Skip to main content
Log in

Co-precipitation synthesis of CuMn2O4/CuMnO nanocomposites without capping agent and investigation of their applications for removing pollutants from wastewater

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The widespread problem of water pollution is jeopardizing our health. Elimination of dye pollution from the solvent phase by adsorption is a necessary aspect of research. In this research, CuMn2O4/CuMnO nanocomposites were prepared via the co-precipitation method and used to remove dye pollution from an aqueous solution. These nanocomposites were synthesized for the first time in this work. The techniques including XRD, SEM, EDS, VSM, FT-IR, and UV–Vis were used to identify the nanocomposites. The nanocomposites showed a ferromagnetic behavior (coercivity ~ 1082.55 Oe) in low fields and an antiferromagnetic behavior in high fields. Also, their photocatalytic properties for eriochrome black T degradation were studied under visible light irradiation, for the first time. The experiments were repeated in the presence of sucrose as a capping agent. The structure, morphology, and photocatalytic properties of two samples prepared in the presence and absence of a capping agent for eriochrome black T degradation were investigated and compared. The results showed that the sample prepared in the absence of a capping agent has better morphology and photocatalytic activity for the removal of eriochrome black T from an aqueous solution. The photodegradation amount of eriochrome black T solution with 10 ppm concentration by 0.03 g nanocomposite was obtained 76%. The eriochrome black T degradation at acidic pH occurred at a higher rate (80.45% after 90 min) than that at other pHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Buthelezi SP, Olaniran AO, Pillay B (2012) Molecules 17:14260–14274

    Article  Google Scholar 

  2. Rahman QI, Ahmad M, Misra SK, Lohani M (2013) Mater Lett 91:170–174

    Article  Google Scholar 

  3. Crişan M, Drăgan N, Crişan D, Ianculescu A, Niţoi I, Oancea P (2015) Ceram Int 42:3088–3095

    Article  Google Scholar 

  4. Wang S, Hou Y, Wang X, Appl ACS (2015) Mater Interfaces 7:4327–4335

    Article  Google Scholar 

  5. Larbi T, Doll K, Amlouk M (2019) Spectrochim Acta A Mol Biomol Spectrosc 216:117–124

    Article  Google Scholar 

  6. Sinha APB, Sanjana NR, Biswas AB (1958) J Phys Chem B 62:191–194

    Article  Google Scholar 

  7. Radhakrishnan NK, Biswas ABA (1974) J Indian Chem Soc 51:274–280

    Google Scholar 

  8. Verwey EJW, Heilmann EL (1947) J Chem Phys 15:174–180

    Article  Google Scholar 

  9. Enhessari M, Salehabadi A, Maarofian K, Khanahmadzadeh S (2016) Int J Bio-Inorg Hybr Nanomater 5:115–120

    Google Scholar 

  10. Popescu I, Boudjemaa A, Helaili N, Bessekhouad Y, Tudorache M, Bachari K, Marcu IC (2015) Appl Catal A: Gen 504:29–36

    Article  Google Scholar 

  11. Shoemaker DP, Li J, Seshadri R (2009) J Am Chem Soc 131:11450–11457

    Article  Google Scholar 

  12. Saravanakumar B, Muthu Lakshmi S, Ravi G, Ganesh V, Sakunthala A, Yuvakkumar R (2017) J Alloys Compd 723:115–122

    Article  Google Scholar 

  13. Sobhani A (2022) Int J Hydrogen Energy 47:20138–20152

    Article  Google Scholar 

  14. Li H, Chen Y, Ma Q, Wang J, Che Q, Wang G, Tan Y, Yang P (2018) Mater Lett 216:199–202

    Article  Google Scholar 

  15. Wright PA, Natarajan S, Thomas JM, Gai-Boyes PL (1992) Chem Mater 4:1053–1065

    Article  Google Scholar 

  16. Porta P, Moretti G, Musicanti M, Nardella A (1993) Solid State Ionics 63–65:257–267

    Article  Google Scholar 

  17. Koleva V, Stoilova D, Mehandjiev D (1997) J Solid State Chem 133:416–422

    Article  Google Scholar 

  18. Krämer M, Schmidt T, Stöwe K, Maier WF (2006) Appl Catal A 302:257–263

    Article  Google Scholar 

  19. Hlongwa NW, Sastre D, Iwuoha E, Carrillo AJ, Ikpo C, Serrano DP, Pizarro P, Coronado JM (2018) Solid State Ionics 320:316–324

    Article  Google Scholar 

  20. Chani MTS, Karimov KS, BahadarKhan S, Fatima N, Asiri AM (2019) Ceram Int 45:10565–10571

    Article  Google Scholar 

  21. Zhang C, Xie A, Zhang W, Chang J, Liu C, Gu L, Duo X, Pan F, Luo S (2021) J Energy Storage 34:102181–102183

    Article  Google Scholar 

  22. Bayat S, Sobhani A, Salavati-Niasari M (2017) J Mater Sci: Mater Electron 28:16981–16991

    Google Scholar 

  23. Bayat S, Sobhani A, Salavati-Niasari M (2018) J Mater Sci: Mater Electron 29:7077–7089

    Google Scholar 

  24. Mohassel R, Sobhani A, Salavati-Niasari M (2019) Int J Hydrogen Energy 44:860–869

    Article  Google Scholar 

  25. Mohassel R, Amiri M, Kareem Abbas A, Sobhani A, Ashrafi M, Moayedi H, Salavati-Niasari M (2020) J Mater Res Technol 9:1720–1733

    Article  Google Scholar 

  26. Wang LJ, Zhou Q, Liang Y, Shi H, Zhang G, Wang B, Zhang W, Lei B, Wang WZ (2013) Appl Surf Sci 271:136–140

    Article  Google Scholar 

  27. Abel MJ, Pramothkumar A, Senthilkumar N, Jothivenkatachalam K, Inbaraj PFH, Prince J (2019) J Phys B (Amsterdam, Neth.) 572:117–124

    Article  Google Scholar 

  28. Ma P, Geng Q, Gao X, Yang S, Liu G (1973) Ceram Int 42(2016):11966–11971

    Google Scholar 

  29. Mohassel R, Sobhani A, Goudarzi M, Salavati-Niasari M (2018) J Alloys Compd 753:615–621

    Article  Google Scholar 

  30. Mohassel R, Sobhani A, Salavati-Niasari M, Goudarzi M (2018) Spectrochim Acta, Part A 204:232–240

    Article  Google Scholar 

  31. Mahdiani M, Sobhani A, Salavati-Niasari M (2019) J Hazard Mater 367:607–619

    Article  Google Scholar 

  32. Mahdiani M, Sobhani A, Salavati-Niasari M (2017) Sep Purif Technol 185:140–148

    Article  Google Scholar 

  33. Inamdar J, Singh SK (2008) Int J Chem Biomol Eng 1:160–164

    Google Scholar 

  34. Aisien FA, Amenaghawon NA, Ekpenisi EF (2013) J Eng Appl Sci 9:11–16

    Google Scholar 

  35. Sayilkan F, Asilturk M, Tatar P, Kiraz N, Arpaç E, Sayılkan H (2008) Mater Res Bull 43:127–134

    Article  Google Scholar 

  36. Zarrin S, Heshmatpour F (2018) J Hazard Mater 351:147–159

    Article  Google Scholar 

  37. Ma J, Yang M, Sun Y, Li C, Li Q, Gao F, Yu F, Chen J (2014) Physica E 58:24–29

    Article  Google Scholar 

  38. Liu Y, Zeng G, Tang L, Cai Y, Pang Y, Zhang Y, Yang G, Zhou Y, He X, He Y (2015) J Colloid Interface Sci 448:451–459

    Article  Google Scholar 

  39. Zhao Y, Chen H, Li J, Chen C (2015) J Colloid Interface Sci 450:189–195

    Article  Google Scholar 

  40. Sobhani-Nasab A, Eghbali-Arani M (2020) Seyed Mostafa Hosseinpour-Mashkani, Farhad Ahmadi, Mehdi Rahimi-Nasrabadi, Vahid Ameri. Iran J Catal 10:91–99

    Google Scholar 

Download references

Funding

The authors are grateful to the council of Kosar University of Bojnord for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Sobhani.

Ethics declarations

This study was conducted following Compliance with Ethical Standards, and it did not involve human participants, animals, and potential conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sobhani, A., Alinavaz, S. Co-precipitation synthesis of CuMn2O4/CuMnO nanocomposites without capping agent and investigation of their applications for removing pollutants from wastewater. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-022-03732-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03732-2

Keywords

Navigation