Skip to main content
Log in

Comparative analysis of seed biomass from Amazonian fruits for activated carbon production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Amazon offers several lignocellulosic biomasses with unknown technological properties contrasting with a growing demand for activated charcoal for water decontamination. Thus, this work investigated the chemical features of the murumuru (MS) and patauá (PS) palm seeds and their thermal behavior during pyrolysis up to 600 °C to verify their suitability for the future production of chemically activated carbon. The biomasses showed similar H(%)/C(%) ratios (≈ 0.13) and lignin contents (≈ 24%), both features closely related to increased activated carbon yield. Regarding the possibility of providing highly porous adsorbents, PS depicted more cellulose and hemicelluloses favorably. On the other hand, MS showed an outstandingly high level of total extractives (31%) compared to PS and most lignocellulosic biomasses of literature. Ultimately, the proximate analysis revealed that PS’s volatile material (%)/fixed carbon (%) was 2.4, much lower than MS’s one of 3.8. As a drawback for pyrolysis yield, both palm wastes showed ash levels (≈2%) above many other previously studied lignocellulosic biomasses. However, near-infrared spectroscopy analysis revealed some oxygenized chemical groups able to raise the acidity of derived activated carbons, promising to adsorb cations. Murumuru (23.7%) showed a lower pyrolysis yield than patauá (30.7%) at 600 °C. Temperatures below 400 °C are more suitable for the pyrolysis of murumuru seeds, while patauá seeds stand higher temperatures without compromising the charcoal yield. Therefore, high extractive content surpassed other chemical traits in influencing pyrolysis yield.

Graphical abstract

Statement of novelty

This thermo-chemical and thermal characterization study makes it possible to trace the potential of understudied palm seeds, such as murumuru and patauá, for producing activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Draper FC, Costa FRC, Arellano G et al (2021) Amazon tree dominance across forest strata. Nat Ecol Evol 5:757–767. https://doi.org/10.1038/s41559-021-01418-y

    Article  Google Scholar 

  2. Feng X, Merow C, Liu Z et al (2021) How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597:516–521. https://doi.org/10.1038/s41586-021-03876-7

    Article  Google Scholar 

  3. Gatti LV, Basso LS, Miller JB et al (2021) Amazonia as a carbon source linked to deforestation and climate change. Nature 595:388–393. https://doi.org/10.1038/s41586-021-03629-6

    Article  Google Scholar 

  4. Santos DDC, Costa TND, Franco FB, Castro RDC, Ferreira JPDL, Souza MADS, Santos JCP (2019) Drying kinetics and thermodynamic properties of patawa pulp (Oenocarpus bataua Mart.). Braz J Food Technol 22:1–11. https://doi.org/10.1590/1981-6723.30518

    Article  Google Scholar 

  5. Antunes A, Simmons CS, Veiga JP (2021) Non-timber forest products and the cosmetic industry: An econometric assessment of contributions to income in the brazilian amazon. Land 10:2–16. https://doi.org/10.3390/land10060588

    Article  Google Scholar 

  6. Dantas AR, Guedes MC, Lira-Guedes AC, Piedade MTF (2021) Phenological behavior and floral visitors of Pentaclethra macroloba, a hyperdominant tree in the Brazilian Amazon River estuary. Trees Struct Funct 35:973–986. https://doi.org/10.1007/s00468-021-02095-x

    Article  Google Scholar 

  7. Lara CS, Costa CR, Sampaio PDTB (2021) The market for seeds and seedlings of rosewood (Aniba spp.) in the State of Amazonas. Rev Econ Sociol Rural 59:1–8. https://doi.org/10.1590/1806-9479.2021.221035

    Article  Google Scholar 

  8. Hidalgo PSP, Nunomura RDCS, Nunomura SM (2016) Amazon oilseeds: chemistry and antioxidant activity of patawa (Oenocarpus bataua Mart.). Rev Virtual Quim 8:130–140. https://doi.org/10.5935/1984-6835.20160009

    Article  Google Scholar 

  9. Peixoto Araujo NM, Arruda HS, Marques DRP, de Oliveira WQ, Pereira GA, Pastore GM (2021) Functional and nutritional properties of selected Amazon fruits: a review. Food Res Int 147:110520. https://doi.org/10.1016/j.foodres.2021.110520

    Article  Google Scholar 

  10. de Oliveira PRS, Trugilho PF, de Oliveira TJP (2022) Briquettes of acai seeds: characterization of the biomass and influence of the parameters of production temperature and pressure in the physical-mechanical and energy quality. Environ Sci Pollut Res 29:8549–8558. https://doi.org/10.1007/s11356-021-15847-6

    Article  Google Scholar 

  11. Steege HT et al (2013) Hyperdominance in the Amazonian Tree Flora. Science 342:1243092. https://doi.org/10.1126/science.1243092

    Article  Google Scholar 

  12. Diago DL, García N (2021) Wild edible fruits of Colombia diversity and use prospects. Biota Colomb 22:16–55. https://doi.org/10.21068/c2021.v22n02a02

    Article  Google Scholar 

  13. Bastos LLS, Ferraz IDK, Lima MJV, Pritchard HW (2017) Variation in limits to germination temperature and rates across the seed-seedling transition in the palm Oenocarpus bataua from the Brazilian Amazon. Seed Sci Technol 45:1–13. https://doi.org/10.15258/sst.2017.45.1.05

    Article  Google Scholar 

  14. Jaramillo-Vivanco T, Balslev H, Montúfar R, Cámara RM, Giampieri F, Battino M, Cámara M, Alvarez-Suarez JM (2022) Three Amazonian palms as underestimated and little-known sources of nutrients, bioactive compounds and edible insects. Food Chem 372:1–13. https://doi.org/10.1016/j.foodchem.2021.131273

    Article  Google Scholar 

  15. Felizardo SA, de Freitas ADD, Marques NS, Bezerra DA (2015) Biometric characteristics of fruits and seeds Oenocarpus bataua Mart. with Almeirim of origin. Pará. Verde Agroecologia Desenvolv Sustent 10:9–15. https://doi.org/10.18378/rvads.v10i5.3672

    Article  Google Scholar 

  16. Pereira E, Pereira DTV, Ferreira MC, Martínez J, Meirelles AJA, Maximo GJ (2020) Deacidification of Amazonian Pracaxi (Pentaclethra macroloba) and Patawa (Oenocarpus bataua) oils: experimental and modeling of liquid–liquid extraction using alcoholic solvents. Braz J Chem Eng 37:783–794. https://doi.org/10.1007/s43153-020-00051-9

    Article  Google Scholar 

  17. Cotos MRC, Hameed IH, Escajadillo SBE, Llica ER, Figueroa MGR, Olivera Garcia JE (2020) Macronutrients, polyphenols and antioxidant capacity of the peel and pulp of the fruit Oenocarpus bataua Mart. “Ungurahui.” Res J Pharm Technol 13:2192–2198. https://doi.org/10.5958/0974-360X.2020.00394.7

    Article  Google Scholar 

  18. Navarro-Valdez K, Capillo-Herrera N, Calixto-Cotos MR, Santisteban-Rojas OP (2020) Extraction and microencapsulation of antioxidant compounds from Oenocarpus bataua Mart seed. Scientia Agropecuaria 11:547–554. https://doi.org/10.17268/SCI.AGROPECU.2020.04.10

    Article  Google Scholar 

  19. Ibiapina A, Gualberto LDS, Dias BB, Freitas BCB, Martins GADS, Melo Filho AA (2021) Essential and fixed oils from Amazonian fruits: proprieties and applications. Crit Rev Food Sci Nutrhttps://doi.org/10.1080/10408398.2021.1935702

  20. Losos E (1995) Habitat specificity of two palm species: experimental transplantation in Amazonian successional forests. Ecology 76:2595–2606. https://doi.org/10.2307/2265830

    Article  Google Scholar 

  21. Cintra R (1997) Leaf litter effects on seed and seedling predation of the palm Astrocaryum murumuru and the legume tree Dipteryx micrantha in Amazonian forest. J Trop Ecol 13:709–725. https://doi.org/10.1017/S0266467400010889

    Article  Google Scholar 

  22. Cintra R (1997) A test of the Janzen-Connell model with two common tree species in Amazonian forest. J Trop Ecol 13:641–658. https://doi.org/10.1017/S0266467400010841

    Article  Google Scholar 

  23. Roldán AI, Simonetti JA (2001) Plant-mammal interactions in tropical Bolivian forests with different hunting pressures. Conserv Biol 15:617–623. https://doi.org/10.1046/j.1523-1739.2001.015003617.x

    Article  Google Scholar 

  24. Costa RLT, do Nascimento RA, de Araújo RCS, Vieira MGA, da Silva MGC, de Carvalho SML, de Faria LJG (2021) Removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water with activated carbons synthetized from waste murumuru (Astrocaryum murumuru Mart) characterization and adsorption studies. J Mol Liq 343:116980. https://doi.org/10.1016/j.molliq.2021.116980

    Article  Google Scholar 

  25. Serra-Ferreira CM, Farias-Souza AG, Almeida-Mendonça RC, Simões-Souza M, Lopes-Filho WRL, Faturi C, Nogueira-Domingues F, Do-Rêgo AC (2020) Murumuru (Astrocaryum murumuru) meal as an additive to elephant grass silage. Rev Colomb Cienc Pecu 33:264–272. https://doi.org/10.17533/udea.rccp.v33n4a06

    Article  Google Scholar 

  26. e Silva AGM, et al (2021) Production, chemical composition, and fatty acid profile of milk from buffaloes fed with cupuaçu (Theobroma grandiflorum) cake and murumuru (Astrocaryum murumuru) cake in the Eastern Amazon. Anim Sci J 92:1–9. https://doi.org/10.1111/asj.13576

    Article  Google Scholar 

  27. Mella B, Puchana-Rosero MJ, Costa DES, Gutterres M (2017) Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment. J Mol Liq 242:137–145. https://doi.org/10.1016/j.molliq.2017.06.131

    Article  Google Scholar 

  28. Guleria A, Kumari G, Lima EC, Ashish DK, Thakur V, Singh K (2022) Removal of inorganic toxic contaminants from wastewater using sustainable biomass: A review. Sci. Total Environ. 823https://doi.org/10.1016/j.scitotenv.2022.153689

  29. Liu X, Li G, Chen C, Zhang X, Zhou K, Long X (2022) Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution. Sci. Rep 12(1):1–14. https://doi.org/10.1038/s41598-022-05652-7

    Article  Google Scholar 

  30. Johnson C (2014) Assuring purity of drinking water. In: Ahuja S (ed) Comprehensive Water Quality and Purification. Elsevier,. 15. https://doi.org/10.1016/B978-0-12-382182-9.09024-1

  31. Tehrani-Bagha AR, Balchi T (2018) Catalytic wet peroxide oxidation. In: Ameta SC, Ameta R (ed) Advanced Oxidation Processes for Waste Water Treatment. Academic Press, 375–402. https://doi.org/10.1016/B978-0-12-810499-6.00012-7

  32. de Souza TNV, de Carvalho SML, Vieira MGA, da Silva MGC, Brasil DDSB (2018) Adsorption of basic dyes onto activated carbon: experimental and theoretical investigation of chemical reactivity of basic dyes using DFT-based descriptors. Appl Surf Sci 448:662–670. https://doi.org/10.1016/j.apsusc.2018.04.087

    Article  Google Scholar 

  33. Queiroz LS, de Souza LKC, Thomaz KTC, Leite Lima ET, da Rocha Filho GN, do Nascimento LAS, de Oliveira Pires LH, Faial KDCF, da Costa CEF (2020) Activated carbon obtained from amazonian biomass tailings (acai seed): modification, characterization, and use for removal of metal ions from water. J. Environ. Manage. 270https://doi.org/10.1016/j.jenvman.2020.110868

  34. Bentes VLI, Nobre FX, Barros ICL, Couceiro PRC (2021) Composite of iron phosphate-supported carbon from the açaí (Euterpe oleracea) as a solid catalyst for photo-Fenton reactions. Environ Nanotechnol, Monit Manag 16https://doi.org/10.1016/j.enmm.2021.100520

  35. Pereira Lima R, Souza da Luz PT, Braga M, dos Santos Batista PR, Ferreira da Costa CE, Zamian JR, Santos do Nascimento LA, da Rocha Filho GN, (2017) Murumuru (Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemical properties and thermal and kinetic studies. Ind Crops Prod 97:536–544. https://doi.org/10.1016/j.indcrop.2016.12.052

    Article  Google Scholar 

  36. Neves MCT, Lopes A, de Oliveira MCJ, Iamaguti PS, Lira TAM, Moreti TCF, de Lima LP, Koike GHA (2018) Effects of Murumuru (Astrocaryum murumuru Mart.) and soybean biodiesel blends on tractor performance and smoke density. Aust J Crop Sci 12:878–885. https://doi.org/10.21475/ajcs.18.12.06.PNE634

    Article  Google Scholar 

  37. da Silva CSM, de Araújo JA, Silveira TS, Castro KCF, Baratto LC, Kaminski RCK, Santos GB, Nunes KM (2021) Wound healing activity of topical formulations containing Mauritia flexuosa Oil. Rev Bras Farmacogn 31:225–231. https://doi.org/10.1007/s43450-021-00149-2

    Article  Google Scholar 

  38. Feitosa JM et al (2021) Evaluation of the quality of amazonian butters as sustainable raw materials for applications in bioproducts. Rev de Cienc Farm Basica e Apl 42:1–11. https://doi.org/10.4322/2179-443X.0708

    Article  Google Scholar 

  39. ASTM (2007) American Society for TestingMaterials. D1762 - 84: standard test method for chemical analysis of wood charcoal. ASTM International, Philadelphia

  40. ASTM (2021) American Society for Testing Materials. D5291–21: standard test methods for instrumental determination of carbon, hydrogen, and nitrogen in petroleum products and lubricants. ASTM International, Philadelphia

  41. ABTCP ABCP M3:1989 Determination of total extractives contente. Brazilian Technical Association of Pulp and Paper (1989) ABTCP

  42. ABNT NBR 7989:2010 Pulp and wood - determination of acid-insoluble lignina. Brazilian National Standards Organization (2010) ABNT

  43. Browning BL (1963) The chemistry of wood. Interscience Publisher, New York

    Google Scholar 

  44. Kennedy JF, Phillips GO, Williams EPA (1987) Wood and cellulosics: industrial utilization, biotechnology. Structure and Properties, Ellis Horwood, Chichester

    Google Scholar 

  45. de Paula Protásio T, da Costa JS, Scatolino MV, Lima MDR, de Assis MR, da Silva MG, et al (2021) Revealing the influence of chemical compounds on the pyrolysis of lignocellulosic wastes from the Amazonian production chains. Int J Environ SciTechnol 1-18https://doi.org/10.1007/s13762-021-03416-w

  46. Gokce Y, Aktas Z (2014) Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Appl Surf Sci 313:352–359. https://doi.org/10.1016/j.apsusc.2014.05.214

    Article  Google Scholar 

  47. Yagmur E, Tunc MS, Banford A, Aktas Z (2013) Preparation of activated carbon from autohydrolysed mixed southern hardwood. J Anal Appl Pyrol 104:470–478. https://doi.org/10.1016/j.jaap.2013.05.025

    Article  Google Scholar 

  48. Yagmur E, Inal IIG, Gokce Y, Ulusoy Ghobadi TG, Aktar T, Aktas Z (2018) Examination of gas and solid products during the preparation of activated carbon using phosphoric acid. J Environ Manage 228:328–335. https://doi.org/10.1016/j.jenvman.2018.09.046

    Article  Google Scholar 

  49. Olorundare, O. F., Msagati, T. A. M., Krause, R. W. M., Okonkwo, J. O., & Mamba, B. B. (2014). Activated carbon from lignocellulosic waste residues: effect of activating agent on porosity characteristics and use as adsorbents for organic species. Water, Air, & Soil Pollution, 225(3). https://doi.org/10.1007/s11270-014-1876-2

  50. ABNT NBR 13999:2017 Paper, cardboard, pulp and wood — determination of residue (ash) after incineration at 525 °C. Brazilian National Standards Organization (2017) ABNT

  51. Burduhos Nergis DD, Abdullah MMAB, Sandu AV, Vizureanu P (2020) XRD and TG-DTA study of new alkali activated materials based on fly ash with sand and glass powder. Materials 13(2):343. https://doi.org/10.3390/ma13020343

    Article  Google Scholar 

  52. Putz H, Brandenburg K, Kreuzherrenstr GBR. (2014) Match! - phase analysis using powder diffraction. Crystal Impact, Bonn. https://www.crystalimpact.de. Accessed 15 March 2022

  53. Santos RM, Bispo DF, Granja HS, Sussuchi EM, Ramos ALD, Freitas LS (2020) Pyrolysis of the Caupi Bean Pod (Vigna unguiculata): characterization of biomass and bio-oil. J. Braz. Chem. Soc 31:1125–1136. https://doi.org/10.21577/0103-5053.20190277

    Article  Google Scholar 

  54. Patra SC, Vijay M, Panda AK (2017) Production and characterisation of bio-oil from Gold Mohar (Delonix regia) seed through pyrolysis process. Int J Ambient Energy 38(8):788–793. https://doi.org/10.1080/01430750.2016.1222958

    Article  Google Scholar 

  55. da Costa JS, da Silva MG, Scatolino MV et al (2020) Relating features and combustion behavior of biomasses from the Amazonian agroforestry chain. Biomass Convers Biorefin 1-21https://doi.org/10.1007/s13399-020-01121-1

  56. Rasam S, Haghighi AM, Azizi K, Soria-Verdugo A, Moraveji MK (2020) Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel 280:118665. https://doi.org/10.1016/j.fuel.2020.118665

    Article  Google Scholar 

  57. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227:1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282

    Article  Google Scholar 

  58. Li Y, Xing B, Ding Y, Han X, Wang S (2020) A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour Technol 312:123614. https://doi.org/10.1016/j.biortech.2020.123614

    Article  Google Scholar 

  59. Santos VO, Araujo RO, Ribeiro FCP et al (2021) Non-isothermal kinetics evaluation of buriti and inaja seed biomass waste for pyrolysis thermochemical conversion technology. Biomass Convers Biorefin 1-17https://doi.org/10.1007/s13399-021-01922-y

  60. Wang S, Wang K, Liu Q, Gu Y, Luo Z, Cen K, Fransson T (2009) Comparison of the pyrolysis behavior of lignins from different tree species. Biotechnol Adv 27(5):562–567. https://doi.org/10.1016/j.biotechadv.2009.04.010

    Article  Google Scholar 

  61. Savova D, Apak E, Ekinci E, Yardim F, Petrov N, Budinova T, Minkova V (2001) Biomass conversion to carbon adsorbents and gas. Biomass Bioenerg 21(2):133–142. https://doi.org/10.1016/s0961-9534(01)00027-7

    Article  Google Scholar 

  62. Ioannidou O, Zabaniotou A (2007) Agricultural residues as precursors for activated carbon production—a review. Renew Sustain Energy Rev 11(9):1966–2005

    Article  Google Scholar 

  63. Pesce C (2009) Oleaginosas da Amazônia. Instituto Interamericano de Cooperación para la Agricultura, Belém. https://repositorio.iica.int/handle/11324/12004. Accessed 15 March 2022

  64. Castro JP, Nobre JRC, Bianchi ML, Trugilho PF, Napoli A, Chiou BS, Tonoli GH (2019) Activated carbons prepared by physical activation from different pretreatments of amazon piassava fibers. J Nat Fibers 16(7):961–976. https://doi.org/10.33448/rsd-v10i3.13221

    Article  Google Scholar 

  65. Abreu JJDC, Martins CDS, Pereira PCG, Bianchi ML, Nobre JRC (2019) Elementary, Chemical and Energy Characterization of "Dendê" (Elaeis guineensis Jacq.) Waste in the State of Pará. Floresta e Ambient 26. https://doi.org/10.1590/2179-8087.043718

  66. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89(5):913–933. https://doi.org/10.1016/j.fuel.2009.10.022

    Article  Google Scholar 

  67. Yahya MA, Al-Qodah Z, Ngah CZ (2015) Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review. Renew Sustain Energy Rev 46:218–235. https://doi.org/10.1016/j.rser.2015.02.051

    Article  Google Scholar 

  68. Mishra RK, Mohanty K (2018) Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conv Bioref 8:799–812. https://doi.org/10.1007/s13399-018-0332-8

    Article  Google Scholar 

  69. Ramos PH, Guerreiro MC, Resende ECD, Gonçalves M (2009) Produção e caracterização de carvão ativado produzido a partir do defeito preto, verde, ardido (PVA) do café. Quim Nova 32:1139–1143. https://doi.org/10.1590/S0100-40422009000500011

    Article  Google Scholar 

  70. González JF, Román S, Encinar JM, Martínez G (2009) Pyrolysis of various biomass residues and char utilization for the production of activated carbons. J Anal Appl Pyrolysis 85(1–2):134–141. https://doi.org/10.1016/j.jaap.2008.11.035

    Article  Google Scholar 

  71. Duman G, Okutucu C, Ucar S, Stahl R, Yanik J (2011) The slow and fast pyrolysis of cherry seed. Bioresour Technol 102(2):1869–1878. https://doi.org/10.1016/j.biortech.2010.07.051

    Article  Google Scholar 

  72. Uçar S, Karagöz S (2009) The slow pyrolysis of pomegranate seeds: the effect of temperature on the product yields and bio-oil properties. J Anal Appl Pyrolysis 84(2):151–156. https://doi.org/10.1016/j.jaap.2009.01.005

    Article  Google Scholar 

  73. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  74. Rowell, RM (2005) Handbook of wood chemistry and wood composites. CRC press, Boca Ratonhttps://doi.org/10.1201/9780203492437

  75. Melzer M, Blin J, Bensakhria A, Valette J, Broust F (2013) Pyrolysis of extractive rich agroindustrial residues. J Anal Appl Pyrolysis 104:448–460. https://doi.org/10.1016/j.jaap.2013.05.027

    Article  Google Scholar 

  76. de Paula PT, Lima MDR, Teixeira RAC, do Rosário FS, et al (2021) Influence of extractives content and lignin quality of Eucalyptus wood in the mass balance of pyrolysis process. Bioenergy Res 14(1):175–189. https://doi.org/10.1007/s12155-020-10166-z

    Article  Google Scholar 

  77. Wang Y, Wu L, Wang C, Yu J, Yang Z (2011) Investigating the influence of extractives on the oil yield and alkane production obtained from three kinds of biomass via deoxy-liquefaction. Biores Technol 102(14):7190–7195. https://doi.org/10.1016/j.biortech.2011.04.060

    Article  Google Scholar 

  78. de Carvalho VS, Tannous K (2017) Thermal decomposition kinetics modeling of energy cane Saccharum robustum. Thermochim Acta 657:56–65. https://doi.org/10.1016/j.tca.2017.09.016

    Article  Google Scholar 

  79. Santos VO, Queiroz LS, Araujo RO, Ribeiro FC et al (2020) Pyrolysis of acai seed biomass: Kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresour Technol Rep 12:100553. https://doi.org/10.1016/j.biteb.2020.100553

    Article  Google Scholar 

  80. Lopes FCR, Pereira JC, Tannous K (2018) Thermal decomposition kinetics of guarana seed residue through thermogravimetric analysis under inert and oxidizing atmospheres. Bioresour Technol 270:294–302. https://doi.org/10.1016/j.biortech.2018.09.021

    Article  Google Scholar 

  81. Ong HC, Chen WH, Farooq A, Gan YY, Lee KT, Ashokkumar V (2019) Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review. Renew Sust Energ Ver 113:109266. https://doi.org/10.1016/j.rser.2019.109266

    Article  Google Scholar 

  82. Lovaglio T, D’Auria M, Rita A, Todaro L (2017) Compositions of compounds extracted from thermo-treated wood using solvents of different polarities. Iforest 10(5):824–828. https://doi.org/10.3832/ifor2360-010

    Article  Google Scholar 

  83. Anca-Couce A (2016) Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog Energy Combust Sci 53:41–79. https://doi.org/10.1016/j.pecs.2015.10.002

    Article  Google Scholar 

  84. de Paula PT, Scatolino MV, de Araújo ACC, de Oliveira AFCF, de Figueiredo ICR, de Assis MR, Trugilho PF (2019) Assessing proximate composition, extractive concentration, and lignin quality to determine appropriate parameters for selection of superior Eucalyptus firewood. Bioenergy Res 12(3):626–641. https://doi.org/10.1007/s12155-019-10004-x

    Article  Google Scholar 

  85. Santos VO, Araujo RO, Ribeiro FC, Colpani D, Lima VM, Tenório JAS (2022) Analysis of thermal degradation of peach palm (Bactris gasipaes Kunth) seed using isoconversional models. React. Kinet. Mech. Catal 1-21https://doi.org/10.1007/s11144-021-02140-3

  86. Mohammed IY, Abakr YA, Kazi FK, Yusup S, Alshareef I, Chin SA (2015) Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8(5):3403–3417. https://doi.org/10.3390/en8053403

    Article  Google Scholar 

  87. Bianco MA, Savolainen H (1997) Phenolic acids as indicators of wood tannins. Sci Total Environ 203(1):79–82. https://doi.org/10.1016/s0048-9697(97)00135-6

    Article  Google Scholar 

  88. Palavicini SMS, Souza RC, Marco M, Bernardi JL, Paroul N, Toniazzo GB, Cansian RL, Steffens C (2022) Extração a frio sequencial e fracionada de sementes de Plantago major e Plantago tomentosa. Scientia Plena, 18(2). https://doi.org/10.14808/sci.plena.2022.020201

  89. Viegas Júnior C (2003) Terpenos com atividade inseticida: uma alternativa para o controle químico de insetos. Quim Nova 26:390–400. https://doi.org/10.1590/S0100-40422003000300017

    Article  Google Scholar 

  90. Mészáros E, Jakab E, Várhegyi G (2007) TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia. J Anal Appl Pyrolysis 79(1–2):61–70. https://doi.org/10.1016/j.jaap.2006.12.007

    Article  Google Scholar 

  91. Lima RP, da Luz PTS, Braga M et al (2017) Murumuru (Astrocaryum murumuru Mart.) butter and oils of buriti (Mauritia flexuosa Mart.) and pracaxi (Pentaclethra macroloba (Willd.) Kuntze) can be used for biodiesel production: Physico-chemical properties and thermal and kinetic studies. Ind Crops Prod 97:536–544. https://doi.org/10.1016/j.indcrop.2016.12.052

    Article  Google Scholar 

  92. Chen Y, Tshabalala MA, Gao J, Stark NM, Fan Y, Ibach RE (2014) Thermal behavior of extracted and delignified pine wood flour. Thermochim Acta 591:40–44. https://doi.org/10.1016/j.tca.2014.06.012

    Article  Google Scholar 

  93. Moya R, Rodríguez-Zúñiga A, Puente-Urbina A (2017) Thermogravimetric and devolatilisation analysis for five plantation species: Effect of extractives, ash compositions, chemical compositions and energy parameters. Thermochim Acta 647:36–46. https://doi.org/10.1016/j.tca.2016.11.014

    Article  Google Scholar 

  94. de Paula Protásio T, da Costa JS, Scatolino MV, Lima MDR, de Assis MR, da Silva MG, et al (2021) Revealing the influence of chemical compounds on the pyrolysis of lignocellulosic wastes from the Amazonian production chains. Int J Environ SciTechnol 1-18. https://doi.org/10.1007/s13762-021-03416-w

  95. Shebani AN, Van Reenen AJ, Meincken M (2008) The effect of wood extractives on the thermal stability of different wood-LLDPE composites. Thermochim Acta 481(1–2):52–56. https://doi.org/10.1016/j.tca.2008.10.008

    Article  Google Scholar 

  96. Mohamad Nor N, Lau LC, Lee KT, Mohamed AR (2013) Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J Environ Chem Eng 1(4):658–666. https://doi.org/10.1016/j.jece.2013.09.017

    Article  Google Scholar 

  97. Danish M, Hashim R, Ibrahim MNM, Sulaiman O (2013) Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood. J Anal Appl Pyrolysis 104:418–425. https://doi.org/10.1016/j.jaap.2013.06.003

    Article  Google Scholar 

  98. De Oliveira DNPS et al (2019) Enhancement of the Amazonian Açaí Waste Fibers through Variations of Alkali Pretreatment Parameters. Chem Biodiv 16(9):e1900275. https://doi.org/10.1002/cbdv.201900275

    Article  Google Scholar 

  99. Cruz G, Rodrigues ADLP, da Silva DF, Gomes WC (2021) Physical–chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. J Therm Anal Calorim 143(5):3611–3622. https://doi.org/10.1007/s10973-020-09330-6

    Article  Google Scholar 

  100. Cruz G, Rodrigues ADLP, da Silva DF, Gomes WC (2021) Physical–chemical characterization and thermal behavior of cassava harvest waste for application in thermochemical processes. J Therm Anal Calorim 143(5):3611–3622. https://doi.org/10.1007/s10973-020-09330-6

    Article  Google Scholar 

  101. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  102. Azam K, Shezad N, Shafiq I, Akhter P, Akhtar F, Jamil F, Hussain M (2022) A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. Chemosphere, 135566 https://doi.org/10.1016/j.chemosphere.2022.135566

  103. Mohd Din AT, Hameed BH, Ahmad AL (2009) Batch adsorption of phenol onto physiochemical-activated coconut shell. Journal of Hazardous Materials 161(2–3):1522–1529. https://doi.org/10.1016/j.jhazmat.2008.05.009

    Article  Google Scholar 

  104. Figueiredo JL, Pereira MFR (2010) The role of surface chemistry in catalysis with carbons. Catalysis Today 150(1–2):2–7. https://doi.org/10.1016/j.cattod.2009.04.010

    Article  Google Scholar 

  105. González-García P (2018) Activated carbon from lignocellulosics precursors: a review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev 82:1393–1414. https://doi.org/10.1016/j.rser.2017.04.117

    Article  Google Scholar 

  106. Chavés-Guerrero L, Rangel-Mendéz R, Muños-Sandoval E, Cullen DA, Smith DJ, Terrones H, Terrones M (2008) Production and detailed characterization of bean husk-based carbon: efficient cadmium (II) removal from aqueous solutions. Water Research 42(13):3473–3479. https://doi.org/10.1016/j.watres.2008.04.022

    Article  Google Scholar 

  107. Demirbaş A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41(6):633–646. https://doi.org/10.1016/S0196-8904(99)00130-2

    Article  Google Scholar 

  108. Saravia SAM, Montero IF, Linhares BM, Santos RA, Marcia JAF (2020) Mineralogical composition and bioactive molecules in the pulp and seed of Patauá (Oenocarpus bataua Mart): A Palm from the Amazon. Int J Plant Sci 31(6):1–7. https://doi.org/10.9734/IJPSS/2019/v31i630228

    Article  Google Scholar 

  109. Agblevor FA, Besler S (1996) Inorganic compounds in biomass feedstocks 1 Effect on the quality of fast pyrolysis oils. Energy Fuels 10(2):293–298. https://doi.org/10.1021/ef950202u

    Article  Google Scholar 

  110. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  111. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101(12):4646–4655. https://doi.org/10.1016/j.biortech.2010.01.112

    Article  Google Scholar 

  112. Collard FX, Blin J, Bensakhria A, Valette J (2012) Influence of impregnated metal on the pyrolysis conversion of biomass constituents. J Anal Appl Pyrolysis 95:213–226. https://doi.org/10.1016/j.jaap.2012.02.009

    Article  Google Scholar 

  113. Collard FX, Bensakhria A, Drobek M, Volle G, Blin J (2015) Influence of impregnated iron and nickel on the pyrolysis of cellulose. Biomass Bioenergy 80:52–62. https://doi.org/10.1016/j.biombioe.2015.04.032

    Article  Google Scholar 

  114. Shao J, Yan R, Chen H, Yang H, Lee DH (2010) Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Process Technol 91(9):1113–1118. https://doi.org/10.1016/j.fuproc.2010.03.023

    Article  Google Scholar 

  115. Cao Z, Niu J, Gu Y, Zhang R, Liu Y, Luo L (2020) Catalytic pyrolysis of rice straw: screening of various metal salts, metal basic oxide, acidic metal oxide and zeolite catalyst on products yield and characterization. J Clean Prod 269:122079. https://doi.org/10.1016/j.jclepro.2020.122079

    Article  Google Scholar 

  116. Biswas B, Singh R, Krishna BB, Kumar J, Bhaskar T (2017) Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresour Technol 242:139–145. https://doi.org/10.1016/j.biortech.2017.03.044

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the technical assistance provided by the team of the Multiuser Biomaterials Laboratory of the Federal University of Lavras (Brazil) and for the availability of the Laboratory of Biotechnology of the Amazon—LABTAM, of the State University of Amapá, for the accomplishment of the analyses.

Funding

This study was financially supported by the State University of Amapá (Research Project no. 021).

Author information

Authors and Affiliations

Authors

Contributions

Edina Ruth Mendes Leal Mafra: conceptualization, data curation, formal analysis, and writing—original draft; Thiago de Paula Protásio: formal analysis, writing—review and editing; Lina Bufalino: funding acquisition, formal analysis, writing—review and editing; Jefferson Bezerra Bezerra: data curation, formal analysis, and writing—review and editing; Marcelo Mendes Pedroza: review and formal analysis; Tiago Marcolino de Souza: funding acquisition, formal analysis, translation, review and editing; Melissa Ferreira Viana: formal analysis and translation; Daianna Batista Barbosa: formal analysis.

Corresponding author

Correspondence to Edina Ruth Mendes Leal Mafra.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mafra, E.R.M.L., de Paula Protásio, T., Bezerra Bezerra, J. et al. Comparative analysis of seed biomass from Amazonian fruits for activated carbon production. Biomass Conv. Bioref. 14, 11279–11293 (2024). https://doi.org/10.1007/s13399-022-03348-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03348-6

Keywords

Navigation