Skip to main content

Advertisement

Log in

Natural cellulosic fiber from Carex panicea stem for polymer composites: extraction and characterization

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Nowadays, commercial natural fibers cannot meet the increasing industrial demand. In order to meet this demand, recommending a new natural fiber for the composites industry is very important. In this paper, Carex panicea fibers were characterized for the first time and introduced as a potential natural fiber. Physical, chemical, thermal, mechanical, and morphological properties of the Carex panicea fibers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Carex panicea fibers consist of 65.70% cellulose and 27.8% hemicellulose content. The density and crystallinity index of the fiber were found as 1.247 g/cm3 and 56.42%, respectively. Tensile strength and Young’s modulus of fibers were determined as 143 ± 41 MPa and 5.5 ± 1.86 GPa, respectively. Carex panicea fibers are thermally stable up to 219.4 °C. Carex panicea fibers are potential bio-degradable reinforcement material for light-weight polymeric composites with relatively enhanced mechanical properties and decomposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Kumar R, Sivaganesan S, Senthamaraikannan P et al (2020) Characterization of new cellulosic fiber from the bark of Acacia nilotica L. plant. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1738305

    Article  Google Scholar 

  2. Khan A, Vijay R, Singaravelu DL et al (2021) Extraction and characterization of natural fiber from Eleusine indica grass as reinforcement of sustainable fiber reinforced polymer composites. J Nat Fibers 18:1742–1750. https://doi.org/10.1080/15440478.2019.1697993

    Article  Google Scholar 

  3. Narayanasamy P, Balasundar P, Senthil S et al (2020) Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites. Int J Biol Macromol 150:793–801. https://doi.org/10.1016/j.ijbiomac.2020.02.134

    Article  Google Scholar 

  4. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892

    Article  Google Scholar 

  5. Jiang S, Chen Y, Duan G et al (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720

    Article  Google Scholar 

  6. Linan LZ, Cidreira ACM, da Rocha CQ et al (2021) Utilization of acai berry residual biomass for extraction of lignocellulosic byproducts. J Bioresour Bioprod 6:323–337. https://doi.org/10.1016/j.jobab.2021.04.007

    Article  Google Scholar 

  7. Fatima A, Yasir S, Khan MS et al (2021) Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications. J Bioresour Bioprod 6:26–32. https://doi.org/10.1016/j.jobab.2020.11.002

    Article  Google Scholar 

  8. Venkatesh G, Vignesh V, Nagarajan KJ et al (2021) Extraction and characterization of agricultural discarded Sesbania aculeata stem waste as potential alternate for synthetic fibers in polymer composites. J Nat Fibers. https://doi.org/10.1080/15440478.2021.2002756

    Article  Google Scholar 

  9. Babu NBK, Vignesh V, Nagaprasad N et al (2022) Studies on mechanical characterisation of bio-fibre reinforced polymer composites. Bio-Fiber reinforced composite materials. Springer, Singapore, pp 143–155

    Chapter  Google Scholar 

  10. Vinod A, Vijay R, Singaravelu DL et al (2021) Extraction and characterization of natural fiber from stem of Cardiospermum halicababum. J Nat Fibers 18:898–908. https://doi.org/10.1080/15440478.2019.1669514

    Article  Google Scholar 

  11. Amutha V, Senthilkumar B (2021) Physical, chemical, thermal, and surface morphological properties of the bark fiber extracted from Acacia concinna plant. J Nat Fibers 18:1661–1674. https://doi.org/10.1080/15440478.2019.1697986

    Article  Google Scholar 

  12. Ding L, Han X, Cao L et al (2022) Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J Bioresour Bioprod 7:190–200. https://doi.org/10.1016/j.jobab.2021.11.002

    Article  Google Scholar 

  13. Jamshaid H, Mishra R, Basra S et al (2020) Lignocellulosic natural fiber reinforced bisphenol F epoxy based bio-composites: characterization of mechanical electrical performance. J Nat Fibers 19:3317–3332. https://doi.org/10.1080/15440478.2020.1843586

    Article  Google Scholar 

  14. Bijlwan PP, Prasad L, Sharma A (2021) Recent advancement in the fabrication and characterization of natural fiber reinforced composite: a review. In: Materials Today: Proceedings. Elsevier, pp 1718–1722

  15. Vignesh V, Balaji AN, Mohamed Rabi BR et al (2021) Cellulosic fiber based hybrid composites: a comparative investigation into their structurally influencing mechanical properties. Constr Build Mater 271:121587. https://doi.org/10.1016/j.conbuildmat.2020.121587

    Article  Google Scholar 

  16. Gaba EW, Asimeng BO, Kaufmann EE et al (2021) Mechanical and structural characterization of pineapple leaf fiber. Fibers 9:51. https://doi.org/10.3390/fib9080051

    Article  Google Scholar 

  17. Kian LK, Saba N, Jawaid M, Fouad H (2020) Characterization of microcrystalline cellulose extracted from olive fiber. Int J Biol Macromol 156:347–353. https://doi.org/10.1016/j.ijbiomac.2020.04.015

    Article  Google Scholar 

  18. Alvarez V, Rodriguez E, Vázquez A (2006) Thermal degradation and decomposition of jute/vinylester composites. J Therm Anal Calorim 85:383–389

    Article  Google Scholar 

  19. Keshk S, Suwinarti W, Sameshima K (2006) Physicochemical characterization of different treatment sequences on kenaf bast fiber. Carbohydr Polym 65:202–206. https://doi.org/10.1016/j.carbpol.2006.01.005

    Article  Google Scholar 

  20. Sawpan MA, Pickering KL, Fernyhough A (2011) Effect of various chemical treatments on the fibre structure and tensile properties of industrial hemp fibres. Compos Part A Appl Sci Manuf 42:888–895. https://doi.org/10.1016/j.compositesa.2011.03.008

    Article  Google Scholar 

  21. Xu Y, Adekunle K, Ramamoorthy SK et al (2020) Methacrylated lignosulfonate as compatibilizer for flax fiber reinforced biocomposites with soybean-derived polyester matrix. Compos Commun 22:100536. https://doi.org/10.1016/J.COCO.2020.100536

    Article  Google Scholar 

  22. Jagadeesh P, Puttegowda M, Mavinkere Rangappa S, Siengchin S (2021) A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications. Polym Compos 42:6239–6264. https://doi.org/10.1002/PC.26312

    Article  Google Scholar 

  23. Dawit JB, Regassa Y, Lemu HG (2021) Property characterization of acacia tortilis for natural fiber reinforced polymer composite. Mater Today Proc 44:1718–1722. https://doi.org/10.1016/j.rinma.2019.100054

    Article  Google Scholar 

  24. Vijay R, Manoharan S, Arjun S et al (2020) Characterization of silane-treated and untreated natural fibers from stem of Leucas aspera. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1710651

    Article  Google Scholar 

  25. Kılınç AÇ, Köktaş S, Seki Y et al (2018) Extraction and investigation of lightweight and porous natural fiber from Conium maculatum as a potential reinforcement for composite materials in transportation. Compos Part B Eng 140:1–8. https://doi.org/10.1016/j.compositesb.2017.11.059

    Article  Google Scholar 

  26. Ahmed J, Balaji MA, Saravanakumar SS, Senthamaraikannan P (2021) A comprehensive physical, chemical and morphological characterization of novel cellulosic fiber extracted from the stem of Elettaria cardamomum plant. J Nat Fibers 18:1460–1471. https://doi.org/10.1080/15440478.2019.1691121

    Article  Google Scholar 

  27. Rajeshkumar G, Devnani GL, Maran JP et al (2021) Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose 28:5373–5385. https://doi.org/10.1007/s10570-021-03919-2

    Article  Google Scholar 

  28. Gedik G (2021) Extraction of new natural cellulosic fiber from Trachelospermum jasminoides (star jasmine) and its characterization for textile and composite uses. Cellulose 28:6899–6915. https://doi.org/10.1007/s10570-021-03952-1

    Article  Google Scholar 

  29. Sumihartati A, Wardiningsih W, Al Kautsar N et al (2021) Natural cellulosic fiber from Cordyline australis leaves for textile application: extraction and characterization. Res J Text Appar. https://doi.org/10.1108/RJTA-04-2021-0049

    Article  Google Scholar 

  30. Eyupoglu S, Merdan N (2021) Physicochemical properties of new plant based fiber from lavender stem. J Nat Fibers: 1–11. https://doi.org/10.1080/15440478.2021.1982816

  31. Belouadah Z, Toubal LM, Belhaneche-Bensemra N, Ati A (2021) Characterization of ligno-cellulosic fiber extracted from Atriplex halimus L. plant. Int J Biol Macromol 168:806–815. https://doi.org/10.1016/j.ijbiomac.2020.11.142

    Article  Google Scholar 

  32. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L. Carbohydr Polym 186:332–343. https://doi.org/10.1016/j.carbpol.2018.01.072

    Article  Google Scholar 

  33. Belouadah Z, Ati A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum spartum L. Carbohydr Polym 134:429–437. https://doi.org/10.1016/j.carbpol.2015.08.024

    Article  Google Scholar 

  34. Chakravarthy KS, Madhu SM, Naga Raju JS, Shariff MdJ (2020) Characterization of novel natural cellulosic fiber extracted from the stem of Cissus vitiginea plant. Int J Biol Macromol 161:1358–1370. https://doi.org/10.1016/j.ijbiomac.2020.07.230

    Article  Google Scholar 

  35. Arul Marcel Moshi A, Ravindran D, Sundara Bharathi SR et al (2020) Characterization of natural cellulosic fiber extracted from Grewia damine flowering plant’s stem. Int J Biol Macromol 164:1246–1255. https://doi.org/10.1016/j.ijbiomac.2020.07.225

    Article  Google Scholar 

  36. Dalmis R, Kilic GB, Seki Y et al (2020) Characterization of a novel natural cellulosic fiber extracted from the stem of Chrysanthemum morifolium. Cellulose 27:8621–8634. https://doi.org/10.1007/s10570-020-03385-2

    Article  Google Scholar 

  37. Vijay R, James Dhilip JD, Gowtham S et al (2022) Characterization of natural cellulose fiber from the barks of Vachellia farnesiana. J Nat Fibers 19:1343–1352. https://doi.org/10.1080/15440478.2020.1764457

    Article  Google Scholar 

  38. KılınÇ AÇ, Köktaş S, Atagür M, Seydibeyoglu MÖ (2018) Effect of extraction methods on the properties of Althea officinalis L. fibers. J Nat Fibers 15:325–336. https://doi.org/10.1080/15440478.2017.1325813

    Article  Google Scholar 

  39. Moussaoui N, Rokbi M, Osmani H et al (2021) Extraction and characterization of fiber treatment Inula viscosa fibers as potential polymer composite reinforcement. J Polym Environ 29:3779–3793. https://doi.org/10.1007/s10924-021-02147-w

    Article  Google Scholar 

  40. Raju JSN, Depoures MV, Kumaran P (2021) Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem. Int J Biol Macromol 186:886–896. https://doi.org/10.1016/j.ijbiomac.2021.07.061

    Article  Google Scholar 

  41. Mylsamy K, Rajendran I (2010) Investigation on physio-chemical and mechanical properties of raw and alkali-treated Agave americana fiber. J Reinf Plast Compos 29:2925–2935. https://doi.org/10.1177/0731684410362817

    Article  Google Scholar 

  42. Kumar AM, Parameshwaran R, Kumar PS et al (2017) Effects of abaca fiber reinforcement on the dynamic mechanical behavior of vinyl ester composites. Mater Test 59:555–562. https://doi.org/10.3139/120.111044

    Article  Google Scholar 

  43. Bhuvaneshwaran M, Subramani SP, Palaniappan SK et al (2021) Natural cellulosic fiber from Coccinia indica stem for polymer composites: extraction and characterization. J Nat Fibers 18:644–652. https://doi.org/10.1080/15440478.2019.1642826

    Article  Google Scholar 

  44. Mylsamy B, Palaniappan SK, Subramani SP et al (2020) Innovative characterization and mechanical properties of natural cellulosic Coccinia indica fiber and its composites. Mater Test 62:61–67. https://doi.org/10.3139/120.111451

    Article  Google Scholar 

  45. Mylsamy B, Palaniappan SK, Pavayee Subramani S et al (2019) Impact of nanoclay on mechanical and structural properties of treated Coccinia indica fibre reinforced epoxy composites. J Mater Res Technol 8:6021–6028. https://doi.org/10.1016/j.jmrt.2019.09.076

    Article  Google Scholar 

  46. Aruchamy K, Pavayee Subramani S, Palaniappan SK et al (2020) Study on mechanical characteristics of woven cotton/bamboo hybrid reinforced composite laminates. J Mater Res Technol 9:718–726. https://doi.org/10.1016/j.jmrt.2019.11.013

    Article  Google Scholar 

  47. Sethuraman B, Subramani SP, Palaniappan SK et al (2020) Experimental investigation on dynamic mechanical and thermal characteristics of Coccinia indica fiber reinforced polyester composites. J Eng Fiber Fabr 15:1–6. https://doi.org/10.1177/1558925020905831

    Article  Google Scholar 

  48. Chinnasamy V, Subramani SP, Palaniappan SK et al (2020) Characterization on thermal properties of glass fiber and kevlar fiber with modified epoxy hybrid composites. J Mater Res Technol 9:3158–3167. https://doi.org/10.1016/j.jmrt.2020.01.061

    Article  Google Scholar 

  49. Mylsamy B, Chinnasamy V, Palaniappan SK et al (2020) Effect of surface treatment on the tribological properties of Coccinia indica cellulosic fiber reinforced polymer composites. J Mater Res Technol 9:16423–16434. https://doi.org/10.1016/j.jmrt.2020.11.100

    Article  Google Scholar 

  50. Aruchamy K, Subramani SP, Palaniappan SK et al (2022) Effect of blend ratio on the thermal comfort characteristics of cotton/bamboo blended fabrics. J Nat Fibers 19:105–114. https://doi.org/10.1080/15440478.2020.1731903

    Article  Google Scholar 

  51. Nagappan S, Subramani SP, Palaniappan SK, Mylsamy B (2021) Impact of alkali treatment and fiber length on mechanical properties of new agro waste Lagenaria siceraria fiber reinforced epoxy composites. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1932681

    Article  Google Scholar 

  52. Rieley JO (1967) The ecology of carex flacca schreb and carex panicea L. Dissertation, Durham University

  53. Vermeer JG (1983) Berendse F (1983) The relationship between nutrient availability, shoot biomass and species richness in grassland and wetland communities. Vegetatio 532(53):121–126. https://doi.org/10.1007/BF00043032

    Article  Google Scholar 

  54. Keskin OY, Dalmis R, Balci Kilic G et al (2020) Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose 27:9963–9974

    Article  Google Scholar 

  55. Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. https://doi.org/10.1007/s10570-016-0881-6

    Article  Google Scholar 

  56. Sreenivas HT, Krishnamurthy N, Arpitha GR (2020) A comprehensive review on light weight kenaf fiber for automobiles. Int J Light Mater Manuf 3:328–337

    Google Scholar 

  57. Shyam Kumar R, Balasundar P, Al-Dhabi NA et al (2021) A new natural cellulosic pigeon pea (Cajanus cajan) pod fiber characterization for bio-degradable polymeric composites. J Nat Fibers 18:1285–1295. https://doi.org/10.1080/15440478.2019.1689887

    Article  Google Scholar 

  58. Gapsari F, Purnowidodo A, Hidayatullah S, Suteja S (2021) Characterization of Timoho Fiber as a reinforcement in green composite. J Mater Res Technol 13:1305–1315. https://doi.org/10.1016/j.jmrt.2021.05.049

    Article  Google Scholar 

  59. Senthamaraikannan P, Sanjay MR, Bhat KS et al (2019) Characterization of natural cellulosic fiber from bark of Albizia amara. J Nat Fibers 16:1124–1131. https://doi.org/10.1080/15440478.2018.1453432

    Article  Google Scholar 

  60. Hyness NRJ, Vignesh NJ, Senthamaraikannan P et al (2018) Characterization of new natural cellulosic fiber from Heteropogon contortus plant. J Nat Fibers 15:146–153. https://doi.org/10.1080/15440478.2017.1321516

    Article  Google Scholar 

  61. Manimaran P, Saravanan SP, Sanjay MR et al (2020) New lignocellulosic Aristida adscensionis fibers as novel reinforcement for composite materials: extraction, characterization and weibull distribution analysis. J Polym Environ 28:803–811. https://doi.org/10.1007/s10924-019-01640-7

    Article  Google Scholar 

  62. Subramanian SG, Rajkumar R, Ramkumar T (2021) Characterization of natural cellulosic fiber from Cereus hildmannianus. J Nat Fibers 18:343–354. https://doi.org/10.1080/15440478.2019.1623744

    Article  Google Scholar 

  63. Ramkumar R, Saravanan P (2021) Characterization of the cellulose fibers extracted from the bark of Piliostigma racemosa. J Nat Fibers. https://doi.org/10.1080/15440478.2021.1875356

    Article  Google Scholar 

  64. Maepa CE, Jayaramudu J, Okonkwo JO et al (2015) Extraction and characterization of natural cellulose fibers from maize tassel. Int J Polym Anal Charact 20:99–109. https://doi.org/10.1080/1023666X.2014.961118

    Article  Google Scholar 

  65. Seki Y, Köktaş S, Kilinc AC, Dalmis R (2019) Green alternative treatment for cellulosic fibers: ionic liquid modification of Abelmoschus esculentus fibers with methyl-tri-n-butyl ammonium methyl sulphate. Mater Res Express 6:8. https://doi.org/10.1088/2053-1591/AB2015

    Article  Google Scholar 

  66. Seki Y, Kılınç AÇ, Dalmis R et al (2018) Surface modification of new cellulose fiber extracted from Conium maculatum plant: a comparative study. Cellulose 25:3267–3280. https://doi.org/10.1007/S10570-018-1797-0

    Article  Google Scholar 

  67. Uma Maheswari C, Obi Reddy K, Muzenda E et al (2012) Extraction and characterization of cellulose microfibrils from agricultural residue - Cocos nucifera L. Biomass Bioenerg 46:555–563. https://doi.org/10.1016/j.biombioe.2012.06.039

    Article  Google Scholar 

  68. Obi Reddy K, Guduri BR, Rajulu AV (2009) Structural characterization and tensile properties of Borassus fruit fibers. J Appl Polym Sci 114:603–611. https://doi.org/10.1002/app.30584

    Article  Google Scholar 

  69. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234. https://doi.org/10.1002/app.10460

    Article  Google Scholar 

  70. Sreenivasan VS, Somasundaram S, Ravindran D et al (2011) Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres - an exploratory investigation. Mater Des 32:453–461. https://doi.org/10.1016/j.matdes.2010.06.004

    Article  Google Scholar 

  71. Jonoobi M, Harun J, Shakeri A et al (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639. https://doi.org/10.15376/biores.4.2.626-639

    Article  Google Scholar 

  72. Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A Appl Sci Manuf 39:1632–1637. https://doi.org/10.1016/j.compositesa.2008.07.007

    Article  Google Scholar 

  73. Dalmis R, Köktaş S, Seki Y, Kılınç AÇ (2020) Characterization of a new natural cellulose based fiber from Hierochloe odarata. Cellulose 27:127–139. https://doi.org/10.1007/s10570-019-02779-1

    Article  Google Scholar 

  74. Fackler K, Stevanic JS, Ters T et al (2011) FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells. Holzforschung 65:411–420. https://doi.org/10.1515/HF.2011.048

    Article  Google Scholar 

  75. De Rosa IM, Kenny JM, Puglia D et al (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122. https://doi.org/10.1016/j.compscitech.2009.09.013

    Article  Google Scholar 

  76. De Rosa IM, Kenny JM, Maniruzzaman M et al (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254. https://doi.org/10.1016/j.compscitech.2010.11.023

    Article  Google Scholar 

  77. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues - wheat straw and soy hulls. Bioresour Technol 99:1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

    Article  Google Scholar 

  78. Xu F, Yu J, Tesso T et al (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energy 104:801–809

    Article  Google Scholar 

  79. Oh SY, Dong IY, Shin Y et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  Google Scholar 

  80. Porras A, Maranon A, Ashcroft IA (2015) Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Compos Part B Eng 74:66–73. https://doi.org/10.1016/j.compositesb.2014.12.033

    Article  Google Scholar 

  81. Saha P, Manna S, Chowdhury SR et al (2010) Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment. Bioresour Technol 101:3182–3187. https://doi.org/10.1016/j.biortech.2009.12.010

    Article  Google Scholar 

  82. Sarikanat M, Seki Y, Sever K, Durmuşkahya C (2014) Determination of properties of Althaea officinalis L. (Marshmallow) fibres as a potential plant fibre in polymeric composite materials. Compos Part B Eng 57:180–186. https://doi.org/10.1016/j.compositesb.2013.09.041

    Article  Google Scholar 

  83. Belaadi A, Amroune S, Seki Y et al (2022) Extraction and characterization of a new lignocellulosic fiber from Yucca treculeana L. leaf as potential reinforcement for industrial biocomposites. J Nat Fibers: 1–16. https://doi.org/10.1080/15440478.2022.2054895

  84. Köktaş S, Keskin ÖY, Dalmiş R et al (2022) Extraction and characterization of natural cellulosic fiber from Taraxacum Sect. Ruderalia. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2064389

    Article  Google Scholar 

  85. Albayrak D, Seki Y, Balcı Kılıç G et al (2022) Exploration of alternative cellulosic natural fiber from the stem of Malva slyvestris. J Nat Fibers. https://doi.org/10.1080/15440478.2022.2073498

    Article  Google Scholar 

  86. Kale RD, Getachew Alemayehu T, Gorade VG (2020) Extraction and characterization of lignocellulosic fibers from Girardinia bullosa (Steudel) Wedd. (Ethiopian Kusha Plant). J Nat Fibers 17:906–920. https://doi.org/10.1080/15440478.2018.1539940

    Article  Google Scholar 

  87. Ridzuan MJM, Abdul Majid MS, Afendi M et al (2016) Characterisation of natural cellulosic fibre from Pennisetum purpureum stem as potential reinforcement of polymer composites. Mater Des 89:839–847. https://doi.org/10.1016/j.matdes.2015.10.052

    Article  Google Scholar 

  88. Saravanakumar SS, Kumaravel A, Nagarajan T et al (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92:1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

    Article  Google Scholar 

  89. Moniruzzaman M, Mahmood H, Yusup S, Akil HM (2017) Exploring ionic liquid assisted pretreatment of lignocellulosic biomass for fabrication of green composite. J Japan Inst Energy 96:376–379. https://doi.org/10.3775/jie.96.376

    Article  Google Scholar 

  90. Baskaran PG, Kathiresan M, Senthamaraikannan P, Saravanakumar SS (2018) Characterization of new natural cellulosic fiber from the bark of Dichrostachys cinerea. J Nat Fibers 15:62–68. https://doi.org/10.1080/15440478.2017.1304314

    Article  Google Scholar 

  91. Yao F, Wu Q, Lei Y et al (2008) Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98. https://doi.org/10.1016/j.polymdegradstab.2007.10.012

    Article  Google Scholar 

  92. Balasundar P, Narayanasamy P, Senthamaraikannan P et al (2018) Extraction and characterization of new natural cellulosic Chloris barbata fiber. J Nat Fibers 15:436–444. https://doi.org/10.1080/15440478.2017.1349015

    Article  Google Scholar 

  93. Kathirselvam M, Kumaravel A, Arthanarieswaran VP, Saravanakumar SS (2019) Isolation and characterization of cellulose fibers from Thespesia populnea barks: a study on physicochemical and structural properties. Int J Biol Macromol 129:396–406. https://doi.org/10.1016/j.ijbiomac.2019.02.044

    Article  Google Scholar 

  94. Poletto M, Ornaghi J H L, Zattera AJ (2015) Thermal decomposition of natural fibers: kinetics and degradation mechanisms. In: Reactions and mechanisms in thermal analysis of materials, 1st edn. Wiley, New Jersey, pp 515–545

  95. Fu P, Hu S, Xiang J et al (2012) Study on the gas evolution and char structural change during pyrolysis of cotton stalk. J Anal Appl Pyrolysis 97:130–136. https://doi.org/10.1016/j.jaap.2012.05.012

    Article  Google Scholar 

  96. Khan A, Vijay R, Singaravelu DL et al (2022) Extraction and characterization of natural fibers from Citrullus lanatus climber. J Nat Fibers 19:621–629. https://doi.org/10.1080/15440478.2020.1758281

    Article  Google Scholar 

  97. Vijay R, Manoharan S, Arjun S et al (2021) Characterization of silane-treated and untreated natural fibers from stem of Leucas aspera. J Nat Fibers 18:1957–1973. https://doi.org/10.1080/15440478.2019.1710651

    Article  Google Scholar 

  98. Raja K, Prabu B, Ganeshan P et al (2021) Characterization studies of natural cellulosic fibers extracted from Shwetark stem. J Nat Fibers 18:1934–1945. https://doi.org/10.1080/15440478.2019.1710650

    Article  Google Scholar 

  99. Fan M (2010) Characterization and performance of elementary hemp fibres: factors influencing tensile strength. BioResources 5:2307–2322. https://doi.org/10.15376/biores.5.4.2307-2322

    Article  Google Scholar 

  100. Seki Y, Kılınç AÇ, Dalmış R, Köktaş S (2019) Characterization of flax, jute, and sisal fibers after sodium perborate modification. AATCC J Res 6:25–31. https://doi.org/10.14504/ajr.6.6.4

    Article  Google Scholar 

  101. Karimi S, Tahir PM, Karimi A et al (2014) Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr Polym 101:878–885. https://doi.org/10.1016/j.carbpol.2013.09.106

    Article  Google Scholar 

  102. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fibers Polym 9:735–739. https://doi.org/10.1007/s12221-008-0115-0

    Article  Google Scholar 

  103. Sunny T, Pickering KL, Lim SH (2020) Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement. Cellulose 27:2569–2582. https://doi.org/10.1007/s10570-019-02939-3

    Article  Google Scholar 

  104. Chiang CL, Yang JM (2015) Flame retardance and thermal stability of polymer/graphene nanosheet oxide composites. In: Fillers and Reinforcements for Advanced Nanocomposites. Woodhead Publishing, pp 253–272

  105. Pandey R, Sinha MK, Dubey A (2018) Cellulosic fibers from Lotus (Nelumbo nucifera) peduncle. J Nat Fibers 17:298–309. https://doi.org/10.1080/15440478.2018.1492486

    Article  Google Scholar 

  106. Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos Part B Eng 44:517–523. https://doi.org/10.1016/j.compositesb.2012.03.013

    Article  Google Scholar 

  107. Tran LQN, Yuan XW, Bhattacharyya D, et al (2015) Fiber-matrix interfacial adhesion in natural fiber composites. In: International Journal of Modern Physics B. World Scientific Publishing Company

  108. Mat Taib R, Ariawan D, Mohd Ishak ZA (2016) Surface characterization of alkali treated kenaf fibers by XPS and AFM. Key Eng Mater 94:29–33. https://doi.org/10.4028/www.scientific.net/KEM.694.29

    Article  Google Scholar 

  109. Seki Y, Sever K, Erden S et al (2012) Characterization of Luffa cylindrica fibers and the effect of water aging on the mechanical properties of its composite with polyester. J Appl Polym Sci 123:2330–2337. https://doi.org/10.1002/app.34744

    Article  Google Scholar 

  110. Maache M, Bezazi A, Amroune S et al (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171:163–172. https://doi.org/10.1016/j.carbpol.2017.04.096

    Article  Google Scholar 

  111. Alves Fidelis ME, Pereira TVC, Gomes ODFM et al (2013) The effect of fiber morphology on the tensile strength of natural fibers. J Mater Res Technol 2:149–157. https://doi.org/10.1016/j.jmrt.2013.02.003

    Article  Google Scholar 

  112. Amroune S, Bezazi A, Belaadi A et al (2015) Tensile mechanical properties and surface chemical sensitivity of technical fibres from date palm fruit branches (Phoenix dactylifera L.). Compos Part A Appl Sci Manuf 71:95–106. https://doi.org/10.1016/j.compositesa.2014.12.011

    Article  Google Scholar 

  113. Sanjay MR, Madhu P, Jawaid M et al (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ozgur Yasin Keskin: conceptualization, methodology, validation, investigation, writing — original draft, writing — review and editing, and visualization; Serhan Koktas: investigation and writing — review and editing; Yasemin Seki: conceptualization, methodology, validation, investigation, writing — original draft, and writing — review and editing; Ramazan Dalmis: investigation and writing — review and editing; Gonca Balci Kilic: investigation and writing — review and editing; Didem Albayrak: investigation and writing — review and editing.

Corresponding author

Correspondence to Ozgur Yasin Keskin.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskin, O.Y., Koktas, S., Seki, Y. et al. Natural cellulosic fiber from Carex panicea stem for polymer composites: extraction and characterization. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03458-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03458-1

Keywords

Navigation