Skip to main content

Advertisement

Log in

Potential of electricity generation by organic wastes in Latin America: a techno-economic-environmental analysis

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Waste-to-energy technologies from anaerobic digestion (WtE-DA) are successfully used in European countries for electricity generation. In Mexico, the application of these processes is limited due to their design and operation complexity, high required investment, high operations and maintenance costs, and low government support, which hinders their economic competitiveness. This work conducted a study to determine the best conditions of electricity generation through WtE-DA processes to be competitive compared with the conventional process. An industrial-scale process was designed regarding the co-digestion of fruit and vegetable waste from a food supply center with slaughterhouse waste from the Monterrey Metropolitan Area in Mexico. Analysis scenarios were strategically proposed considering different sizes of the WtE-DA plant, transport distance from the source of waste to the process, and the degree of government participation through economic subsidies granted to clean energy production. The environmental performance of the plant was evaluated via the climate change indicator (CCI) following a life cycle analysis approach, and the net present value (NPV) was used as an economic criterion. The results show that the CCI has a high sensitivity to the waste transport distance, having a maximum of 130 km to ensure environmental success. The sensitivity analysis performed on the management capacity and NPV indicates that plants smaller than 72,000 t year−1 are economically unviable and require governmental financial support like that granted in European countries. This work provides reliable operating, eco-efficiency criteria, and subsidy schemes to support decision-making for proper investment in bioenergy projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Capson-Tojo G, Rouez M, Crest M, Steyer JP, Delgenès JP, Escudié R (2016) Food waste valorization via anaerobic processes: a review. Rev Environ Sci Biotechnol 15(3):499–547. https://doi.org/10.1007/s11157-016-9405-y

    Article  Google Scholar 

  2. Achinas S, Achinas V, Euverink GJW (2017) A technological overview of biogas production from biowaste. Eng 3(3):299–307. https://doi.org/10.1016/J.ENG.2017.03.002

    Article  Google Scholar 

  3. European Commission (2017) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - The role of waste-to-energy in the circular economy COM/2017/0034. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52017DC0034. Accessed 1 May 2020

  4. Al Seadi T, Lukehurst C (2012) Quality management of digestate from biogas plants used as fertilizer. IEA Bioenergy Task no. 37-Energy from Biogas. http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/digestate_quality_web_new.pdf. Accessed 15 June 2020

  5. ENCC (2013) Estrategia Nacional de Cambio Climático Visión 10–20–40. Gobierno de la República. https://www.gob.mx/cms/uploads/attachment/file/41978/Estrategia-Nacional-Cambio-Climatico-2013.pdf. Accessed 20 June 2020

  6. Tsydenova N, Morillas AV, Hernández ÁM, Soria DR, Pehlken WC, A, (2019) Feasibility and barriers for anaerobic digestion in Mexico City. Sustain 11(15):1–21. https://doi.org/10.3390/su11154114

    Article  Google Scholar 

  7. Bacenetti J, Fiala M (2015) Carbon footprint of electricity from anaerobic digestion plants in Italy. Environ Eng Manag J 14(7):1495–1502. https://doi.org/10.30638/eemj.2015.161

    Article  Google Scholar 

  8. Edwards J, Othman M, Burn S (2015) A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew Sustain Energy Rev 52:815–828. https://doi.org/10.1016/j.rser.2015.07.112

    Article  Google Scholar 

  9. Vasco-Correa J, Khanal S, Manandhar A, Shah A (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247(September):1015–1026. https://doi.org/10.1016/j.biortech.2017.09.004

    Article  Google Scholar 

  10. Garfí M, Martí-Herrero J, Garwood A, Ferrer I (2016) Household anaerobic digesters for biogas production in Latin America: a review. Renew Sustain Energy Rev 60:599–614. https://doi.org/10.1016/j.rser.2016.01.071

    Article  Google Scholar 

  11. Rivas-García P, Botello-Álvarez JE, Miramontes-Martínez LR, Cano-Gómez JJ, Rico-Martínez R (2020) New model of hydrolysis in the anaerobic co-digestion of bovine manure with vegetable waste: modification of anerobic digestion model No. 1. RMIQ 19(1):109–122. https://doi.org/10.24275/rmiq/Bio557

    Article  Google Scholar 

  12. Miramontes-Martínez LR, Gomez-Gonzalez R, Botello-Álvarez JE, Escamilla-Alvarado C, Albalate-Ramírez A, Rivas-García P (2020) Semi-continuous anaerobic co-digestion of vegetable waste and cow manure: a study of process stabilization. RMIQ 19(3):1117–1134. https://doi.org/10.24275/rmiq/proc920

    Article  Google Scholar 

  13. Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87(11):3305–3321. https://doi.org/10.1016/j.apenergy.2010.05.011

    Article  Google Scholar 

  14. Wagner AO, Lins P, Malin C, Reitschuler C, Illmer P (2013) Impact of protein-, lipid- and cellulose-containing complex substrates on biogas production and microbial communities in batch experiments. Sci Total Environ 458–460 (2013): 256–266. https://doi.org/10.1016/j.scitotenv.2013.04.034

  15. Garcia-Peña EI, Parameswaran P, Kang DW, Canul-Chan M, Krajmalnik-Brown R (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour Technol 102(20):9447–9455. https://doi.org/10.1016/j.biortech.2011.07.068

    Article  Google Scholar 

  16. Morero B, Vicentin R, Campanella EA (2017) Assessment of biogas production in Argentina from co-digestion of sludge and municipal solid waste. Waste Manag 61:195–205. https://doi.org/10.1016/j.wasman.2016.11.033

    Article  Google Scholar 

  17. Velásquez Piñas JA, Venturini OJ, Silva Lora EE, del Olmo OA, Calle Roalcaba OD (2019) An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems. Renew Energy 139:40–51. https://doi.org/10.1016/j.renene.2019.02.053

    Article  Google Scholar 

  18. Gutierrez EC, Xia A, Murphy JD (2016) Can slurry biogas systems be cost effective without subsidy in Mexico? Renew. Energy 95:22–30. https://doi.org/10.1016/j.renene.2016.03.096

    Article  Google Scholar 

  19. INEGI (2020) Instituto Nacional de Estadística y Geografía. https://www.inegi.org.mx/app/areasgeograficas/?ag=19. Accessed 12 May 2020

  20. Miramontes-Martínez LR, Rivas-García P, Albalate-Ramírez A, Botello-Álvarez JE, Escamilla-Alvarado C, Gomez-Gonzalez R, Alcalá-Rodríguez MM, Valencia-Vázquez R, Santos-López IA (2021) Anaerobic co-digestion of fruit and vegetable waste: synergy and process stability análisis. J Air Waste Manage Assoc 71(5):620–632. https://doi.org/10.1080/10962247.2021.1873206

    Article  Google Scholar 

  21. Polifacio M, Murphy JD (2007) Anaerobic digestion in Ireland: decision support system. Department of Civil, Structural and Environmental Engineering. Cork Institute of Technology, Ireland

  22. NOM-043-SCT-2003 Norma Mexicana Dirección General de Normas (2003) Documento de embarque de substancias, materiales y residuos peligrosos. https://dof.gob.mx/nota_detalle_popup.php?codigo=684641. Accessed 14 Jan 2020

  23. Galván-Arzola U, Miramontes-Martínez LR, Escamilla-Alvarado C, Botello-Álvarez JE, Alcalá-Rodríguez MM, Valencia-Vázquez R (2022) Rivas-García P (2022) Anaerobic digestion of agro-industrial waste: anaerobic lagoons in Latin America. RMIQ 2((2022)):IA2680. https://doi.org/10.24275/rmiq/IA2680

    Article  Google Scholar 

  24. Batstone DJ, keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA Anaerobic Digestion Model No 1(ADM1) scientific and technical report No. 13. London

  25. Rivas-García P, Botello-Álvarez JE, Estrada-Baltazar A, Navarrete-Bolaños JL (2013) Numerical study of microbial population dynamics in anaerobic digestion through the Anaerobic Digestion Model No. 1 (ADM1). Chem Eng J 228:87–92. https://doi.org/10.1016/j.cej.2013.05.013

    Article  Google Scholar 

  26. Scano EA, Asquer C, Pistis A, Ortu L, Demontis V, Cocco D (2014) Biogas from anaerobic digestion of fruit and vegetable wastes: experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy Convers Manag 77:22–30. https://doi.org/10.1016/j.enconman.2013.09.004

    Article  Google Scholar 

  27. Passos F, Ferrer I (2015) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373. https://doi.org/10.1016/j.watres.2014.10.015

    Article  Google Scholar 

  28. Mezzullo WG, McManus MC, Hammond GP (2013) Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste. Appl Energy 102:657–664. https://doi.org/10.1016/j.apenergy.2012.08.008

    Article  Google Scholar 

  29. Ramírez-Arpide FR, Demirer GN, Gallegos-Vázquez C, Hernández-Eugenio G, Santoyo-Cortés VH, Espinosa-Solares T (2018) Life cycle assessment of biogas production through anaerobic co-digestion of nopal cladodes and dairy cow manure. J Clean Prod 172:2313–2322. https://doi.org/10.1016/j.jclepro.2017.11.180

    Article  Google Scholar 

  30. Ecoinvent Center (2014) Ecoinvent data version 3.3. Swiss Centre for Life Cycle Inventories. Dübendorf, Switzerland. http://www.ecoinvent.org/

  31. GREET (2016) The greenhouse gases, regulated emissions, and energy use in transportation. Chicago: Argonne National Laboratory. https://greet.es.anl.gov/

  32. EEA (2020) European Environment Agency. https://www.eea.europa.eu. Accessed 29 May 2020

  33. IPCC (2006) Guidelines for national greenhouse gases inventories. Hayama: Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/

  34. Rehl R, Lansche J, Müller J (2012) Life cycle assessment of energy generation from biogas - attributional vs consequential approach. Renew Sustain Energy Rev 16(6):3766–3775. https://doi.org/10.1016/j.rser.2012.02.072

    Article  Google Scholar 

  35. Rivas-Garcia P, Botello-Álvarez JE, Abel-Seabra JE, da Silva Walter AC, Estrada-Baltazar A (2015) Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective. Env Technol April: 1–38 https://doi.org/10.1080/09593330.2015.1024758

  36. PReConsultants. SimaPro 7.3.3® software (2019). Amrersfoort, The Netherlands. https://pre-sustainability.com/

  37. Eriksson M, Strid I, Hansson PA (2015) Carbon footprint of food waste management options in the waste hierarchy – a Swedish case study. J Clean Prod 93:115–125. https://doi.org/10.1016/j.jclepro.2015.01.026

    Article  Google Scholar 

  38. BM (2020) Banco de México. https://www.banxico.org.mx/. Accessed 20 June 2020

  39. Tsilemou K, Panagiotakopoulos D (2006) Approximate cost functions for solid waste treatment facilities. Waste Manag Res 24(4):310–322. https://doi.org/10.1177/0734242X06066343

    Article  Google Scholar 

  40. CFE (2019) Comisión Federal de Electricidad. https://www.cfe.mx/Pages/Index.aspx. Accessed 3 June 2020

  41. SAT (2020) Ley de impuesto al valor agregado. https://www.sat.gob.mx/ordenamiento/37585/ley-del-impuesto-al-valor-agregado. Accessed 12 June 2020

  42. Yousuf A, Khan MR, Pirozzi D, Ab Wahid Z (2016) Financial sustainability of biogas technology: barriers, opportunities, and solutions. Energy Sources Part B Econ Plan Policy 11(9):841–848. https://doi.org/10.1080/15567249.2016.1148084

    Article  Google Scholar 

  43. Biogas3 Proyect (2020) Sustainable small-scale biogas from agri-food waste for energy self-sufficiency Intelligent Energy Europe Programme. http://www.biogas3.eu/esp/index.html

  44. Gebrezgabher SA, Meuwissen MPM, Prins BAM, Lansink AGJMO (2010) Economic analysis of anaerobic digestion-a case of Green power biogas plant in the Netherlands. NJAS - Wageningen J Life Sci 57(2):109–115. https://doi.org/10.1016/j.njas.2009.07.006

    Article  Google Scholar 

  45. Akbulut A (2012) Techno-economic analysis of electricity and heat generation from farm-scale biogas plant: Çiçekdaĝi case study. Energy 44(1):381–390. https://doi.org/10.1016/j.energy.2012.06.017

    Article  Google Scholar 

  46. Itten R, Frischknecht R, Stucki M (2014) Life cycle inventories of electricity mixes and grid. Paul Scherrer Inst. June: 1–229. www.lc-inventories.ch

  47. INECC (2018) Inventario nacional de emisiones de gases y compuestos de efecto invernadero. Instituto Nacional de Ecología y cambio climático. https://www.gob.mx/cms/uploads/attachment/file/312045/INEGYCEI6CN_26_marzo_2018.pdf. Accessed 25 Apr 2020

  48. Ruiz D, San Miguel G, Corona B, Gaitero A, Domínguez A (2018) Environmental and economic analysis of power generation in a thermophilic biogas plant. Sci Total Environ 633:1418–1428. https://doi.org/10.1016/j.scitotenv.2018.03.169

    Article  Google Scholar 

  49. Li Y, Manandhar A, Li G, Shah A (2018) Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment. Waste Manag 76:294–305. https://doi.org/10.1016/j.wasman.2018.03.025

    Article  Google Scholar 

  50. Patterson T, Esteves S, Dinsdale R, Guwy A (2011) Life cycle assessment of biogas infrastructure options on a regional scale. Bioresour Technol 102(15):7313–7323. https://doi.org/10.1016/j.biortech.2011.04.063

    Article  Google Scholar 

  51. Michel J, Weiske A, Möller K (2010) The effect of biogas digestion on the environmental impact and energy balances in organic cropping systems using the life-cycle assessment methodology. Renew Agric Food Syst 25(03):204–218. https://doi.org/10.1017/S1742170510000062

    Article  Google Scholar 

  52. Tonini D, Albizzati PF, Astrup TF (2018) Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag 76:744–766. https://doi.org/10.1016/j.wasman.2018.03.032

    Article  Google Scholar 

  53. Bedoi R, Cucek L, Cosic B, Krajnc D, Smoljanic G, Kravanja Z, Ljubas D, Puksec T, Duic N (2019) Green biomass to biogas – a study on anaerobic digestion of residue grass. J Clean Prod 213:700–709. https://doi.org/10.1016/j.jclepro.2018.12.224

  54. Evangelisti S, Lettieri P, Borello D, Clift R (2014) Life cycle assessment of energy from waste via anaerobic digestion: a UK case study. Waste Manag 34(1):226–237. https://doi.org/10.1016/j.wasman.2013.09.013

    Article  Google Scholar 

  55. SCS Engineers (2009) User’s Manual Mexico Landfill Gas Model Version 2.0. USEPA. http://www.epa.gov/lmop/documents/pdfs/manual_del_%0Ausuario_modelo_mexicano_de_biogas_v2_2009.pdf. Accessed 22 Feb 2020

  56. Battista F, Frison N, Bolzonella D (2019) Energy and nutrients’ recovery in anaerobic digestion of agricultural biomass: an Italian perspective for future applications. Energies 12 (17) https://doi.org/10.3390/en12173287

  57. Torrijos M (2016) State of development of biogas production in Europe. Procedia Environ Sci 35:881–889. https://doi.org/10.1016/j.proenv.2016.07.043

    Article  Google Scholar 

  58. O’Connor S, Ehimen E, Pillai SC, Lyons G, Bartlett J (2020) Economic and environmental analysis of small-scale anaerobic digestion plants on Irish dairy farms. Energies 13 (3) https://doi.org/10.3390/en13030637

  59. Zheng L, Chen J, Zhao M, Cheng S, Wang L, Mang HP, Li Z (2020) What could China give to and take from other countries in terms of the development of the biogas industry? Sustain 12(4):1–22. https://doi.org/10.3390/su12041490

    Article  Google Scholar 

Download references

Funding

The Autonomous University of Nuevo Leon supported this work through PAICYT grant 573-IT-2022 and 591-IT-2022.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Pasiano Rivas-García, Luis Ramiro Miramontes-Martínez; data curation: Luis Ramiro Miramontes-Martínez, Pasiano Rivas-García, Rafael Arturo Briones-Cristerna; formal analysis: Luis Ramiro Miramontes-Martínez, Pasiano Rivas-García, José Enrique Botello-Álvarez; funding acquisition: Pasiano Rivas-García; investigation: Luis Ramiro Miramontes-Martínez, Rafael Arturo Briones-Cristerna; methodology: Luis Ramiro Miramontes-Martínez, Rafael Arturo Briones-Cristerna; project administration: Pasiano Rivas-García; resources: Pasiano Rivas-García; software: Luis Ramiro Miramontes-Martínez, Rafael Arturo Briones-Cristerna, Pasiano Rivas-García; supervision: Pasiano Rivas-García; validation: Pasiano Rivas-García, José Enrique Botello-Álvarez, Joaquim Eugenio Abel-Seabra, Alejandro Padilla-Rivera, Mónica María Alcalá-Rodríguez, Annie Levasseur; visualization: Luis Ramiro Miramontes-Martínez, Pasiano Rivas-García; writing—original draft: Luis Ramiro Miramontes-Martínez, Pasiano Rivas-García, José Enrique Botello-Álvarez, Alejandro Padilla-Rivera; writing—review and editing: Pasiano Rivas-García, Joaquim Eugenio Abel-Seabra, Alejandro Padilla-Rivera, Mónica María Alcalá-Rodríguez, Annie Levasseur.

Corresponding author

Correspondence to Pasiano Rivas-García.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miramontes-Martínez, L.R., Rivas-García, P., Briones-Cristerna, R.A. et al. Potential of electricity generation by organic wastes in Latin America: a techno-economic-environmental analysis. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03393-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03393-1

Keywords

Navigation