Skip to main content

Advertisement

Log in

Biomass characterization of wild and cultivated cardoon accessions and estimation of potential biofuels production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cardoon is considered an interesting raw material to obtain second-generation biofuels, due to its perennial culture condition and its rare use as food. In addition, cardoon, being a rustic species, requires few inputs and has fast growth and high lignocellulosic biomass production. However, despite its large genetic variability worldwide, both cardoon botanical varieties were subject only to few (cultivated cardoon)/zero (wild cardoon) breeding programs. The aims of this study were (I) to characterize biomass quality and quantity of genotypes of wild and cultivated cardoon in order to produce different types of biofuels and (II) to identify the most promising accessions to be included in breeding programs for bioenergy characteristics or to be incorporated in the local agro-productive system. The performance of twelve Cynara cardunculus L. accessions (six cultivated cardoons and six wild cardoons) was compared through biometric, chemical, and energetic characteristics. Moreover, the potential bioethanol and biomethane yields and the energy potentially generated from direct combustion were calculated for each botanical variety. Significant differences were found between botanical varieties for several biometric traits, but not in chemical traits except for ash content. Results indicate that cardoon biomass, especially cultivated cardoon, has characteristics that make this species a promising candidate to be grown for energy purposes under very low crop inputs in the local edapho-climatic conditions. In addition, our screening identified an accession that stands out based on yield, biomass composition, and potential to produce different types of biofuels/bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hamelinck CN, Hooijdonk V, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short, middle and long-term. Biomass Bioenergy 28:384–410. https://doi.org/10.1016/j.biombioe.2004.09.002

    Article  Google Scholar 

  2. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  3. de Jong E, Gosselink RJA (2014) Lignocellulose-based chemical products. In: Bioenergy Research: Advances and Applications. Elsevier Inc. Academic Press, pp 277–313. https://doi.org/10.1016/B978-0-444-59561-4.00017-6

    Chapter  Google Scholar 

  4. Sanderson M, Adler P (2008) Perennial forages as second generation bioenergy crops. Int J Mol Sci 9:768–788. https://doi.org/10.3390/ijms9050768

    Article  Google Scholar 

  5. Dipti P, Priyanka P (2013) Bioenergy crops an alternative energy. Int J Environ Eng Manage 4(3):265–272.  https://www.ripublication.com/ijeem_spl/ijeemv4n3_17.pdf

    Google Scholar 

  6. Mitchell RB, Schmer MR, Anderson WF, Jin V, Balkcom KS, Kiniri J, Coffin A, White P (2016) Dedicated energy crops and crop residues for bioenergy feedstocks in the central and eastern USA. Bioenergy Res 9:384–398. https://doi.org/10.1007/s12155-016-9734-2

    Article  Google Scholar 

  7. Pappalardo HD, Toscano V, Puglia GD, Genovese C, Raccuia SA (2000) Cynara cardunculus L. as multipurpose crop for plant secondary metabolites production in marginal stressed lands. Front Plant Sci 11:240. https://doi.org/10.3389/fpls.2020.00240

    Article  Google Scholar 

  8. Pesce G, Mauromicale G (2019) Cynara cardunculus L.: historical and economic importance, botanical descriptions, genetic resources and traditional uses. In: Portis E et al (eds) The globe artichoke genome, Compendium of Plant Genomes, pp 1–19. https://doi.org/10.1007/978-3-030-20012-1_4

    Chapter  Google Scholar 

  9. Angelini LG, Ceccarini L, Di Nasso N, Bonari E (2009) Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use. Biomass Bioenergy 33:810–816. https://doi.org/10.1016/j.biombioe.2008.12.004

    Article  Google Scholar 

  10. Mauromicale G, Pesce G, Curt MD, Fernández J, González J, Gominho J, Tabla R, Roa I, Portis E (2019) Cynara cardunculus as a multiuse crop. In: Portis E et al (eds) The globe artichoke genome, Compendium of Plant Genomes, pp 65–98. https://doi.org/10.1007/978-3-030-20012-1_4

    Chapter  Google Scholar 

  11. Fernández, J Curt, MD (2004) Low-cost biodiesel from Cynara oil. W.P. Van Swaaij, T. Fjällström, P. Helm, A. Grassi, Proc of the 2nd World CE on biomass for energy, industry and climate protection, Rome, Italy, pp. 109–112.

  12. Sengo I, Gominho J, D’Orey L, Martins M, D’Almeida-Duarte E, Pereira H, Ferreira-Dias S (2010) Response surface modeling and optimization of biodiesel production from Cynara cardunculus oil. Eur J Lipid Sci Technol 112:310–320. https://doi.org/10.1002/ejlt.200900135

    Article  Google Scholar 

  13. Alexandre A, Dias A, Seabra I, Portugal A, de Sousa H, Braga M (2012) Biodiesel obtained from supercritical carbon dioxide oil of Cynara cardunculus L. J Supercrit Fluids 68:52–63. https://doi.org/10.1016/j.supflu.2012.03.012

    Article  Google Scholar 

  14. Bouriazos A, Ikonomakou E, Papadogianakis G (2014) Aqueous-phase catalytic hydrogenation of methyl esters of Cynara cardunculus alternative low-cost non-edible oil: a useful concept to resolve the food, fuel and environment issue of sustainable biodiesel. Ind Crop Prod 52:205–210. https://doi.org/10.1016/j.indcrop.2013.10.040

    Article  Google Scholar 

  15. Martínez G, Sánchez N, Encinar JM, González JF (2014) Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass Bioenergy 63:22–32. https://doi.org/10.1016/j.biombioe.2014.01.034

    Article  Google Scholar 

  16. Mancini M, Lanza Volpe M, Gatti B, Malik Y, Morero AC, Leskovar D, Cravero V (2019) Characterization of cardoon accessions as feedstock for biodiesel production. Fuel 235:1287–1293. https://doi.org/10.1016/j.fuel.2018.08.123

    Article  Google Scholar 

  17. Zumbo A, Tardiolo G, Genovese C, Sutera AM, Raccuia SA, D'Alessandro E (2022) Cardoon (Cynara cardunculus L. var. altilis) seeds presscake: a natural by-product for pigs feeding. Nat Prod Res 36(17) 4551-4556. https://doi.org/10.1080/14786419.2021.1993218

  18. Ierna A, Mauro RP, Mauromicale G (2012) Biomass, grain and energy yield in Cynara cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenergy 36:404–410. https://doi.org/10.1016/j.biombioe.2011.11.013

    Article  Google Scholar 

  19. Mauromicale G, Sortino O, Pesce GR, Agnello M, Mauro RP (2014) Suitability of cultivated and wild cardoon as a sustainable bioenergy crop for low input cultivation in low quality Mediterranean soils. Ind Crop Prod 57:82–89. https://doi.org/10.1016/j.indcrop.2014.03.013

    Article  Google Scholar 

  20. Raccuia SA, Melilli MG (2007) Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop Res 101:187–197. https://doi.org/10.1016/j.fcr.2006.11.006

    Article  Google Scholar 

  21. Ammar IB, Sonnante G, Dridi BAM (2015) Genetic variability in wild cardoon (Cynara cardunculus L. var. sylvestris) revealed by SSR markers and morphological traits. Sci Hortic 185:76–81. https://doi.org/10.1016/j.scienta.2015.01.017

    Article  Google Scholar 

  22. Pagnotta MA, Fernández JA, Sonnante G, Egea-Gilabert C (2017) Genetic diversity and accession structure in European Cynara cardunculus collections. PLoS One 12:e0178770. https://doi.org/10.1371/journal.pone.0178770

    Article  Google Scholar 

  23. Pavan S, Curci PL, Zuluaga DL, Blanco E, Sonnante G (2018) Genotyping-by-sequencing highlights patterns of genetic structure and domestication in artichoke and cardoon. PLoS One 13:e0205988. https://doi.org/10.1371/journal.pone.0205988

    Article  Google Scholar 

  24. Castro MM, Rosa D, Ferro AM, Faustino A, Paulino A, Brás T, Machado E, Pinto Cruz C, Belo ADF, Nozes P, Portugal J, Ramôa S, Mendonça D, Simões F, Duarte MF, Marum L (2021) Genetic diversity and population structure of Cynara cardunculus L. in southern Portugal. PLoS One 16(6):e0252792. https://doi.org/10.1371/journal.pone.0252792

    Article  Google Scholar 

  25. Sacchi O, Dalla MN, Costanzo M, Coronel A (2002) Caracterización de las precipitaciones en la zona de Zavalla. Revista Investig Facultad Cienc Agrar UNR 2:91–103

    Google Scholar 

  26. Coronel A, Costanzo M, Sacchi O (2012) Variabilidad climática de los componentes del balance hídrico seriado en el sur de Santa Fe. Cienc Agron XIX:7–11

    Google Scholar 

  27. Neri U, Pennelli B, Simonetti G, Francaviglia R (2017) Biomass partition and productive aptitude of wild and cultivated cardoon genotypes (Cynara cardunculus L.) in a marginal land of Central Italy. Ind Crop Prod 95:191–201. https://doi.org/10.1016/j.indcrop.2016.10.029

    Article  Google Scholar 

  28. AOAC (1990) Official Methods of Analysis N° 976.05, 920.39 and 942.05. In: Association of Official Analytical Chemists, 15th edn, Arlington, VA

  29. Robertson JB, Van Soest PJ (1981) The detergent system of analysis and its application to human foods. In: James WPT, Theander O (eds) The Analysis of Dietary Fibre in Food. Marcel Dekker, New York, pp 123–158

    Google Scholar 

  30. Balzarini M, Di Rienzo J (2003) Info-Gen: Software para análisis estadístico de datos genéticos. In: Facultad de Ciencia Agropecuarias. Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  31. Hettenhaus JR (1998) Ethanol fermentation strains: present and future requirements for biomass to ethanol commercialization. In: Report to United States Department of Energy, Office of Energy Efficiency & Renewable Energy Ethanol Program and National Renewable Energy Laboratory Available from: http://infohouse.p2ric.org/ref/38/37753.pdf. Accessed in October 2019

    Google Scholar 

  32. Scordia D, Testa G, Cosentino SL (2014) Perennial grasses as lignocellulosic feedstock for second-generation bioethanol production in Mediterranean environment. Ital J Agronomy 9(2):84–92. https://doi.org/10.4081/ija.2014.581

    Article  Google Scholar 

  33. Shatalov A, Pereira H (2011) Biorefinery of energy crop cardoon (Cynara cardunculus L.) – hydrolytic xylose production as entry point to complex fractionation scheme. J Chem Eng Process Technol 2(5):118–125. https://doi.org/10.4172/2157-7048.1000118

    Article  Google Scholar 

  34. Gunaseelan VN (2007) Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour Technol 98(6):1270–1277. https://doi.org/10.1016/j.biortech.2006.05.014

    Article  Google Scholar 

  35. Jiménez Borges R, López Bastida EJ, González Pérez F, Curbelo García JA (2017) Metodología para la estimación del potencial de biomasa en Cienfuegos con fines energéticos. Revista Investig Fund Univ Am 10(2):63–75

    Google Scholar 

  36. Ierna A, Mauromicale G (2010) Cynara cardunculus L. genotypes as a crop for energy purposes in a Mediterranean environment. Biomass Bioenergy 34(5):754–760. https://doi.org/10.1016/j.biombioe.2010.01.018

    Article  Google Scholar 

  37. Fernández J, Curt MD, Aguado PL (2006) Industrial applications of Cynara cardunculus L. for energy and other uses. Ind Crop Prod 24:222–229. https://doi.org/10.1016/j.indcrop.2006.06.010

    Article  Google Scholar 

  38. Bolohan C, Marin DI, Mihalache M, Ilie L, Oprea AC (2014) Total biomass and grain production of Cynara cardunculus L. species grown under the conditions of south east Romania. Agro Life Sci J 3(1):31–34

    Google Scholar 

  39. Francaviglia R, Bruno A, Falcucci, M, Farina R, Renzi G, Russo DE, Sepe L. Neri U (2016) Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur J Agron 72:10-19. https://doi.org/10.1016/j.eja.2015.09.014

  40. Rodrigues ALP, Cruz G, Souza MEP, Gomes WC (2018) Application of cassava harvest residues (Manihot esculenta Crantz) in biochemical and thermochemical conversion process for bioenergy purposes: a literature review. Afr J Biotechnol 17(3):37–50. https://doi.org/10.5897/AJB2017.16322

    Article  Google Scholar 

  41. Gominho J, Curt MD, Lourenço A, Fernández J, Pereira H (2018) Cynara cardunculus L. as a biomass and multi-purpose crop: a review of 30 years of research. Biomass Bioenergy 109:257–275. https://doi.org/10.1016/j.biombioe.2018.01.001

    Article  Google Scholar 

  42. Pereira H, Miranda I, Paes MS, Gominho J (1994) The chemical composition and raw-material quality of Cynara cardunculus biomass as pulp fibre source. In: Hall DO, Grassi G, Scheer H (eds) Biomass for energy and industry. Proc of the 7th E. C Conference. Ponte Press, Florence, Italy, Bochum, pp 1133–1137

    Google Scholar 

  43. Cajarville C, González J, Repetto JL, Rodríguez CA, Martínez A (1999) Nutritive value of green forage and crop by-products of Cynara cardunculus. Ann Zootech 48:353–365. https://doi.org/10.1051/animres:19990503

    Article  Google Scholar 

  44. Antunes A, Amaral E, Belgacen MN (2000) Cynara cardunculus L.: chemical composition and soda-anthraquinone cooking. Ind Crop Prod 12:85–91. https://doi.org/10.1016/S0926-6690(00)00040-6

    Article  Google Scholar 

  45. Ligero P, Villaverde JJ, Vega A, Bao M (2007) Acetosolv delignification of depithed cardoon (Cynara cardunculus) stalks. Ind Crop Prod 25:294–300. https://doi.org/10.1016/j.indcrop.2006.12.00

    Article  Google Scholar 

  46. Ballesteros M, Negro MJ, Manzanares P, Ballesteros I, Saez F, Oliva JM (2007) Fractionation of Cynara cardunculus (Cardoon) biomass by dilute-acid pretreatment. Appl Biochem Biotechnol 137:239–252. https://doi.org/10.1007/s12010-007-9055-1

    Article  Google Scholar 

  47. Lourenço A, Gominho J, Curt MD, Revilla E, Villar JP, Pereira H (2017) Steam explosion as pre-treatment of Cynara cardunculus prior to delignification. Ind Eng Chem Res 56:424–433. https://doi.org/10.1021/acs.iecr.6b03854

    Article  Google Scholar 

  48. Pesce GR, Fernandes MC, Mauromicale G (2020) Globe artichoke crop residues and their potential for bioethanol production by dilute acid hydrolysis. Biomass Bioenergy 134:105471. https://doi.org/10.1016/j.biombioe.2020.105471

    Article  Google Scholar 

  49. Jozami E, Sosa L, Feldman SR (2013) Spartina argentinensis as feedstock for bioethanol. Appl Technol Innov 9(2):37–44. https://doi.org/10.15208/ati.2013.8

    Article  Google Scholar 

  50. Sanderson M, Martin N, Adler P (2007) Biomass, energy, and industrial uses of forages. In: Barnes RF et al (eds) Forages: the science of grassland agriculture. Vol II, 6th edn. Iowa State University Press, Ames, IA, pp 635–647

    Google Scholar 

  51. Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, Steyer JP (2010) Alternative methods for determining anaerobic biodegradability: a review. Process Biochem 45:431–440. https://doi.org/10.1016/j.procbio.2009.11.018

    Article  Google Scholar 

  52. Oliveira I, Gominho J, Diberardino S, Duarte E (2012) Characterization of Cynara cardunculus L. stalks and their suitability for biogas production. Ind Crop Prod 40:318–323. https://doi.org/10.1016/j.indcrop.2012.03.029

    Article  Google Scholar 

  53. Pesce GR, Negri M, Bacenetti J, Maurmicale G (2017) The biomethane, silage and biomass yield obtainable from three accessions of Cynara cardunculus. Ind Crop Prod 103:233–239. https://doi.org/10.1016/j.indcrop.2017.04.003

    Article  Google Scholar 

  54. Bjorndal KA, Moore JE (1985) Prediction of fermentability of biomass feedstocks from chemical characteristics. In: Smith WH (ed) Biomass Energy Development. Plenum Press, New York, pp 447–454

    Google Scholar 

  55. Kafle GK, Kim SH (2012) Evaluation of the biogas productivity potential of fish waste: a lab scale batch study. J of Biosystems Eng 37(5):302–313. https://doi.org/10.5307/JBE.2012.37.5.302

    Article  Google Scholar 

  56. Almodares A, Jafarinia M, Hadi MR (2009) The effects of nitrogen fertilizer on chemical compositions in corn and sweet sorghum. American-Eurasian J Agric Environ Sci 6(4):441–446

    Google Scholar 

  57. Food and Agriculture Organization (2019) Guía teórico-práctica sobre el biogás y los biodigestores. In: Colección Documentos Técnicos N° 12. Buenos Aires. 104 pp. Licencia: CC BY-NC-SA 3.0 IGO

    Google Scholar 

  58. Ometto F, Steinhovden KB, Kuci H, Lunnbäck J, Berg A, Karlsson A, Handå A, Wollan H, Ejlertsson J (2018) Seasonal variation of elements composition and biomethane in brown macroalgae. Biomass Bioenergy 109:31–38. https://doi.org/10.1016/j.biombioe.2017.11.006

    Article  Google Scholar 

  59. Lei Z, Chen J, Zhang Z, Sugiura N (2010) Methane production from rice straw with acclimated anaerobic sludge: effect of phosphate supplementation. Bioresour Technol 101(2):4343–4348. https://doi.org/10.1016/j.biortech.2010.01.083

    Article  Google Scholar 

  60. Mumme J, Linkey B, Tölle R (2010) Novel upflow anaerobic solid-state (UASS) reactor. Bioresour Technol 101(2):592–599. https://doi.org/10.1016/j.biortech.2009.08.073

    Article  Google Scholar 

  61. Jayasinghe PA, Hettiaratchi JP, Mehrotra AK, Kumar S (2011) Effect of enzyme additions on methane production and lignin degradation of landfilled sample of municipal solid waste. Bioresour Technol 102(107):4633–4637. https://doi.org/10.1016/j.biortech.2011.01.013

    Article  Google Scholar 

  62. Foti S, Mauromicale G, Raccuia SA, Fallico B, Fanella F, Maccarone E (1999) Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Ind Crop Prod 10:219–228. https://doi.org/10.1016/S0926-6690(99)00026-6

    Article  Google Scholar 

  63. Grammelis P, Panagiotis G, Malliopoulou A, Basinas P, Danalatos NG (2008) Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int J Mol Sci 9:1241–1258. https://doi.org/10.3390/ijms9071241

    Article  Google Scholar 

  64. Demirbas A (2002) Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor Exploit 20(1):105–111. https://doi.org/10.1260/014459802760170420

    Article  Google Scholar 

  65. Cosentino SL, Copani V, Patane C, Mantineo M, D'Agosta GM (2008) Agronomic, energetic and environmental aspects of biomass energy crops suitable for Italian environments. Ital J Agron 3(2):81–95. https://doi.org/10.4081/ija.2008.81

    Article  Google Scholar 

  66. Mantineo M, D'Agosta GM, Copani V, Patanè C, Cosentino SL (2009) Biomass yield and energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop Res 114:204–213. https://doi.org/10.1016/j.fcr.2009.07.020

    Article  Google Scholar 

  67. Coulson M, Bridgwater AV (2004) Fast pyrolysis of annually harvested crops for bioenergy applications. In: Van Swaaij WP, Fjällström T, Helm P, Grassi A (eds) Proc of the 2nd EC on Biomass for Energy, Industry and Climate Protection, Rome, Italy, pp 1098–1101

  68. Sanderson M, Wolf D (1995) Switchgrass biomass composition during morphological development in diverse environments. Crop Sci 35:1432–1438. https://doi.org/10.2135/cropsci1995.0011183X003500050029x

    Article  Google Scholar 

Download references

Funding

This work was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, Project (PUE 22920160100043) and Universidad Nacional de Rosario (UNR), Argentina, Project (AGR268).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design, material preparation, data collection, and analysis. The first draft of the manuscript was written by Micaela Mancini and Ana Breso, and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vanina Cravero.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Micaela Mancini and Ana Breso are ex aequo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancini, M., Breso, A., Rúa, F. et al. Biomass characterization of wild and cultivated cardoon accessions and estimation of potential biofuels production. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03784-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03784-y

Keywords

Navigation