Skip to main content
Log in

Application of the SCE optimization algorithm in determining thermal decomposition kinetics of Pinus radiata needles and Eucalyptus globulus leaves

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The goal of this work was to study the thermal decomposition kinetics of two exotic Chilean wildland fuels, namely, Pinus Radiata (PR) needles and Eucalyptus Globulus (EG) leaves, by using thermogravimetric analysis (TGA) experiments, and the shuffled complex evolution (SCE) technique to estimate kinetic parameters through an inverse optimization process, and 0D simulations to validate a kinetic model against experimental mass loss rates (MLR). TGA experiments were monitored under inert (N2) and oxidative (air) atmospheres at a temperature range from 200 to 600 °C. Analyses were performed at four heating rates of 5, 10, 15, and 20 °C min−1. We demonstrated the effectiveness of the SCE algorithm in determining solid-phase kinetics parameters by correlating several reaction mechanisms of inert and oxidative decomposition with experimental TGA data. Optimized parameters were used in the Gpyro simulation suite to predict MLR. Results show that, under inert conditions, the conversion from dry fuel to char can be modeled with a three-step mechanism for both species. Under oxidative conditions, the analysis showed that MLR could be predicted with a good fit using a five-step reaction kinetic mechanism for EG leaves, and four reactions for PR needles. Finally, a set of kinetic parameters is proposed for thermal decomposition models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data presented in the study is available on request from the corresponding author.

References

  1. (CONAF) CNF (2020) Resumen nacional ocurrencia y daño por incendios forestales 1977–2020

  2. Moore PF (2019) Global wildland fire management research needs. Current Forestry Reports 5:210–225. https://doi.org/10.1007/s40725-019-00099-y

    Article  Google Scholar 

  3. Reszka P, Fuentes A (2015) The great Valparaiso fire and fire safety management in Chile. Fire Technol 51:753–758. https://doi.org/10.1007/s10694-014-0427-0

    Article  Google Scholar 

  4. Guerrero, F., Hernández, C., Toledo, M., Espinoza, L., Carrasco, Y., Arriagada, A., Muñoz, A., Taborga, L., Bergmann, J., Carmona C (2021) Leaf thermal and chemical properties as natural drivers of plant flammability of native and exotic tree species of the Valpara í so Region , Chile. 1–24

  5. Guerrero F, Carmona C, Hernández C, et al (2022) Drivers of flammability of Eucalyptus globulus Labill leaves: terpenes, essential oils, and moisture content. Forests 13:. https://doi.org/10.3390/f13060908

  6. Coropración Nacional Forestal (2013) CONAF, por un Chile forestal sustentable. http://www.conaf.cl/wp-content/files_mf/1382992046CONAFporunChileForestalSustentable.pdf. Accessed 3 Oct 2022

  7. Shahbaz M, Yusup S, Inayat A et al (2017) Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash. Bioresour Technol 241:284–295. https://doi.org/10.1016/j.biortech.2017.05.119

    Article  Google Scholar 

  8. Zhang B, Zhang L, Yang Z, He Z (2017) An experiment study of biomass steam gasification over NiO/dolomite for hydrogen-rich gas production. Int J Hydrogen Energy 42:76–85. https://doi.org/10.1016/j.ijhydene.2016.10.044

    Article  Google Scholar 

  9. Reszka P, Cruz JJ, Valdivia J et al (2020) Ignition delay times of live and dead pinus radiata needles. Fire Saf J 112:102948. https://doi.org/10.1016/j.firesaf.2020.102948

    Article  Google Scholar 

  10. Rothermel RC (1972) A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Intermountain Forest and Range Experiment Station. 40 p

  11. Debiagi PEA, Gentile G, Pelucchi M et al (2016) Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis. Biomass Bioenergy 93:60–71. https://doi.org/10.1016/j.biombioe.2016.06.015

    Article  Google Scholar 

  12. Debiagi PEA, Pecchi C, Gentile G et al (2015) Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy Fuels 29:6544–6555

    Article  Google Scholar 

  13. Safi MJ, Mishra IM, Prasad B (2004) Global degradation kinetics of pine needles in air. Thermochim Acta 412:155–162. https://doi.org/10.1016/j.tca.2003.09.017

    Article  Google Scholar 

  14. Jolly WM, Parsons RA, Hadlow AM et al (2012) Relationships between moisture, chemistry, and ignition of Pinus contorta needles during the early stages of mountain pine beetle attack. For Ecol Manage 269:52–59. https://doi.org/10.1016/J.FORECO.2011.12.022

    Article  Google Scholar 

  15. Larini M, Giroud F, Porterie B, Loraud J-C (1998) A multiphase formulation for fire propagation in heterogeneous combustible media. Int J Heat Mass Transf 41:881–897. https://doi.org/10.1016/S0017-9310(97)00173-7

    Article  MATH  Google Scholar 

  16. Porterie B, Consalvi J-L, Loraud J-C et al (2007) Dynamics of wildland fires and their impact on structures. Combust Flame 149:314–328. https://doi.org/10.1016/j.combustflame.2006.12.017

    Article  Google Scholar 

  17. Morvan D, Dupuy JL (2001) Modeling of fire spread through a forest fuel bed using a multiphase formulation. Combust Flame 127:1981–1994. https://doi.org/10.1016/S0010-2180(01)00302-9

    Article  Google Scholar 

  18. Morvan D, Méradji S, Accary G (2009) Physical modelling of fire spread in Grasslands. Fire Saf J 44:50–61. https://doi.org/10.1016/J.FIRESAF.2008.03.004

    Article  Google Scholar 

  19. Morvan D (2015) Numerical study of the behaviour of a surface fire propagating through a firebreak built in a Mediterranean shrub layer. Fire Saf J 71:34–48. https://doi.org/10.1016/J.FIRESAF.2014.11.012

    Article  Google Scholar 

  20. Benkorichi S, Fateh T, Richard F et al (2017) Investigation of thermal degradation of pine needles using multi-step reaction mechanisms. Fire Saf J 91:811–819. https://doi.org/10.1016/j.firesaf.2017.03.058

    Article  Google Scholar 

  21. López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2013) Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol 143:562–574. https://doi.org/10.1016/J.BIORTECH.2013.06.052

    Article  Google Scholar 

  22. Chen R, Li Q, Zhang Y et al (2019) Pyrolysis kinetics and mechanism of typical industrial non-tyre rubber wastes by peak-differentiating analysis and multi kinetics methods. Fuel 235:1224–1237. https://doi.org/10.1016/J.FUEL.2018.08.121

    Article  Google Scholar 

  23. Jiang L, Zhang D, Li M et al (2018) Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel 222:11–20. https://doi.org/10.1016/J.FUEL.2018.02.143

    Article  Google Scholar 

  24. Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79. https://doi.org/10.1016/j.pecs.2015.10.002

    Article  Google Scholar 

  25. Anca-Couce A, Scharler R (2017) Modelling heat of reaction in biomass pyrolysis with detailed reaction schemes. Fuel 206:572–579. https://doi.org/10.1016/j.fuel.2017.06.011

    Article  Google Scholar 

  26. Dimitrakopoulos AP (2001) Thermogravimetric analysis of Mediterranean plant species. J Anal Appl Pyrolysis 60:123–130. https://doi.org/10.1016/S0165-2370(00)00164-9

    Article  Google Scholar 

  27. Tihay V, Gillard P (2010) Pyrolysis gases released during the thermal decomposition of three Mediterranean species. J Anal Appl Pyrolysis 88:168–174. https://doi.org/10.1016/j.jaap.2010.04.002

    Article  Google Scholar 

  28. Gerandi G, Tihay-Felicelli V, Santoni P-A et al (2019) Multi-scale modeling of the degradation of thermally thin wood plates. Fire Saf J 108:102823. https://doi.org/10.1016/j.firesaf.2019.102823

    Article  Google Scholar 

  29. Burra KRG, Gupta AK (2019) Modeling of biomass pyrolysis kinetics using sequential multi-step reaction model. Fuel 237:1057–1067. https://doi.org/10.1016/j.fuel.2018.09.097

    Article  Google Scholar 

  30. Amini E, Safdari M-S, Weise DR, Fletcher TH (2019) Pyrolysis kinetics of live and dead wildland vegetation from the Southern United States. J Anal Appl Pyrolysis 142:104613. https://doi.org/10.1016/J.JAAP.2019.05.002

    Article  Google Scholar 

  31. Cumming JW, McLaughlin J (1982) The thermogravimetric behaviour of coal. Thermochim Acta 57:253–272. https://doi.org/10.1016/0040-6031(82)80037-3

    Article  Google Scholar 

  32. Cai J, Wang Y, Zhou L, Huang Q (2008) Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Process Technol 89:21–27. https://doi.org/10.1016/J.FUPROC.2007.06.006

    Article  Google Scholar 

  33. Àgueda A, Liodakis S, Pastor E, Planas E (2009) Characterization of the thermal degradation and heat of combustion of Pinus halepensis needles treated with ammonium-polyphosphate-based retardants. J Therm Anal Calorim 98:235–243. https://doi.org/10.1007/s10973-009-0134-0

    Article  Google Scholar 

  34. Wadhwani R, Sutherland D, Moinuddin KAM, Joseph P (2017) Kinetics of pyrolysis of litter materials from pine and eucalyptus forests. J Therm Anal Calorim 130:2035–2046. https://doi.org/10.1007/s10973-017-6512-0

    Article  Google Scholar 

  35. Richter F, Rein G (2020) Reduced chemical kinetics for microscale pyrolysis of softwood and hardwood. Bioresour Technol 301:122619. https://doi.org/10.1016/j.biortech.2019.122619

    Article  Google Scholar 

  36. McGrattan K, Klein B, Hostikka S, Floyd J (2010) Fire dynamics simulator (version 5), user’s guide. NIST Spec Publ 1019:1–186

    Google Scholar 

  37. Lautenberger C, Fernandez-Pello C (2009) A model for the oxidative pyrolysis of wood. Combust Flame 156:1503–1513. https://doi.org/10.1016/j.combustflame.2009.04.001

    Article  Google Scholar 

  38. Stoliarov S, Lyon R (2008) Thermo-kinetic model of burning for pyrolyzing materials. Fire Safety Science 9:1141–1152

    Article  Google Scholar 

  39. Ding Y, Wang C, Lu S (2015) Modeling the pyrolysis of wet wood using FireFOAM. Energy Convers Manag 98:500–506. https://doi.org/10.1016/j.enconman.2015.03.106

    Article  Google Scholar 

  40. Ding Y, Ezekoye OA, Zhang J et al (2018) The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel 232:147–153. https://doi.org/10.1016/j.fuel.2018.05.140

    Article  Google Scholar 

  41. Ding Y, Fukumoto K, Ezekoye OA et al (2020) Experimental and numerical simulation of multi-component combustion of typical charring material. Combust Flame 211:417–429. https://doi.org/10.1016/j.combustflame.2019.10.016

    Article  Google Scholar 

  42. Lautenberger C, Fernandez-Pello C (2009) Generalized pyrolysis model for combustible solids. Fire Saf J 44:819–839. https://doi.org/10.1016/j.firesaf.2009.03.011

    Article  Google Scholar 

  43. Ahmaruzzaman M (2008) Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass. Bioresour Technol 99:5043–5050. https://doi.org/10.1016/j.biortech.2007.09.021

    Article  Google Scholar 

  44. Lautenberger C, Rein G, Fernandez-Pello C (2006) The application of a genetic algorithm to estimate material properties for fire modeling from bench-scale fire test data. Fire Saf J 41:204–214. https://doi.org/10.1016/J.FIRESAF.2005.12.004

    Article  Google Scholar 

  45. Ding Y, Wang C, Chaos M et al (2016) Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution. Bioresour Technol 200:658–665. https://doi.org/10.1016/J.BIORTECH.2015.10.082

    Article  Google Scholar 

  46. Duan QY, Gupta VK, Sorooshian AS, Dixon LCW (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76:501–521. https://doi.org/10.1007/BF00939380

  47. Hasalová L, Ira J, Jahoda M (2016) Practical observations on the use of shuffled complex evolution (SCE) algorithm for kinetic parameters estimation in pyrolysis modeling. Fire Saf J 80:71–82. https://doi.org/10.1016/j.firesaf.2016.01.007

    Article  Google Scholar 

  48. Leroy V, Cancellieri D, Leoni E, Rossi J-L (2010) Kinetic study of forest fuels by TGA: model-free kinetic approach for the prediction of phenomena. Thermochim Acta 497:1–6. https://doi.org/10.1016/j.tca.2009.08.001

    Article  Google Scholar 

  49. Lautenberger C, Fernandez-Pello AC (2011) Optimization algorithms for material pyrolysis property estimation. Fire Safety Science 10:751–764

    Article  Google Scholar 

  50. Purnomo DMJ, Richter F, Bonner M et al (2020) Role of optimisation method on kinetic inverse modelling of biomass pyrolysis at the microscale. Fuel 262:116251. https://doi.org/10.1016/J.FUEL.2019.116251

    Article  Google Scholar 

  51. Yuen ACY, Chen TBY, Wang C et al (2020) Utilising genetic algorithm to optimise pyrolysis kinetics for fire modelling and characterisation of chitosan/graphene oxide polyurethane composites. Compos B Eng 182:107619. https://doi.org/10.1016/J.COMPOSITESB.2019.107619

    Article  Google Scholar 

  52. Park T-Y, Froment GF (1998) A hybrid genetic algorithm for the estimation of parameters in detailed kinetic models. Comput Chem Eng 22:S103–S110. https://doi.org/10.1016/S0098-1354(98)00043-X

    Article  Google Scholar 

  53. Chang Y, Jia M, Niu B et al (2018) Construction of a skeletal oxidation mechanism of n-pentanol by integrating decoupling methodology, genetic algorithm, and uncertainty quantification. Combust Flame 194:15–27. https://doi.org/10.1016/J.COMBUSTFLAME.2018.04.012

    Article  Google Scholar 

  54. Elliott L, Ingham DB, Kyne AG et al (2004) Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Prog Energy Combust Sci 30:297–328. https://doi.org/10.1016/J.PECS.2004.02.002

    Article  Google Scholar 

  55. Fiola G (2019) Fiola G (2019) Improving inverse analysis of pyrolysis model parametrization using hill climbing algorithms. University of Maryland. https://doi.org/10.13016/73q9-6f3r

  56. Lautenberger C (2007) A Generalized Pyrolysis Model for Combustible Solids. UC Berkeley: Combustion Processes Laboratories. Retrieved from https://escholarship.org/uc/item/7wz5m7dg

  57. Leoni E, Tomi P, Khoumeri B et al (2001) Thermal degradation of Pinus pinaster needles by DSC. Part 1: Dehydration kinetics. J Fire Sci 19:379–397. https://doi.org/10.1106/QBDC-5VH2-U5X2-FUF7

    Article  Google Scholar 

  58. Leoni E, Cancellieri D, Balbi N, Tomi, P, Bernardini AF, Kaloustian J, Marcelli T (2003) Thermal Degradation of Pinus Pinaster Needles by DSC, Part 2: Kinetics of Exothermic Phenomena. J Fire Sci 21:117–130. https://doi.org/10.1177/0734904103021002002

  59. Severino G, Cabrera A, Contreras J, et al (2020) A new burner to characterize laminar diffusion flames generated from wildland fuels. Fire Saf J 102947. https://doi.org/10.1016/J.FIRESAF.2020.102947

  60. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A (2011) Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol 102:6230–6238. https://doi.org/10.1016/j.biortech.2011.02.060

    Article  Google Scholar 

  61. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54. https://doi.org/10.1016/S0960-8524(01)00119-5

    Article  Google Scholar 

  62. Parikh J, Channiwala SA, Ghosal GK (2007) A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel 86:1710–1719. https://doi.org/10.1016/j.fuel.2006.12.029

    Article  Google Scholar 

  63. Gominho J, Lourenço A, Miranda I, Pereira H (2012) Chemical and fuel properties of stumps biomass from Eucalyptus globulus plantations. Ind Crops Prod 39:12–16. https://doi.org/10.1016/j.indcrop.2012.01.026

    Article  Google Scholar 

  64. Shen J, Zhu S, Liu X et al (2010) The prediction of elemental composition of biomass based on proximate analysis. Energy Convers Manag 51:983–987. https://doi.org/10.1016/j.enconman.2009.11.039

    Article  Google Scholar 

  65. Cuiping L, Chuangzhi W, Yanyongjie HH (2004) Chemical elemental characteristics of biomass fuels in China. Biomass Bioenergy 27:119–130. https://doi.org/10.1016/j.biombioe.2004.01.002

    Article  Google Scholar 

  66. Chen Z, Zhu Q, Wang X et al (2015) Pyrolysis behaviors and kinetic studies on Eucalyptus residues using thermogravimetric analysis. Energy Convers Manag 105:251–259. https://doi.org/10.1016/j.enconman.2015.07.077

    Article  Google Scholar 

  67. Costa VJ, Vieira RM, Girotto SBFT, Simioni FJ (2016) Pyrolysis and thermogravimetry of blended and nonblended residues of pine and eucalyptus forestry woods. Environ Prog Sustain Energy 35:1521–1528. https://doi.org/10.1002/ep.12372

    Article  Google Scholar 

  68. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90. https://doi.org/10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  69. Shafizadeh F (1985) Pyrolytic reactions and products of biomass. In: Fundamentals of thermochemical biomass conversion. Springer, pp 183–217

  70. Liu N, Wang B, Fan W (2003) Kinetic compensation effect in the thermal decomposition of biomass in air atmosphere. Fire Safety Science 7:581–592. https://doi.org/10.3801/IAFSS.FSS.7-581

    Article  Google Scholar 

  71. Font R, Marcilla A, Verdti E, Devesa J (1991) Thermogravimetric kinetic study of the pyrolysis of almond shells and almond shells impregnated with CoCl. J Analytical Appl Pyrolysis 21(3):249–264. https://doi.org/10.1016/0165-2370(91)80001-O

  72. Zanuncio AJV, Motta JP, da Silveira TA et al (2013) Physical and colorimetric changes in Eucalyptus grandis wood after heat treatment. BioResources 9:293–302

    Article  Google Scholar 

  73. Fateh T, Richard F, Batiot B et al (2016) Characterization of the burning behavior and gaseous emissions of pine needles in a cone calorimeter – FTIR apparatus. Fire Saf J 82:91–100. https://doi.org/10.1016/J.FIRESAF.2016.03.008

    Article  Google Scholar 

  74. Fateh T, Richard F, Zaida J et al (2016) Multi-scale experimental investigations of the thermal degradation of pine needles. Fire Mater 41:654–674. https://doi.org/10.1002/fam.2407

    Article  Google Scholar 

  75. Fateh T, Rogaume T, Luche J et al (2013) Modeling of the thermal decomposition of a treated plywood from thermo-gravimetry and Fourier-transformed infrared spectroscopy experimental analysis. J Anal Appl Pyrolysis 101:35–44. https://doi.org/10.1016/J.JAAP.2013.02.015

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the National Agency for Research and Development (ANID) Chile through the program Fondecyt/Iniciación 11161045 and ANID/Scholarship Program/DOCTORADO BECAS CHILE/2021 – 21211230.

Funding

This research was funded by the National Agency for Research and Development (ANID) Chile through the program Fondecyt/Iniciación 11161045 and the ANID/Scholarship Program/DOCTORADO BECAS CHILE/2021 – 21211230.

Author information

Authors and Affiliations

Authors

Contributions

Andrés Arriagada: conceptualization; methodology; formal analysis; visualization; writing—review and editing; supervision. Jorge Contreras: conceptualization; methodology; formal analysis; visualization; writing—review and editing; supervision. Jean-Louis Consalvi: conceptualization; methodology; formal analysis; visualization; writing—review and editing; supervision.

Corresponding author

Correspondence to Andrés Arriagada.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 479 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arriagada, A., Contreras, J. & Consalvi, JL. Application of the SCE optimization algorithm in determining thermal decomposition kinetics of Pinus radiata needles and Eucalyptus globulus leaves. Biomass Conv. Bioref. 13, 15267–15279 (2023). https://doi.org/10.1007/s13399-022-03567-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03567-x

Keywords

Navigation