-2

    Article  Google Scholar 

  27. Tian Y, Xiao C, Yin J, Zhang W, Bao J, Lin H, Lu H (2019) Hierarchical porous carbon prepared through sustainable CuCl2 activation of rice husk for high-performance supercapacitors. ChemistrySelect 4:2314–2319. https://doi.org/10.1002/slct.201804002

    Article  Google Scholar 

  28. Chen D, Chen X, Sun J, Zheng Z, Fu K (2016) Pyrolysis polygeneration of pine nut shell: quality of pyrolysis products and study on the preparation of activated carbon from biochar. Bioresour Technol 216:629–636. https://doi.org/10.1016/j.biortech.2016.05.107

    Article  Google Scholar 

  29. Zhu X, Liu Y, Qian F, Zhou C, Zhang S, Chen J (2015) Role of hydrochar properties on the porosity of hydrochar-based porous carbon for their sustainable application. ACS Sustain Chem Eng 3:833–840. https://doi.org/10.1021/acssuschemeng.5b00153

    Article  Google Scholar 

  30. Silva L, Santos I, Machado G, Filho G, Barros R (2021) Rice husk energy production in Brazil: an economic and energy extensive analysis. J Clean Prod 290:125188. https://doi.org/10.1016/j.jclepro.2020.125188

    Article  Google Scholar 

  31. Li Z, Zhong Z, Zhang B, Wang W, Seufitelli GVS, Resende FLP (2020) Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve. Waste Manag 102:561–568. https://doi.org/10.1016/j.wasman.2019.11.012

    Article  Google Scholar 

  32. Binnal P, Kumar DJ, Parameshwaraiah MS, Patil J (2022) Upgrading rice husk biochar characteristics through microwave-assisted phosphoric acid pretreatment followed by co-pyrolysis with LDPE. Biofuel Bioprod Biorefin 16:1254–1273. https://doi.org/10.1002/bbb.2392

    Article  Google Scholar 

  33. Ma L, Goldfarb J, Ma Q (2022) Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable approach to rice husk conversion to biofuels. Renew Energy 198:712–722. https://doi.org/10.1016/j.renene.2022.08.077

    Article  Google Scholar 

  34. Zhang S, Hu B, Zhang L, Xiong Y (2016) Effects of torrefaction on yield and quality of pyrolysis char and its application on preparation of activated carbon. J Anal Appl Pyrolysis 119:217–223. https://doi.org/10.1016/j.jaap.2016.03.002

    Article  Google Scholar 

  35. Abioye A, Ani F (2015) Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review. Renew Sust Energ Rev 52:1282–1293. https://doi.org/10.1016/j.rser.2015.07.129

    Article  Google Scholar 

  36. Durak H, Genel S, Durak E, Özçimen D, Koçer A (2022) Hydrothermal liquefaction process of Ammi visnaga and a new approach for recycling of the waste process water: cultivation of algae and fungi. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03221-6

  37. Liu L, Huang Y, Cao J, Liu C, Dong L, Xu L, Zha J (2018) Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier. Sci Total Environ 626:423–433. https://doi.org/10.1016/j.scitotenv.2018.01.016

    Article  Google Scholar 

  38. Zeng D, Qiu Y, Peng S, Chen C, Zeng J, Zhang S, Xiao R (2018) Enhanced hydrogen production performance through controllable redox exsolution within CoFeAlOx spinel oxygen carrier materials. J Mater Chem A 6:11306–11316. https://doi.org/10.1039/C8TA02477D

    Article  Google Scholar 

  39. Ru B, Wang S, Dai G, Zhang L (2015) Effect of torrefaction on biomass physicochemical characteristics and the resulting pyrolysis behavior. Energy Fuels 29:5865–5874. https://doi.org/10.1021/acs.energyfuels.5b01263

    Article  Google Scholar 

  40. Zheng A, Zhao Z, Chang S, Huang Z, Zhao K, Wei G, He F, Li H (2015) Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresour Technol 176:15–22. https://doi.org/10.1016/j.biortech.2014.10.157

    Article  Google Scholar 

  41. Chen D, Mei J, Li H, Li Y, Lu M, Ma T, Ma Z (2017) Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour Technol 228:62–68. https://doi.org/10.1016/j.biortech.2016.12.088

    Article  Google Scholar 

  42. Schwanninger M, Rodrigues J, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40. https://doi.org/10.1016/j.vibspec.2004.02.003

    Article  Google Scholar 

  43. Dai L, He C, Wang Y, Liu Y, Ruan R, Yu Z, Zhou Y, Duan D, Fan L, Zhao Y (2018) Hydrothermal pretreatment of bamboo sawdust using microwave irradiation. Bioresour Technol 247:234–241. https://doi.org/10.1016/j.biortech.2017.08.104

    Article  Google Scholar 

  44. Chaiwat W, Hasegawa I, Kori J, Mae K (2008) Examination of degree of cross-linking for cellulose precursors pretreated with acid/hot water at low temperature. Ind Eng Chem Res 47:5948–5956. https://doi.org/10.1021/ie800080u

    Article  Google Scholar 

  45. Wang S, Dai G, Ru B, Zhao Y, Wang X, Xiao G, Luo Z (2017) Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose. Energy (Oxf) 120:864–871. https://doi.org/10.1016/j.energy.2016.11.135

    Article  Google Scholar 

  46. Li M, Shen Y, Sun J, Bian J, Chen C, Sun R (2015) Wet torrefaction of bamboo in hydrochloric acid solution by microwave heating. ACS Sustain Chem Eng 3:2022–2029. https://doi.org/10.1021/acssuschemeng.5b00296

    Article  Google Scholar 

  47. Pu Y, Hu F, Huang F, Davison B, Ragauskas A (2013) Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol Biofuels 6(1):1–13. https://doi.org/10.1186/1754-6834-6-15

    Article  Google Scholar 

  48. Kim U, Eom S, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781. https://doi.org/10.1016/j.polymdegradstab.2010.02.009

    Article  Google Scholar 

  49. Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis 82:170–177. https://doi.org/10.1016/j.jaap.2008.03.007

    Article  Google Scholar 

  50. Duan D, Ruan R, Wang Y, Liu Y, Dai L, Zhao Y, Zhou Y, Wu Q (2018) Microwave-assisted acid pretreatment of alkali lignin: effect on characteristics and pyrolysis behavior. Bioresour Technol 251:57–62. https://doi.org/10.1016/j.biortech.2017.12.022

    Article  Google Scholar 

  51. Wang K, Yang H, Yao X, Xu F, Sun R (2012) Structural transformation of hemicelluloses and lignin from triploid poplar during acid-pretreatment based biorefinery process. Bioresour Technol 116:99–106. https://doi.org/10.1016/j.biortech.2012.04.028

    Article  Google Scholar 

  52. Sewsynker-Sukai Y, Suinyuy T, Gueguim Kana E (2018) Development of a sequential alkalic salt and dilute acid pretreatment for enhanced sugar recovery from corn cobs. Energy Convers Manag 160:22–30. https://doi.org/10.1016/j.enconman.2018.01.024

    Article  Google Scholar 

  53. Das P, Ganesh A, Wangikar P (2004) Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenergy 27:445–457. https://doi.org/10.1016/j.biombioe.2004.04.002

    Article  Google Scholar 

  54. K. Raveendran AGAK, (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel (Lond) 74:142–145. https://doi.org/10.1016/0016-2361(95)80013-8

    Article  Google Scholar 

  55. Wang Y, Zhang L, Hou H, Xu W, Duan G, He S, Liu K, Jiang S (2021) Recent progress in carbon-based materials for supercapacitor electrodes: a review. J Mater Sci 56:173–200. https://doi.org/10.1007/s10853-020-05157-6

    Article  Google Scholar 

  56. Zhang S, Dong Q, Chen T, Xiong Y (2016) Combination of light bio-oil washing and torrefaction pretreatment of rice husk: its effects on physicochemical characteristics and fast pyrolysis behavior. Energy Fuels 30:3030–3037. https://doi.org/10.1021/acs.energyfuels.5b02968

    Article  Google Scholar 

  57. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:2371–23725. https://doi.org/10.1039/c2jm34066f

    Article  Google Scholar 

  58. Bao J, Liang C, Lu H, Lin H, Shi Z, Feng S, Bu Q (2018) Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage. Energy (Oxf) 155:899–908. https://doi.org/10.1016/j.energy.2018.04.151

    Article  Google Scholar 

  59. Ma X, Liu M, Gan L, Zhao Y, Chen L (2013) Synthesis of micro- and mesoporous carbon spheres for supercapacitor electrode. J Solid State Electrochem 17:2293–2301. https://doi.org/10.1007/s10008-013-2110-7

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation for Youth Scholar of China [grant number 52206237], the National Key Research and Development Program of China [grant number 2019YFD1100602], the Natural Science Foundation for Youth Scholar of Jiangsu Province [grant number BK20220838], and the Postdoctoral Research start-up fund of Southeast University [grant number 1103002214] and Jiangsu Funding Program for Excellent Postdoctoral Talent.

Author information

Authors and Affiliations

Authors

Contributions

Mei Jiang: conceptualization, methodology, investigation, writing—original draft; Yinhai Su: supervision, writing—review and editing, funding acquisition; Penggang Qi: experimentation; Shuping Zhang: writing—review and editing; Yuanquan Xiong: supervision, funding acquisition.

Corresponding authors

Correspondence to Yinhai Su or Yuanquan Xiong.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Su, Y., Qi, P. et al. Rice husk pyrolysis polygeneration of levoglucosan-rich bio-oil and functional bio-char: roles of hydrothermal pretreatment and acidic hydrothermal pretreatment on products. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03793-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03793-x

Keywords

Navigation