Skip to main content

Advertisement

Log in

Deciphering biomarkers of the plant cell-wall recalcitrance: towards enhanced delignification and saccharification

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is the most abundant renewable resource on earth, composed of agricultural waste, food processing byproducts, and other wastes which are thrown in nature and, unfortunately, non-valorized. It is a rich substrate recognized for its compositional and structural diversities, with a high interest in the production of green biofuels and chemical platform molecules, which are extremely sought after in the actual world energetic transition scenario. Although it represents a great opportunity for green industries, breaking down the plant cell wall (PCW) is technically not as affordable as thought before, and the development of green biorefineries depends on optimizing plant resources, process fluxes, prioritizing integrated strategies, and before all the above-mentioned, solving the plant recalcitrance issue. Converting biomass starts with the dissociation of its elements, which should be figured out in light of its compositional and structural complexities. Field and postharvest strategies like the genome-wide selection of biorefinery crops and the knowledge-based choice of appropriate harvesting periods were suggested to answer this challenge. Although these practices helped improve the processability of bioenergy crops, they did not reach promising levels and should be further improved by their combination with state-of-art engineering technologies. In this sense, genetic tailoring of the PCW biosynthetic genes and the application of integrated pretreatment strategies are interesting and in-depth explained here. In this comprehensive review, we discuss novel aspects related to the importance and richness of lignocellulose feedstock in the biorefinery concept, the recalcitrance of PCW and biomarkers as a roadmap approach to diagnosing it, and finally, state-of-art strategies to overcome it towards an enhanced delignification and saccharification. All with the same main perspective: making the most of lignocellulose in added-value biorefinery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data are made available by the authors.

Code availability

NA.

References

  1. Hauschild MZ, Kara S, Røpke I (2020) Absolute sustainability: challenges to life cycle engineering. CIRP Ann 69:533–553. https://doi.org/10.1016/J.CIRP.2020.05.004

    Article  Google Scholar 

  2. McArthur Foundation (2013) Towards the Circular Economy. Towards the circular economy - economic and business rationale for an accelerated transition 1:https://emf.thirdlight.com/link/coj8yt1jogq8-hkhkq2/@/preview/1?o (accessed October 23, 2022).

  3. Edomah N (2018) Economics of energy supply, reference module in earth systems and environmental sciences. https://doi.org/10.1016/B978-0-12-409548-9.11713-0.

  4. Jacobsson S, Johnson A (2000) The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy 28:625–640. https://doi.org/10.1016/S0301-4215(00)00041-0

    Article  Google Scholar 

  5. Philippini RR, Martiniano SE, Ingle AP, Franco Marcelino PR, Silva GM, Barbosa FG, dos Santos JC, da Silva SS (2020) Agroindustrial byproducts for the generation of biobased products: alternatives for sustainable biorefineries. Front Energy Res 8:152. https://doi.org/10.3389/FENRG.2020.00152/BIBTEX

    Article  Google Scholar 

  6. Tripathi N, Hills CD, Singh RS, Atkinson CJ (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci 2:1–35. https://doi.org/10.1038/s41612-019-0093-5

    Article  Google Scholar 

  7. Liu W, Zhang Z, Xie X, Yu Z, von Gadow K, Xu J, Zhao S, Yang Y (2017) Analysis of the global warming potential of biogenic CO2 emission in life cycle assessments. Sci Rep 7:1–8. https://doi.org/10.1038/srep39857

    Article  Google Scholar 

  8. Dugmore TIJ, Clark JH, Bustamante J, Houghton JA, Matharu AS (2017) Valorisation of biowastes for the production of green materials using chemical methods. Top Curr Chem (Cham) 375 https://doi.org/10.1007/S41061-017-0133-8

  9. Jarunglumlert T, Prommuak C (2021) Net energy analysis and techno-economic assessment of co-production of bioethanol and biogas from cellulosic biomass. Fermentation 7:229. https://doi.org/10.3390/FERMENTATION7040229

    Article  Google Scholar 

  10. Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 6:962–979. https://doi.org/10.18331/BRJ2019.6.2.3

    Article  Google Scholar 

  11. Srivastava N, Shrivastav A, Singh R, Abohashrh M, Srivastava KR, Irfan S, Srivastava M, Mishra PK, Gupta VK, Thakur VK (2021) Advances in the structural composition of biomass: Fundamental and bioenergy applications. J Renew Mater. 9:615–636. https://doi.org/10.32604/JRM.2021.014374

    Article  Google Scholar 

  12. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: Chem Compos Phys Struct Affecting Enzym Hydrolysis Lignocellulose Biofuels Bioprod Bioref 6:465–482. https://doi.org/10.1002/BBB.1331

    Article  Google Scholar 

  13. Johnson JM-F, Barbour NW, Weyers SL (2007) Chemical composition of crop biomass impacts its decomposition. Soil Sci Soc Am J 71:155–162. https://doi.org/10.2136/SSSAJ2005.0419

    Article  Google Scholar 

  14. Li M, Pu Y, Ragauskas AJ (2016) Current understanding of the correlation of lignin structure with biomass recalcitrance. Front Chem 4:45. https://doi.org/10.3389/FCHEM.2016.00045

    Article  Google Scholar 

  15. Bichot A, Delgenès JP, Méchin V, Carrère H, Bernet N, García-Bernet D (2018) Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock. Rev Environ Sci Bio/Technol 17(4):707–748. https://doi.org/10.1007/S11157-018-9485-Y

    Article  Google Scholar 

  16. Melati RB, Shimizu FL, Oliveira G, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2018) Key factors affecting the recalcitrance and conversion process of biomass. BioEnergy Res 12(1):1–20. https://doi.org/10.1007/S12155-018-9941-0

    Article  Google Scholar 

  17. Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem 7:874. https://doi.org/10.3389/FCHEM.2019.00874/BIBTEX

    Article  Google Scholar 

  18. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  Google Scholar 

  19. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. https://doi.org/10.1126/SCIENCE.1137016

    Article  Google Scholar 

  20. Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558. https://doi.org/10.1111/J.1365-313X.2008.03468.X

    Article  Google Scholar 

  21. Chanoca A, de Vries L, Boerjan W (2019) Lignin engineering in forest trees. Front Plant Sci 10:912. https://doi.org/10.3389/FPLS.2019.00912/BIBTEX

    Article  Google Scholar 

  22. Mohapatra S, Mishra SS, Bhalla P, Thatoi H (2019) Engineering grass biomass for sustainable and enhanced bioethanol production. Planta 250:395–412. https://doi.org/10.1007/S00425-019-03218-Y

    Article  Google Scholar 

  23. Choudhary M, Singh A, Gupta M, Rakshit S (2020) Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels, Bioprod Biorefin 14:402–416. https://doi.org/10.1002/BBB.2060

    Article  Google Scholar 

  24. Pazhany AS, Henry RJ (2019) Genetic modification of biomass to alter lignin content and structure. Ind Eng Chem Res 58:16190–16203. https://doi.org/10.1021/ACS.IECR.9B01163/ASSET/IMAGES/MEDIUM/IE-2019-01163R_0002.GIF

    Article  Google Scholar 

  25. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891. https://doi.org/10.1016/J.RSER.2018.03.111

    Article  Google Scholar 

  26. Srivastava N, Srivastava M, Malhotra BD, Gupta VK, Ramteke PW, Silva RN, Shukla P, Dubey KK, Mishra PK (2019) Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnol Adv 37:107384. https://doi.org/10.1016/J.BIOTECHADV.2019.04.006

    Article  Google Scholar 

  27. Cheah WY, Sankaran R, Show PL, Ibrahim TNBT, Chew KW, Culaba A, Chang JS (2020) Pretreatment methods for lignocellulosic biofuels production: current advances, challenges and future prospects. Biofuel Res J 7:1115–1127

    Article  Google Scholar 

  28. Srivastava N, Srivastava M, Mishra PK, Kausar MA, Saeed M, Gupta VK, Singh R, Ramteke PW (2020) Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresour Technol 307:123094. https://doi.org/10.1016/J.BIORTECH.2020.123094

    Article  Google Scholar 

  29. Abraham RE, Puri M (2020) Nano-immobilized cellulases for biomass processing with application in biofuel production. Methods Enzymol 630:327–346. https://doi.org/10.1016/BS.MIE.2019.09.006

    Article  Google Scholar 

  30. Thakur A, Kumar A, Kaya S, Vo DVN, Sharma A (2022) Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review. Fuel 312:122934. https://doi.org/10.1016/J.FUEL.2021.122934

    Article  Google Scholar 

  31. Kumar S, Dheeran P, Taherzadeh M, Khanal S, eds. (2018) Fungal Biorefineries, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-90379-8

  32. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678. https://doi.org/10.1021/ACS.CHEMREV.7B00588/ASSET/IMAGES/LARGE/CR-2017-00588D_0042.JPEG

    Article  Google Scholar 

  33. Boukis I, Vassilakos N, Kontopoulos G, Karellas S (2009) Policy plan for the use of biomass and biofuels in Greece: Part I: Available biomass and methodology. Renew Sustain Energy Rev 13:971–985. https://doi.org/10.1016/J.RSER.2008.02.007

    Article  Google Scholar 

  34. Shortall OK (2013) “Marginal land” for energy crops: Exploring definitions and embedded assumptions. Energy Policy 62:19–27. https://doi.org/10.1016/J.ENPOL.2013.07.048

    Article  Google Scholar 

  35. Calvert K, Mabee W (2015) More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada. Appl Geogr 56:209–221. https://doi.org/10.1016/J.APGEOG.2014.11.028

    Article  Google Scholar 

  36. Purkus A, Röder M, Gawel E, Thrän D, Thornley P (2015) Handling uncertainty in bioenergy policy design – A case study analysis of UK and German bioelectricity policy instruments. Biomass Bioenergy 79:64–79. https://doi.org/10.1016/J.BIOMBIOE.2015.03.029

    Article  Google Scholar 

  37. Karanja A, Gasparatos A (2019) Adoption and impacts of clean bioenergy cookstoves in Kenya. Renew Sustain Energy Rev 102:285–306. https://doi.org/10.1016/J.RSER.2018.12.006

    Article  Google Scholar 

  38. Kang JN, Wei YM, Liu LC, Han R, Yu BY, Wang JW (2020) Energy systems for climate change mitigation: A systematic review. Appl Energy 263:114602. https://doi.org/10.1016/J.APENERGY.2020.114602

    Article  Google Scholar 

  39. Temper L, Avila S, del Bene D, Gobby J, Kosoy N, le Billon P, Martinez-Alier J, Perkins P, Roy B, Scheidel A, Walter M, Temper L, Avila S, del Bene D, Gobby J, Kosoy N, le Billon P, Martinez-Alier J, Perkins P, Roy B, Scheidel A, Walter M (2020) Movements shaping climate futures: A systematic mapping of protests against fossil fuel and low-carbon energy projects. ERL 15:123004. https://doi.org/10.1088/1748-9326/ABC197

    Article  Google Scholar 

  40. Zahraee SM, Shiwakoti N, Stasinopoulos P (2020) Biomass supply chain environmental and socio-economic analysis: 40-Years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass Bioenergy 142:105777. https://doi.org/10.1016/J.BIOMBIOE.2020.105777

    Article  Google Scholar 

  41. Waller L, Rayner T, Chilvers J, Gough CA, Lorenzoni I, Jordan A, Vaughan N (2020) Contested framings of greenhouse gas removal and its feasibility: Social and political dimensions. Wiley Interdiscip Rev Clim Change 11:e649. https://doi.org/10.1002/WCC.649

    Article  Google Scholar 

  42. Rosen MA (2018) Environmental sustainability tools in the biofuel industry. Biofuel Res J 5:751–752. https://doi.org/10.18331/BRJ2018.5.1.2

    Article  Google Scholar 

  43. Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38:449–467. https://doi.org/10.1016/J.PECS.2012.03.002

    Article  Google Scholar 

  44. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/J.PECS.2012.02.002

    Article  Google Scholar 

  45. Prasad A, Sotenko M, Blenkinsopp T, Coles SR (2016) Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int J Life Cycle Assess 21:44–50. https://doi.org/10.1007/S11367-015-0985-5/TABLES/8

    Article  Google Scholar 

  46. Rosales-Calderon O, Arantes V (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels 12:1–58. https://doi.org/10.1186/S13068-019-1529-1/FIGURES/6

    Article  Google Scholar 

  47. International Standardization Organization ISO (2021) ISO - ISO 17225–6:2021 - Solid biofuels — Fuel specifications and classes — Part 6: Graded non-woody pellets. https://www.iso.org/standard/76093.html (accessed October 23, 2022).

  48. Wang C, Kong Y, Hu R, Zhou G (2021) Miscanthus: A fast-growing crop for environmental remediation and biofuel production. GCB Bioenergy 13:58–69. https://doi.org/10.1111/GCBB.12761

    Article  Google Scholar 

  49. Bilandžija N, Fabijanić G, Sito S, Grubor M, Krononc Z, Čopec K, Kovačev I (2020) Harvest systems of Miscanthus x giganteus biomass: a review, Journal of Central European. Agriculture 21:159–167. https://doi.org/10.5513/JCEA01/21.1.2511

    Article  Google Scholar 

  50. Moll L, Wever C, Völkering G, Pude R (2020) Increase of Miscanthus cultivation with new roles in materials production—a review. Agronomy 10:308. https://doi.org/10.3390/AGRONOMY10020308

    Article  Google Scholar 

  51. Ghumra DP, Rathi O, Mule TA, Khadye VS, Chavan A, Barba FC, Main S, Odaneth A, Thorat BN (2022) Technologies for valorization of municipal solid wastes. Biofuels, Bioprod Biorefin 16:877–890. https://doi.org/10.1002/BBB.2340

    Article  Google Scholar 

  52. Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (1979) The path forward for biofuels and biomaterials. Science 311(2006):484–489. https://doi.org/10.1126/science.1114736

    Article  Google Scholar 

  53. Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions, Front. Plant Sci 7:1–18. https://doi.org/10.3389/fpls.2016.00984

    Article  Google Scholar 

  54. Rodrigues Mota T, Matias de Oliveira D, Marchiosi R, Ferrarese-Filho O, Dantas dos Santos W (2018) Plant cell wall composition and enzymatic deconstruction. AIMS Bioeng. 5:63–77. https://doi.org/10.3934/bioeng.2018.1.63

    Article  Google Scholar 

  55. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: Chem Compos Phys Struct Affecting Enzym Hydrolysis Lignocellulose, Biofuels Bioprod Bioref 6:246–256. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  56. Bichot A, Delgenès JP, Méchin V, Carrère H, Bernet N, García-Bernet D (2018) Understanding biomass recalcitrance in grasses for their efficient utilization as biorefinery feedstock. https://doi.org/10.1007/s11157-018-9485-y

  57. Melati RB, Shimizu FL, Oliveira G, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenergy Res 12. https://doi.org/10.1007/s12155-018-9941-0

  58. Lupoi JS, Singh S, Simmons BA, Henry RJ (2014) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenergy Res 7:1–23. https://doi.org/10.1007/s12155-013-9352-1

    Article  Google Scholar 

  59. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels, Bioprod Biorefin 6:246–256. https://doi.org/10.1002/bbb

    Article  Google Scholar 

  60. Oh YK, Hwang KR, Kim C, Kim JR, Lee JS (2018) Recent developments and key barriers to advanced biofuels: a short review. Bioresour Technol 257:320–333. https://doi.org/10.1016/j.biortech.2018.02.089

    Article  Google Scholar 

  61. Paës G, Navarro D, Benoit Y, Blanquet S, Chabbert B, Chaussepied B, Coutinho PM, Durand S, Grigoriev IV, Haon M, Heux L, Launay C, Margeot A, Nishiyama Y, Raouche S, Rosso MN, Bonnin E, Berrin JG (2019) Tracking of enzymatic biomass deconstruction by fungal secretomes highlights markers of lignocellulose recalcitrance. Biotechnol Biofuels 12:1–14. https://doi.org/10.1186/s13068-019-1417-8

    Article  Google Scholar 

  62. Herbaut M, Zoghlami A, Paës G (2018) Dynamical assessment of fluorescent probes mobility in poplar cell walls reveals nanopores govern saccharification. Biotechnol Biofuels 11:1–13

    Article  Google Scholar 

  63. Ohlsson JA, Hallingbäck HR, Jebrane M, Harman-Ware AE, Shollenberger T, Decker SR, Sandgren M, Rönnberg-Wästljung AC (2019) Genetic variation of biomass recalcitrance in a natural Salix viminalis (L.) population. Biotechnol Biofuels 12:1–12. https://doi.org/10.1186/s13068-019-1479-7

    Article  Google Scholar 

  64. Hanley SJ, Karp A (2014) Genetic strategies for dissecting complex traits in biomass willows (Salix spp.). Tree Physiol 34:1167–1180. https://doi.org/10.1093/TREEPHYS/TPT089

    Article  Google Scholar 

  65. Maesano M, Khoury S, Nakhle F, Firrincieli A, Gay A, Tauro F, Harfouche A (2020) UAV-based LiDAR for high-throughput determination of plant height and above-ground biomass of the bioenergy grass Arundo donax. Remote Sensing 12:3464. https://doi.org/10.3390/RS12203464

    Article  Google Scholar 

  66. Miedaner T, Laidig F (2019) Hybrid breeding in rye (Secale cereale L). Adv Plant Breed Strateg: Cereals 5:343–372. https://doi.org/10.1007/978-3-030-23108-8_9/COVER

    Article  Google Scholar 

  67. Ishimori M, Takanashi H, Hamazaki K, Atagi Y, Kajiya-Kanegae H, Fujimoto M, Yoneda J, Tokunaga T, Tsutsumi N, Iwata H (2020) Dissecting the genetic architecture of biofuel-related traits in a sorghum breeding population. G3 Genes|Genomes|Genetics 10:4565–4577. https://doi.org/10.1534/G3.120.401582

    Article  Google Scholar 

  68. Wang YH, Bible P, Loganantharaj R, Upadhyaya HD (2012) Identification of SSR markers associated with height using pool-based genome-wide association mapping in sorghum. Mol Breeding 30:281–292. https://doi.org/10.1007/S11032-011-9617-3/FIGURES/4

    Article  Google Scholar 

  69. Liu W, Maurer HP, Leiser WL, Tucker MR, Weissmann S, Hahn V, Würschum T (2016) Potential for marker-assisted simultaneous improvement of grain and biomass yield in triticale. BioEnergy Res 10(2):449–455. https://doi.org/10.1007/S12155-016-9809-0

    Article  Google Scholar 

  70. Razar RM, Qi P, Devos KM, Missaoui AM (2022) Genotyping-by-sequencing and QTL mapping of biomass yield in two switchgrass F1 populations (lowland x coastal and coastal x upland). Front Plant Sci 13:1282. https://doi.org/10.3389/FPLS.2022.739133/BIBTEX

    Article  Google Scholar 

  71. Peña-Castro JM, Del Moral S, Núñez-López L, Barrera-Figueroa BE, Amaya-Delgado L (2017) Biotechnological strategies to improve plant biomass quality for bioethanol production, Biomed Res Int 2017. https://doi.org/10.1155/2017/7824076

  72. R.G. de Paula, A.C.C. Antoniêto, L.F.C. Ribeiro, N. Srivastava, A. O’Donovan, P.K. Mishra, V.K. Gupta, R.N. Silva, Engineered microbial host selection for value-added bioproducts from lignocellulose, Biotechnol Adv. 37 (2019). https://doi.org/10.1016/j.biotechadv.2019.02.003

  73. Wang Y, Ling C, Chen Y, Jiang X, Chen GQ (2019) Microbial engineering for easy downstream processing, Biotechnol Adv 37. https://doi.org/10.1016/j.biotechadv.2019.03.004

  74. Kun RS, Gomes ACS, Hildén KS, Salazar Cerezo S, Mäkelä MR, de Vries RP (2019) Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol Adv 37. https://doi.org/10.1016/j.biotechadv.2019.02.017

  75. Tsoi R, Dai Z, You L (2019) Emerging strategies for engineering microbial communities. Biotechnol Adv 37. https://doi.org/10.1016/j.biotechadv.2019.03.011

  76. Singh BN, Raghubanshi AS, Koffas M, Gupta VK (2019) Microbial engineering biotechnologies, Biotechnol Adv 37. https://doi.org/10.1016/j.biotechadv.2019.05.005

  77. Srivastava N, Srivastava M, Manikanta A, Singh P, Ramteke PW, Mishra PK (2017) Nanomaterials for biofuel production using lignocellulosic waste. Environ Chem Lett 15:179–184. https://doi.org/10.1007/S10311-017-0622-6

    Article  Google Scholar 

  78. Singhvi M, Kim BS (2020) Current developments in lignocellulosic biomass conversion into biofuels using nanobiotechology approach. Energies 13:5300. https://doi.org/10.3390/EN13205300

    Article  Google Scholar 

  79. Bajpai P (2022) Application of nanotechnology for the pretreatment of lignocellulosic biomass. Lignocellulosic Biomass Biotechnol 187–204. https://doi.org/10.1016/B978-0-12-821889-1.00004-7

  80. Mirmohamadsadeghi S, Karimi K, Azarbaijani R, Parsa Yeganeh L, Angelidaki I, Nizami AS, Bhat R, Dashora K, Vijay VK, Aghbashlo M, Gupta VK, Tabatabaei M (2021) Pretreatment of lignocelluloses for enhanced biogas production: a review on influencing mechanisms and the importance of microbial diversity. Renew Sustain Energy Rev 135:110173. https://doi.org/10.1016/J.RSER.2020.110173

    Article  Google Scholar 

  81. Kamusoko R, Jingura RM, Parawira W, Sanyika WT (2019) Comparison of pretreatment methods that enhance biomethane production from crop residues - a systematic review. Biofuel Res J 6:1080–1089. https://doi.org/10.18331/BRJ2019.6.4.4

    Article  Google Scholar 

  82. Das N, Jena PK, Padhi D, Kumar Mohanty M, Sahoo G (2021) A comprehensive review of characterization, pretreatment and its applications on different lignocellulosic biomass for bioethanol production. Biomass Convers Biorefinery 1–25. https://doi.org/10.1007/S13399-021-01294-3

  83. M’Barek HN, Taidi B, Smaoui T, ben Aziz M, Mansouri A, Hajjaj H (2019) Isolation, screening and identification of ligno-cellulolytic fungi from northern central Morocco. https://Popups.Uliege.Be/1780-4507 23:207–217. https://doi.org/10.25518/1780-4507.18182

  84. Arif S, Nait M’barek H, Oulghazi S, Audenaert K, Hajjaj H, Ma HA (2022) Lignocellulose-degrading fungi newly isolated from central Morocco are potent biocatalysts for olive pomace valorization. Arch Microbiol 204(12):1–17. https://doi.org/10.1007/S00203-022-03318-6

    Article  Google Scholar 

  85. Nait M’Barek H, Arif S, Taidi B, Hajjaj H (2020) Consolidated bioethanol production from olive mill waste: Wood-decay fungi from central Morocco as promising decomposition and fermentation biocatalysts. Biotechnol Rep 28:e00541. https://doi.org/10.1016/J.BTRE.2020.E00541

    Article  Google Scholar 

  86. Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J, Cai X, Peng L (2017) AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnol Biofuels 10:1–12. https://doi.org/10.1186/s13068-017-0911-0

    Article  Google Scholar 

  87. Grabber JH, Davidson C, Tobimatsu Y, Kim H, Lu F, Zhu Y, Opietnik M, Santoro N, Foster CE, Yue F, Ress D, Pan X, Ralph J (2019) Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Sci 287:110070. https://doi.org/10.1016/j.plantsci.2019.02.004

    Article  Google Scholar 

  88. Zhao J, Quan C, Fan S (2013) Role of lignin in bio-ethanol production from lignocellulosic biomass. J Biobased Mater Bioenergy 7:533–540. https://doi.org/10.1166/jbmb.2013.1382

    Article  Google Scholar 

  89. Ruthes AC, Rudjito RC, Rencoret J, Gutiérrez A, del Río JC, Jiménez-Quero A, Vilaplana F (2020) Comparative recalcitrance and extractability of cell wall polysaccharides from cereal (wheat, rye, and barley) brans using subcritical water. ACS Sustain Chem Eng 8:7192–7204. https://doi.org/10.1021/acssuschemeng.0c01764

    Article  Google Scholar 

  90. Torres AF, Visser RGF, Trindade LM (2015) Bioethanol from maize cell walls: genes, molecular tools, and breeding prospects. GCB Bioenergy 7:591–607. https://doi.org/10.1111/gcbb.12164

    Article  Google Scholar 

  91. Fan C, Wang G, Wu L, Liu P, Huang J, Jin X, Zhang G, He Y, Peng L, Luo K, Feng S (2020) Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydr Polym 232:115448. https://doi.org/10.1016/j.carbpol.2019.115448

    Article  Google Scholar 

  92. Jung JH, Kannan B, Dermawan H, Moxley GW, Altpeter F (2016) Precision breeding for RNAi suppression of a major 4-coumarate:coenzyme A ligase gene improves cell wall saccharification from field grown sugarcane. Plant Mol Biol 92:505–517. https://doi.org/10.1007/s11103-016-0527-y

    Article  Google Scholar 

  93. Zhang H, Gou F, Zhang J, Liu W, Li Q, Mao Y, Botella JR, Zhu JK (2016) TALEN-mediated targeted mutagenesis produces a large variety of heritable mutations in rice. Plant Biotechnol J 14:186–194. https://doi.org/10.1111/pbi.12372

    Article  Google Scholar 

  94. Potters G, Van Goethem D, Schutte F (2010) Promising biofuel resources: lignocellulose and algae. Nat Educ 3:14

    Google Scholar 

Download references

Acknowledgements

This study was in part carried out in the Centre Européen de Biotechnologie et de Bioéconomie (CEBB), supported by the Région Grand Est, Département de la Marne, Greater Reims (France), and the European Union. In particular, the authors would like to thank the Département de la Marne, Greater Reims, Région Grand Est, and the European Union along with the European Regional Development Fund (ERDF Champagne Ardenne 2014-2020) for their financial support of the Biotechnology Chair of CentraleSupélec.

Author information

Authors and Affiliations

Authors

Contributions

Hasna Nait M’Barek: review idea, conceptualization, literature search, methodology, analysis, writing—original draft, writing—review and editing. Soukaina Arif: conceptualization, writing—original draft, writing—review and editing. Hassan Hajjaj: conceptualization, validation, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Hasna Nait M’Barek.

Ethics declarations

Ethics approval

NA.

Consent to participate

NA.

Consent for publication

This review contains two reused/adapted figures for which consent (RightsLink Licenses) was given to the principal author.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Lignocellulose is a rich and abundant matrix to be exploited in value-added biorefinery applications

• Knowledge-based deconstruction of lignocellulose is the first step toward deriving value from it

• Plant cell wall recalcitrance is a multivariate-complex component rooted in many compositional and architectural elements

• Recalcitrance could be predicted based on a biomarkers approach

• Field phenomics, genome-wide selection of bioenergy crops, tailoring plant cell wall synthesis genes, and recent genetic engineering technologies are advanced strategies to overcome biomass recalcitrance

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nait M’Barek, H., Arif, S. & Hajjaj, H. Deciphering biomarkers of the plant cell-wall recalcitrance: towards enhanced delignification and saccharification. Biomass Conv. Bioref. 13, 11469–11482 (2023). https://doi.org/10.1007/s13399-022-03594-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03594-8

Keywords

Navigation