Skip to main content

Advertisement

Log in

Transformation of agro-biomass into vanillin through novel membrane integrated value-addition process: a state-of-art review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Bio-based feedstock utilization for the green manufacturing of valuable organic compounds is reckoned as a crucial goal to be achieved by the global scientific communities in this century to encourage sustainable business while saving the fixed stock of fossil fuels. Vanillin is a key aromatic flavoring compound extensively used in the food and cosmetic industries. Around 12,000 tons of vanillin are widely consumed in a year, and less than 1% of it is obtained from vanilla beans through the costly extraction process. Extensive scrutiny of the existing literature shows that vanillin can be produced bio-technologically from several sources. Currently, the production of vanillin from lignin is enticing because it caters to the supply of renewable aromatics in nature. However, the scaled-up applications of the biological routes are limited owing to the slow process, the requirement for precise process control, the risk of product inhibition and degradation, bacterial strain selection, and a complex downstream purification. These challenges highlight the need for vanillin synthesis through an alternate eco-friendly combined biological–chemical route. This review gives an insight into the development of a novel membrane-integrated photo-microreactor system for converting lignocellulosic biomass to vanillin and downstream purification, which appears to be the most promising bio-chemical, environmentally friendly, and cost-effective choice. The status quo of lignin extraction, purification, recovery, and techno-economic assessment for scale-up are also discussed thoroughly, enabling researchers to comprehend the possible lignocellulosic agro-biomass material conversion methodologies for the production of valuable aromatic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

[EMim]:

1-Ethyl-3-methylimidazolium

[OAc]:

Acetate

[DMBA][HSO4]:

N,N-Dimethylbutylammonium hydrogen sulfate

[C2mim]:

1-Ethyl-methylimidazolium

[C4C1im][MeSO4]:

1,3-Dimethylimidazolium methyl sulfate

[C4C1im][HSO4]:

1-Butyl-3- methylimidazolium hydrogen sulfate

[C4C1im]MeCO2]:

1-Butyl-3- methylimidazolium acetate

CAGR:

Compound annual growth rate

[2-MTHF]:

2-Methyl tetrahydrofuran

LTSD:

Low temperature steep delignification

AOP:

Advanced oxidation process

RoI:

Return on investment

PT:

Payback time

References

  1. Daugsch A, Pastores G (2005) Production of vanillin: a biotechnological opportunity|INIS. Quim Nova 28:642–645. https://doi.org/10.1590/S0100-40422005000400017

    Article  Google Scholar 

  2. Chakrabortty S, Nayak J, Banerjee S, Kumar R, Pal P, Chakraborty P, Sarkar I, Kumar A (2020) Chapter 5: green synthesis of food flavoring agents. In: Singh N, Pandey S, Sharma H, Goel S (eds) Green innovation, sustainable development, and circular economy, 1st edn. CRC Press, pp 81–96. https://doi.org/10.1201/9781003011255

  3. Prieferts H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. https://doi.org/10.1007/S002530100687

    Article  Google Scholar 

  4. Hua D, Ma C, Lin S et al (2007) Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. J Biotechnol 130:463–470. https://doi.org/10.1016/J.JBIOTEC.2007.05.003

    Article  Google Scholar 

  5. Masai E, Harada K, Peng X et al (2002) Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6. Appl Environ Microbiol 68:4416–4424. https://doi.org/10.1128/AEM.68.9.4416-4424.2002

    Article  Google Scholar 

  6. Overhage J, Steinbüchel A, Priefert H (2003) Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl Environ Microbiol 69:6569. https://doi.org/10.1128/AEM.69.11.6569-6576.2003

    Article  Google Scholar 

  7. Brochado AR, Matos C, Møller BL et al (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 9:1 9:1–15. https://doi.org/10.1186/1475-2859-9-84

  8. Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2011) Candida galli strain PGO6: a novel isolated yeast strain capable of transformation of isoeugenol into vanillin and vanillic acid. Curr Microbiol 62:990–998. https://doi.org/10.1007/S00284-010-9815-Y

    Article  Google Scholar 

  9. Zhao LQ, Sun ZH, Zheng P, Zhu LL (2005) Biotransformation of isoeugenol to vanillin by a novel strain of Bacillus fusiformis. Biotech Lett 27:1505–1509. https://doi.org/10.1007/S10529-005-1466-X

    Article  Google Scholar 

  10. Singh G, Gupta MK, Chaurasiya S (2021) Rice straw burning: a review on its global prevalence and the sustainable alternatives for its effective mitigation. Environ Sci Pollut Res 28:25 28:32125–32155. https://doi.org/10.1007/S11356-021-14163-3

  11. Walton N, Narbad A, Faulds C, Williamson G (2000) Novel approaches to the biosynthesis of vanillin. Curr Opin Biotechnol 11:490–496. https://doi.org/10.1016/S0958-1669(00)00125-7

    Article  Google Scholar 

  12. Bozell JJ (2014) Approaches to the selective catalytic conversion of lignin: a grand challenge for biorefinery development. Top Curr Chem 353:229–255. https://doi.org/10.1007/128_2014_535

    Article  Google Scholar 

  13. Patil G, Patil GN, Deshmukh ZK et al (2015) Manufacturing of vanillin from lignin via photocatalytic degradation by using titanium dioxide photocatalyst process intensification of ethyl acetate view project manufacturing of vanillin from lignin via photocatalytic degradation by using titanium dioxide photocatalyst. Int J Eng Technol, Manag Appl Sci 3(5):ISSN 2349–4476

  14. da Silva EAB, Zabkova M, Araújo JD (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem Eng Res Des 87:1276–1292. https://doi.org/10.1016/J.CHERD.2009.05.008

    Article  Google Scholar 

  15. Forss GK, Talka TE, Fremer KE (1986) Isolation of vanillin from alkaline oxidized spent sulfite liquor. Ind Eng Chem Prod Res Dev 25:103–108. https://doi.org/10.1021/i300021a023

    Article  Google Scholar 

  16. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Edu 74:1055–1059. https://doi.org/10.1021/ed074p1055

    Article  Google Scholar 

  17. Tomlinson G 2nd, Hibbert H (1936) Studies on lignin and related compounds. XXIV. The formation of vanillin from waste sulfite liquor. J Am Chem Soc 58:345–348 18. https://doi.org/10.1021/ja01293a046

  18. Thiel L, Hendrick F, Triumph Venture Capitals Limited (2004) Part 3-Aroma chemicals derived from petrochemical feedstocks. In: Study into the establishment of an aroma and fragrance fine chemicals value chain in South Africa (TENDER NUMBER T79/07/03). http://www.thedtic.gov.za/wp-content/uploads/Aroma_Part3.pdf. Accessed 8.10.2022

  19. Havkin-Frenkel D (2018) Vanillin. In: Kirk-Othmer encyclopedia of chemical technology. John Wiley & Sons, pp 1–12. https://doi.org/10.1002/0471238961.2201140905191615.a01.pub3

  20. Hakke V, Sonawane S, Anandan S et al (2021) Process intensification approach using microreactors for synthesizing nanomaterials—a critical review. Nanomaterials 11(1):98. https://doi.org/10.3390/nano11010098

    Article  Google Scholar 

  21. Scott K, Hughes R (eds) (1996) Industrial membrane separation technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0627-6

  22. Humpert D, Ebrahimi M, Czermak P (2016) Membrane technology for the recovery of lignin: a review. Membranes 6(3):42. https://doi.org/10.3390/membranes6030042

    Article  Google Scholar 

  23. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  Google Scholar 

  24. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33:259–276. https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  Google Scholar 

  25. Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier Science. https://doi.org/10.1016/B978-0-08-045316-3.X0001-4

  26. Jönsson AS, Nordin AK, Wallberg O (2008) Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem Eng Res Des 86:1271–1280. https://doi.org/10.1016/J.CHERD.2008.06.003

    Article  Google Scholar 

  27. Saake B, Lehnen R (2007) Lignin. Ullmann’s encycl. Ind Chem. Wiley‐VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a15_305.pub3

  28. Khanal S, Surampalli R, Zhang T, Lamsal BP, Tyagi RD, Kao CM (2010) Bioenergy and biofuel from biowastes and biomass. American Society of Civil Engineers. https://doi.org/10.1061/9780784410899

  29. Kim GH, Um BH (2020) Fractionation and characterization of lignins from Miscanthus via organosolv and soda pulping for biorefinery applications. Int J Biol Macromol 158:443–451. https://doi.org/10.1016/j.ijbiomac.2020.04.229

    Article  Google Scholar 

  30. Bhardwaj NK, Kaur D, Chaudhry S et al (2019) Approaches for converting sugarcane trash, a promising agro residue, into pulp and paper using soda pulping and elemental chlorine-free bleaching. J Clean Prod 217:225e233. https://doi.org/10.1016/j.jclepro.2019.01.223

    Article  Google Scholar 

  31. Mohamad Aini NA, Othman N, Hussin MH et al (2020) Effect of extraction methods on the molecular structure and thermal stability of kenaf (Hibiscus cannabinus core) biomass as an alternative bio-filler for rubber composites. Int J Biol Macromol 154:1255–1264. https://doi.org/10.1016/j.ijbiomac.2019.10.280

    Article  Google Scholar 

  32. Liao JJ, Latif NHA, Trache D et al (2020) Current advancement on the isolation, characterization and application of lignin. Int J Biol Macromol 162:985–1024. https://doi.org/10.1016/j.ijbiomac.2020.06.168

    Article  Google Scholar 

  33. Bajpai P (2018) Chapter 12 - pulping fundamentals. In: Pulping fundamentals, Biermann’s handbook of pulp and paper. Volume 1: raw material and pulp making, 3rd edn. Elsevier, pp 295–351. https://doi.org/10.1016/b978-0-12-814240-0.00012-4

  34. Galbe M, Wallberg O (2019) Pretreatment for biorefneries: a review of common methods for efficient utilisation of lignocellulosic materials. Biotechnol Biofuels 12:294. https://doi.org/10.1186/s13068-019-1634-1

    Article  Google Scholar 

  35. Zhang X, Zhu J, Sun L et al (2019) Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment. Ind Crop Prod 133:241–249. https://doi.org/10.1016/j.indcrop.2019.03.027

    Article  Google Scholar 

  36. Tribot A, Amer G, Abdou AM, de Baynast H, Delattre C, Pons A, Mathias JD, Callois JM, Vial C, Michaud P, Dussap CG (2019) Wood-lignin: supply, extraction processes and use as bio-based material. Eur Polym J 112:228–240. https://doi.org/10.1016/j.eurpolymj.2019.01.007

    Article  Google Scholar 

  37. Meyer JR, Waghmode SB, He J (2018) Isolation of lignin from ammonia fiber expansion (AFEX) pretreated biorefinery waste. Biomass Bioenergy 119:446–455. https://doi.org/10.1016/j.biombe.2018.09.017

    Article  Google Scholar 

  38. Bals B, Murnen H, Allen M, Dale B (2010) Ammonia fiber expansion (AFEX) treatment of eleven different forages: Improvements to fiber digestibility in vitro. Anim Feed Sci Technol 155(2–4):147–155. https://doi.org/10.1016/j.anifeedsci.2009.11.004

    Article  Google Scholar 

  39. Griffith CL, Ribeiro GO Jr, Oba M et al (2016) Fermentation of ammonia fiber expansion treated and untreated barley straw in a rumen simulation technique using rumen inoculum from cattle with slow versus fast rate of fiber disappearance. Front Microbiol 7:1839. https://doi.org/10.3389/fmicb.2016.01839

    Article  Google Scholar 

  40. Lobato-Peralta DRE, Duque-Brito H-V (2021) A review on trends in lignin extraction and valorization of lignocellulosic biomass for energy application. J Clean Prod 293:126123. https://doi.org/10.1016/j.jclepro.2021.126123

    Article  Google Scholar 

  41. Cheng F, Sun J, Wang Z et al (2019) Organosolv fractionation and simultaneous conversion of lignocellulosic biomass in aqueous 1,4-butanediol/acidic ionic-liquids solution. Ind Crops Prod 138:111573. https://doi.org/10.1016/j.indcrop.2019.111573

    Article  Google Scholar 

  42. Zhang Y, Hou Q, Fu Y et al (2018) One-step fractionation of the main components of bamboo by formic acid-based organosolv process under pressure. J Wood Chem Technol 38(3):170–82 https://doi.org/10.1080/02773813.2017.1388823

  43. Tan X, Zhang Q, Wang W et al (2019) Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharifcation and lignin isolation. Fuel 249:334–340. https://doi.org/10.1016/j.fuel.2019.03.117

    Article  Google Scholar 

  44. Liu Y, Zhong L, Wang C, Yang G, Chen J, Yoob CG, Lyu G (2022) Synergistic effects of heteropoly acids and sulfolane on fractionation and utilization of willow. Ind Crops Prod 188(Part B):115712. https://doi.org/10.1016/j.indcrop.2022.115712

  45. Neata G, Campeanu G, Popescu MI, Popa O, Babeanu N, Basaraba A, Popescu DD (2015) Lignin extraction from corn biomass using supercritical extraction. Rom Biotechnol Lett 20(3):10406–10412. http://www.rombio.eu/rbl3vol20/5.pdf

  46. Horváth IT, Mehdi H, Fábos V et al (2008) γ-Valerolactone-a sustainable liquid for energy and carbon-based chemicals. Green Chem 10(2):238–42. 111. https://doi.org/10.1039/B712863K\

  47. Lê HQ, Zaitseva A, Pokki JP et al (2016) Solubility of organosolv lignin in γ-valerolactone/water binary mixtures. Chemsuschem 9(20):2939–2947. https://doi.org/10.1002/cssc.201600655

    Article  Google Scholar 

  48. Florian TDM, Villani N, Aguedo M et al (2019) Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind Crop Prod 132:269–274. https://doi.org/10.1016/j.indcrop.2019.02.022

    Article  Google Scholar 

  49. Michelin M, Liebentritt S, Vicente AA, Teixeira JA (2018) Lignin from an integrated process consisting of liquid hot water and ethanol organosolv: physicochemical and antioxidant properties. Int J Biol Macromol 120:159–169. https://doi.org/10.1016/j.ijbiomac.2018.08.046

    Article  Google Scholar 

  50. Chin DWK, Lim S, Pang YL et al (2019) Investigation of organosolv pretreatment to natural microbial-degraded empty fruit bunch for sugar based substrate recovery. Energy Procedia 158:1065–1071. https://doi.org/10.1016/j.egypro.2019.01.258

    Article  Google Scholar 

  51. Meighan BN, Lima DRS, Cardoso WJ et al (2017) Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignifcation in a lignocellulosic biorefnery concept. Ind Crops Prod 108:431–434

    Article  Google Scholar 

  52. Yao L, Yoo CG, Pu Y et al (2019) Physicochemical changes of cellulose and their infuences on Populus trichocarpa digestibility after diferent pretreatments. Bio Resources 14(4):9658–9676

    Google Scholar 

  53. Vishtal A., Kraslawski A (2011) Challenges in industrial applications of technical lignins. BioResources 6:3547–3568. https://doi.org/10.15376/biores.6.3.3547- 3568

  54. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–98. 110. https://doi.org/10.1021/cr068360d

  55. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10:39–48. https://doi.org/10.1023/A:1021070006895

    Article  Google Scholar 

  56. Ji Q, Yu X, Yagoub AEGA et al (2020) Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind Crop Prod 149:112357. https://doi.org/10.1016/j.indcrop.2020.112357

    Article  Google Scholar 

  57. Chen Z, Ragauskas A, Wan C (2020) Lignin extraction and upgrading using deep eutectic solvents. Ind Crop Prod 147:112241. https://doi.org/10.1016/j.indcrop.2020.112241

    Article  Google Scholar 

  58. Zhang N, Ciriminna R, Pagliaro M (2014) Xu Y-J (2012), Nanochemistry-derived Bi2WO6 nanostructures: towards production of sustainable chemicals and fuels induced by visible light. Chem Soc Rev 43:5276–5287. https://doi.org/10.1039/C4CS00056K

    Article  Google Scholar 

  59. Smink D, Kersten SRA, Schuur B (2020) Recovery of lignin from deep eutectic solvents by liquid-liquid extraction. Separ Purif Technol 235:116127. https://doi.org/10.1016/j.seppur.2019.116127

    Article  Google Scholar 

  60. Liu Q, Yuan T, Fu Q, Bai Y, Peng F, Yao C (2019) Choline chloride-lactic acid deep eutectic solvent for delignification and nanocellulose production of moso bamboo. Cellulose 26:9447–9462. https://doi.org/10.1007/s10570-019-02726-0

    Article  Google Scholar 

  61. Mani Rathnam V, Madras G (2019) Conversion of Shizochitrium limacinum microalgae to biodiesel by non-catalytic transesterification using various supercritical fluids. Bioresour Technol 28:121538. https://doi.org/10.1016/j.biortech.2019.121538

    Article  Google Scholar 

  62. Morais ARC, da Costa Lopes AM, Bogel-Łukasik R (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115:3–27. https://doi.org/10.1021/cr500330z

    Article  Google Scholar 

  63. Bhatia SK, Jagtap SS, Bedekar AA, Bhati RK, Patel AK, Pant D, Banu JR, Rao CV, Kimi Y, Yang Y (2020) Recent developments in pretreatment technologies on lignocellulosic biomass: effect of key parameters, technological improvements, and challenges. Biores Technol 300:122724. https://doi.org/10.1016/j.biortech.2019.122724

    Article  Google Scholar 

  64. Reverchon E, de Marco I (2006) Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluids 38:146–166. https://doi.org/10.1016/j.supflu.2006.03.020

    Article  Google Scholar 

  65. Sahena F, Zaidul ISM, Jinap S et al (2009) Application of supercritical CO2 in lipid extraction - A review. J Food Eng 95:240–253. https://doi.org/10.1016/j.jfoodeng.2009.06.026

    Article  Google Scholar 

  66. Singh, S (2018) Designing tailored microbial and enzymatic response in ionic liquids for lignocellulosic biorefineries. Biophys Rev 10:911–913. 10.1007%2Fs12551–018–0418–3

  67. Zhou Q, Chen J, Wang C (2020) Quantitative structures and thermal properties of Miscanthus giganteus lignin after alcoholamine-based ionic liquid pretreatment. Ind Crop Prod 147:112232. https://doi.org/10.1016/j.indcrop.2020.112232

    Article  Google Scholar 

  68. Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58(5):2915–2922. https://doi.org/10.1021/jf903616y

    Article  Google Scholar 

  69. Gschwend FJV, Chambon CL, Biedka M et al (2019) Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids. Green Chem 21(3):692–703. https://doi.org/10.1039/C8GC02155D

    Article  Google Scholar 

  70. Gao J, Chen C, Wang L et al (2019) Utilization of inorganic salts as adjuvants for ionic liquid–water pretreatment of lignocellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. 3 Biotech 9(7):264. https://doi.org/10.1007/s13205-019-1788-3

  71. Gschwend FJV, Malaret F, Shinde S (2018) Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chem 20:3486–3498. https://doi.org/10.1039/C8GC00837J

    Article  Google Scholar 

  72. Williams CL, Li C, Hu H et al (2018) Three way comparison of hydrophilic ionic liquid, hydrophobic ionic liquid, and dilute acid for the pretreatment of herbaceous and woody biomass. Front Energy Res 6. https://doi.org/10.3389/fenrg.2018.00067

  73. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4:7–7. https://doi.org/10.1186/s40643-017-0137-9

    Article  Google Scholar 

  74. Park J, Shin H, Yoo S, Zoppe JO, Park S (2015) Delignification of lignocellulosic biomass and its effect on subsequent enzymatic hydrolysis. BioResources 10(2):2732–2743. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_2_2732_Park_Delignification_Lignocellulosic_Biomass/3439

  75. Kumar R, Kim TH, Basak B (2022) Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocesses for sustainable biofuels production. J Clean Prod 333:130180. https://doi.org/10.1016/j.jclepro.2021.130180

    Article  Google Scholar 

  76. Rahmati S, Doherty W, Dubal D (2020) Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. React Chem Eng 5(11):2017–2047. https://doi.org/10.1039/D0RE00241K

    Article  Google Scholar 

  77. Gao J, Chen L, Zhang J, Yan Z (2014) Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis. Bioresour Technol 171:469–471. https://doi.org/10.1016/j.biortech.2014.07.118

    Article  Google Scholar 

  78. Vanneste J, Ennaert T, Vanhulsel A, Sels B (2017) Unconventional pretreatment of lignocellulose with low-temperature plasma. Chemsuschem 10(1):14–31. https://doi.org/10.1002/cssc.201601381

    Article  Google Scholar 

  79. Cerrutti P, Alzamora SM, Vidales SL (1997) Vanillin as an antimicrobial for producing shelf-stable strawberry puree. J Food Sci 62:608–610. https://doi.org/10.1111/J.1365-2621.1997.TB04442.X

    Article  Google Scholar 

  80. Fitzgerald DJ, Stratford M, Narbad A (2003) Analysis of the inhibition of food spoilage yeasts by vanillin. Int J Food Microbiol 86:113–122. https://doi.org/10.1016/S0168-1605(03)00059-X

    Article  Google Scholar 

  81. Lopez-malo A, Alzamora SM, Argaiz A (1998) Vanillin and pH synergistic effects on mold growth. J Food Sci 63:143–146. https://doi.org/10.1111/j.1365-2621.1998.tb15695.x

    Article  Google Scholar 

  82. Villar JC, Caperos A, García-Ochoa F (1997) Oxidation of hardwood kraft-lignin to phenolic derivatives.nitrobenzene and copper oxide as oxidants. J Wood Chem Technol 17:259–285. https://doi.org/10.1080/02773819708003131

    Article  Google Scholar 

  83. Li K, Frost* JW (1998) Synthesis of Vanillin from Glucose. Journal of the American Chemical Society 120:10545–10546. https://doi.org/10.1021/JA9817747

  84. Karmakar B, Vohra RM, Nandanwar H et al (2000) Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. J Biotechnol 80:195–202. https://doi.org/10.1016/S0168-1656(00)00248-0

    Article  Google Scholar 

  85. Luziatelli F, Brunetti L, Ficca AG, Ruzzi M (2019) Maximizing the efficiency of vanillin production by biocatalyst enhancement and process optimization. Front Bioeng Biotechnol 0:279. https://doi.org/10.3389/FBIOE.2019.00279

  86. Yan L, Chen P, Zhang S et al (2016) Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermentors. Scientific Rep 6:1 6, 1–12. https://doi.org/10.1038/srep34644

  87. Fache M, Boutevin B, Caillol S (2015) Vanillin production from lignin and its use as a renewable chemical. ACS Sustain Chem Eng 4:35–46. https://doi.org/10.1021/ACSSUSCHEMENG.5B01344

    Article  Google Scholar 

  88. Hansen EH, Møller BL, Kock GR et al (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and Baker’s yeast (Saccharomyces cerevisiae). Appl Environ Microbiol 75:2765. https://doi.org/10.1128/AEM.02681-08

    Article  Google Scholar 

  89. Srivastava S, Luqman S, Khan F et al (2010) Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger. Bioinformation 4:320–325. https://doi.org/10.6026/97320630004320

    Article  Google Scholar 

  90. Nazareth S, Mavinkurve S (2011) Degradation of ferulic acid via 4-vinylguaiacol by Fusarium solani (Mart.) Sacc. Can J Microbiol 32:494–497. https://doi.org/10.1139/M86-090

    Article  Google Scholar 

  91. Bomgardner MM (2014) Following many routes to naturally derived vanillin. Chemical & Engineering News. Copyright © 2022 American Chemical Society 92(6):1. https://cen.acs.org/articles/92/i6/Following-Routes-Naturally-Derived-Vanillin.html

  92. Rodrigues Pinto PC, Borges da Silva EA, Rodrigues AE (2012) Lignin as source of fine chemicals: vanillin and syringaldehyde. In: Baskar C, Baskar S, Dhillon R (eds) Biomass conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28418-2_12

  93. Li C, Zhao X, Wang A et al (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624. https://doi.org/10.1021/ACS.CHEMREV.5B00155

    Article  Google Scholar 

  94. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/CR900354U

    Article  Google Scholar 

  95. Arya SS, Rookes JE, Cahill DM, Lenka SK (2021) Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. Adv Tradit Med 21:1–17. https://doi.org/10.1007/s13596-020-00531-w

    Article  Google Scholar 

  96. Shakeri A, Rad M, Ghasemian A (2013) Oxidative production of vanillin from industrial lignin using oxygen and nitrobenzene: a comparative study. Int J Farming Allied Sci 2:1165–1171

    Google Scholar 

  97. Schrader J, Berger RG (2001) Biotechnological production of terpenoid flavor and fragrance compounds, in: Biotechnology: Second Edition. John Wiley & Sons, Ltd, pp.:373–422. https://doi.org/10.1002/9783527620937.CH13

  98. Seshadri R (2005) Mechanism studies on the oxidation of isoeugenol by Nocardia sp. NRRL 5646. PhD Thesis for degree in Pharmacy in the Graduate College of The University of Iowa, UMI Microform 3172443. https://www.proquest.com/openview/fe2bfd87e6d434d0915c74e46b4b26bf/1?pq-origsite=gscholar&cbl=18750&diss=y

  99. Gomes ED, Mota MI, Rodrigues AE (2018) Fractionation of acids, ketones and aldehydes from alkaline lignin oxidation solution with SP700 resin. Sep Purif Technol 194:256–264. https://doi.org/10.1016/J.SEPPUR.2017.11.050

    Article  Google Scholar 

  100. Havkin-Frenkel D, Belanger FC (2010) Handbook of Vanilla Science and Technology, Handbook of Vanilla Science and Technology. Wiley-Blackwell. https://doi.org/10.1002/9781444329353

  101. Bajwa DS, Pourhashem G, Ullah AH, Bajwa SG (2019) A concise review of current lignin production, applications, products and their environmental impact. Ind Crops Prod 139:111526. https://doi.org/10.1016/J.INDCROP.2019.111526

    Article  Google Scholar 

  102. Vu TT, Lim Y-I, Song D et al (2021) Economic analysis of vanillin production from Kraft lignin using alkaline oxidation and regeneration. Biomass Convers Biorefiny:1–11. https://doi.org/10.1007/S13399-020-01212-Z

  103. Mackie RK, Smith DM, Aitkin RA. (1990) Guidebook to organic synthesis, 1st edn. Longman (Harlow) and Wiley (New York), pp 387. https://doi.org/10.1016/0307-4412(91)90151-W

  104. Tarabanko VE, Tarabanko N (2017) Catalytic oxidation of lignins into the aromatic aldehydes: general process trends and development prospects. Int J Mol Sci 18(11):2421. https://doi.org/10.3390/IJMS18112421

    Article  Google Scholar 

  105. Behling R, Chatel G, Valange S (2017) Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. Ultrason Sonochem 36:27–35. https://doi.org/10.1016/J.ULTSONCH.2016.11.015

    Article  Google Scholar 

  106. Gusevskaya EV, Menini L, Parreira LA, Mesquita RA, Kozlov YN, Shul’pin GB (2012) Oxidation of isoeugenol to vanillin by the “H2O2–vanadate–pyrazine-2-carboxylic acid” reagent. J Mol Catal A Chem 363–364:140–147. https://doi.org/10.1016/J.MOLCATA.2012.06.001

    Article  Google Scholar 

  107. Peralta-Zamora P, Gomes de Moraes S, Pelegrini R, Freire M Jr, Reyes J, Mansilla H, Durán N (1998) Evaluation of ZnO, TiO2 and supported ZnO on the photoassisted remediation of black liquor, cellulose and textile mill effluents. Chemosphere 36(9):2119–2133. https://doi.org/10.1016/S0045-6535(97)10074-1

    Article  Google Scholar 

  108. Wang KH, Hsieh YH, Chou MY, Chang CY (1999) Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Appl Catal B 21:1–8. https://doi.org/10.1016/S0926-3373(98)00116-7

    Article  Google Scholar 

  109. Kansal SK, Singh M, Sud D (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater 141:581–590. https://doi.org/10.1016/J.JHAZMAT.2006.07.035

    Article  Google Scholar 

  110. Khodja AA, Sehili T, Pilichowski J, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO 2 and ZnO in aqueous suspensions. J Photochem Photobiol, A 141:231–239. https://doi.org/10.1016/S1010-6030(01)00423-3

    Article  Google Scholar 

  111. di Paola A, Bellardita M, Megna B et al (2015) Photocatalytic oxidation of trans-ferulic acid to vanillin on TiO2 and WO3-loaded TiO2 catalysts. Catal Today 252:195–200. https://doi.org/10.1016/J.CATTOD.2014.09.012

    Article  Google Scholar 

  112. Augugliaro V, Bellardita M, Loddo V et al (2012) Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol, C 13:224–245. https://doi.org/10.1016/J.JPHOTOCHEMREV.2012.04.003

    Article  Google Scholar 

  113. Martín-Perales AI, Rodríguez-Padrón D, García Coleto A, Len C, de Miguel G, Muñoz-Batista MJ, Luque R (2020) Photocatalytic production of vanillin over CeOxand zro2 modified biomass-templated titania. Ind Eng Chem Res 59:17085–17093. https://doi.org/10.1021/ACS.IECR.0C01846

    Article  Google Scholar 

  114. Muñoz-Batista MJ, Gómez-Cerezo MN, Kubacka A (2013) Role of interface contact in CeO2–TiO2 photocatalytic composite materials. ACS Catal 4:63–72. https://doi.org/10.1021/CS400878B

    Article  Google Scholar 

  115. Srisasiwimon N, Chuangchote S, Laosiripojana N, Sagawa T (2018) TiO2/lignin-based carbon composited photocatalysts for enhanced photocatalytic conversion of lignin to high value chemicals. ACS Sustain Chem Eng 6:13968–13976. https://doi.org/10.1021/ACSSUSCHEMENG.8B02353

    Article  Google Scholar 

  116. Chen X, Arruebo M, Yeung KL (2013) Flow-synthesis of mesoporous silicas and their use in the preparation of magnetic catalysts for knoevenagel condensation reactions. Catal Today 204:140–147. https://doi.org/10.1016/j.cattod.2012.07.017

    Article  Google Scholar 

  117. Sampaio MJ, Benyounes A, Serp P et al (2018) Photocatalytic synthesis of vanillin using N-doped carbon nanotubes/ZnO catalysts under UV-LED irradiation. Appl Catal A 551:71–78. https://doi.org/10.1016/J.APCATA.2017.12.002

    Article  Google Scholar 

  118. Ciriminna R, Delisi R, Xu YJ, Pagliaro M (2016) Towards the waste-free synthesis of fine chemicals with visible light. Org Process Res Dev 20:403–408. https://doi.org/10.1021/acs.oprd.5b00424

    Article  Google Scholar 

  119. Leopold B (1952) Studies on lignin. III. Oxidation of wood from Picea abies (L.) Karst. (Norway spruce) with nitrobenzene and alkali. Acta Chem Scand 6:38–39

    Article  Google Scholar 

  120. Gitaari N, Benard K, Gichuki J, Kareru P (2019) Synthesis of vanillin from lignin. Chem Sci Int J 27(1):1–5. https://doi.org/10.9734/CSJI/2019/v27i130104

    Article  Google Scholar 

  121. Santos SG, Marques A, Lima DLD, Evtuguin DV, Esteves, (2011) Kinetics of eucalypt lignosulfonate oxidation to aromatic aldehydes by oxygen in alkaline medium. Ind Eng Chem Res 50(1):291–298

    Article  Google Scholar 

  122. Ikeda T, Kevin H, John FK, Hou-min C, Hasan J (2002) (2002) Studies on the Effect of Ball Milling on Lignin Structure Using a Modified DFRC Method. J Agric Food Chem 50(1):129–135

    Article  Google Scholar 

  123. Fargues C, Mathias A, Rodrigues A (1996) Kinetics of vanillin production from kraft lignin oxidation. Ind Eng Chem Res 35(1):28–36

    Article  Google Scholar 

  124. Bjørsvik H, Liguori L (2002) (2002) Organic Processes to Pharmaceutical Chemicals Based on Fine Chemicals from Lignosulfonates. Org Proc Res Dev 6(3):279–290

    Article  Google Scholar 

  125. Mathias AL, Rodrigues AE (1995) Production of vanillin by oxidation of Pine kraft lignins with oxygen. Holzforsch. – Int J Biol Chem Phys Technol Wood 49:273–278

  126. Kirk TK (1971) Effects of Microorganisms on Lignin. Annu Rev Phytopathol 9:185–210. https://doi.org/10.1146/ANNUREV.PY.09.090171.001153

    Article  Google Scholar 

  127. Rosazza J, Huang Z, Dostal L et al (1995) Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15:457–471. https://doi.org/10.1007/BF01570016

    Article  Google Scholar 

  128. di Gioia D, Sciubba L, Ruzzi M et al (2009) Production of vanillin from wheat bran hydrolyzates via microbial bioconversion. J Chem Technol Biotechnol 84:1441–1448. https://doi.org/10.1002/jctb.2196

    Article  Google Scholar 

  129. Faulds CB, Mandalari G, LoCurto R et al (2004) Arabinoxylan and mono- and dimeric ferulic acid release from brewer’s grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Appl Microbiol Biotechnol 2004 64:5 64, 644–650. https://doi.org/10.1007/S00253-003-1520-3

  130. Williamson G, Kroon P, Faulds C (1998) Hairy plant polysaccharides: a close shave with microbial esterases. Microbiology (Reading, England) 144(Pt 8):2011–2023. https://doi.org/10.1099/00221287-144-8-2011

    Article  Google Scholar 

  131. Vaithanomsat P, Apiwatanapiwat W (2009) Feasibility study on vanillin production from Jatropha curcas stem using steam explosion as a pretreatment. World Acad Sci, Eng and Technol Int J Agric Biosyst Eng 3:258–261

    Google Scholar 

  132. Torre P, Aliakbarian B, Rivas B et al (2008) Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem Eng J 3:500–506. https://doi.org/10.1016/J.BEJ.2008.02.005

    Article  Google Scholar 

  133. Gurujeyalakshmi G, Mahadevan A (1987) Dissimilation of ferulic acid by Bacillus subtilis. Current Microbiol 16:2 16, 69–73. https://doi.org/10.1007/BF01588174

  134. Narbad A, Gasson M (1998) Metabolism of ferulic acid via vanillin using a novel CoA-dependent pathway in a newly-isolated strain of Pseudomonas fluorescens. Microbiology (Reading, England) 144(Pt 5):1397–1405. https://doi.org/10.1099/00221287-144-5-1397

    Article  Google Scholar 

  135. Muheim A, Muller B, Münch T, Wetli M (1998) Process for the production of vanillin. EP0885968A1 European Patent Office

  136. Converti A, de Faveri D, Perego P, Barghini P, Ruzzi M, Sene L (2003) Vanillin production by recombinant strains of Escherichia coli. Braz J Microbiol 34:108–110. https://doi.org/10.1590/S1517-83822003000500037

    Article  Google Scholar 

  137. Phong WN, Show PL, Chow YH, Ling TC (2018) Recovery of biotechnological products using aqueous two phase systems. J Biosci Bioeng 126(3):273–281. https://doi.org/10.1016/j.jbiosc.2018.03.005

    Article  Google Scholar 

  138. Suresh GA, Ravishankar, (2005) Methyl jasmonate modulated biotrasformation of phenyl propanoids to vanillin related metabolites using Capsicum frutescens root cultures. Plant Physiol Biochem 43(2):125–131

    Article  Google Scholar 

  139. Yamada M, Okada Y, Yoshida T, Nagasawa T (2007) Biotransformation of isoeugenol to vanillin by Pseudomonas putida IE27 cells. Appl Microbiol Biotechnol 73:1025–1030

    Article  Google Scholar 

  140. Haridoss M, Kamatchi C, Rafiq Z, Vaidyanathan R (2015) Biotransformation of isoeugenol to vanillin by beneficial bacteria isolatedfrom the soil of aromatic plants. J Chem Pharm Res 7(11):274–280

    Google Scholar 

  141. Zhao KH, Su P, Li J, Tu JM, Zhou M, Bubenzer C, Scheer H (2006) Chromophore attachment to phycobiliprotein β-subunits phycocyanobilin: cysteine-β84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena sp. PCC7120. J Biol Chem 281(13):8573–8581

  142. Lesage-Meessen L, Delattre M, Haon M, Thibault J-F, Colonna CB, Brunerie P, Asther M (1996) A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J Biotechnol 50:107–113

    Article  Google Scholar 

  143. Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J (2020) An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model 5:248–255

    Google Scholar 

  144. Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461. https://doi.org/10.1007/s002530051416

    Article  Google Scholar 

  145. Böddeker KW, Gatfield IL, Jähnig J, Schorm C (1997) Pervaporation at the vapor pressure limit: vanillin. J Membr Sci 137:155–158. https://doi.org/10.1016/S0376-7388(97)00187-7

    Article  Google Scholar 

  146. Rabenhorst J, Hopp R (1996) Process for the preparation of vanillin and microorganisms suitable therefor. US6133003A United States Patent. https://patentimages.storage.googleapis.com/2f/6f/8d/21f83d5b5322a3/US6133003.pdf

  147. Clark GS (1990) A profile: an aroma chemical vanillin. 0272-2666/90/0003-4501 $04.00/O&O 1990 Allured Publishing CorP, vol 15, pp 45–51. https://img.perfumerflavorist.com/files/base/allured/all/document/2016/03/pf.9010.pdf

  148. Rito-Palomares M (2004) Practical application of aqueous two-phase partition to process development for the recovery of biological products. J Chromatogr B Analyt Technol Biomed Life Sci 807:3–11. https://doi.org/10.1016/J.JCHROMB.2004.01.008

    Article  Google Scholar 

  149. Schmid A, Kollmer A, Mathys R, Witholt B (1998) Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents. Extremophiles : life under extreme conditions 2:249–256. https://doi.org/10.1007/S007920050067

  150. Labuda VM, Goers SK, Keon KA (1991) Bioconversion process for the production of vanillin. J Food Sci. https://doi.org/10.1111/j.1365-2621.1998.tb15695.x

    Article  Google Scholar 

  151. Lozano JAB, Oscar A, Lapizco-Encinas B, Lapizco-Encinas B, Rito-Palomares M (2008) Extraction and purification of bioproducts and nanoparticles using aqueous two-phase systems strategies. Chem Eng Technol 31(6):838–845. https://doi.org/10.1002/ceat.200800068

    Article  Google Scholar 

  152. Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80(6):603–629. https://doi.org/10.1002/JCTB.1265

    Article  Google Scholar 

  153. Böddeker KW (1990) Terminology in pervaporation. J Membr Sci 51:259–272. https://doi.org/10.1016/S0376-7388(00)80350-6

    Article  Google Scholar 

  154. Ouden FWC, Akker MVJ, Olsman H, Cornelissen JM (2007) Flavouring composition and method of flavouring foodstuffs or beverages. US Patent No. 2007/0264402 A1. https://patentimages.storage.googleapis.com/ab/a4/80/3d459e5a0f6f98/US20070264402A1.pdf

  155. Jönsson AS, Nordin A, Wallberg O (2008) Concentration and purification of lignin in hardwood kraft pulping liquor by ultrafiltration and nanofiltration. Chem Eng Res Des 86(11):1271–1280. https://doi.org/10.1016/j.cherd.2008.06.003

    Article  Google Scholar 

  156. Žabková M, da Silva EAB, Rodrigues AE (2007) Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. J Membr Sci 301:221–237. https://doi.org/10.1016/J.MEMSCI.2007.06.025

    Article  Google Scholar 

  157. Sciubba L, di Gioia D, Fava F, Gostoli C (2009) Membrane-based solvent extraction of vanillin in hollow fiber contactors. Desalination 241:357–364. https://doi.org/10.1016/J.DESAL.2007.10.104

    Article  Google Scholar 

  158. Camera-Roda G, Augugliaro V, Cardillo A, Loddo V, Palmisano G, Palmisano L (2013) A pervaporation photocatalytic reactor for the green synthesis of vanillin. Chem Engineer J 224:136–143. https://doi.org/10.1016/j.cej.2012.10.037

    Article  Google Scholar 

  159. Fanelli F, Parisi G, Degennaro L, Luisi R (2017) Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis. Beilstein J Org Chem. https://doi.org/10.3762/bjoc.13.51

    Article  Google Scholar 

  160. Behera M, Tiwari N, Basu A et al (2021) Maghemite/ZnO nanocomposites: a highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. Adv Powder Technol 32:2905–2915. https://doi.org/10.1016/J.APT.2021.06.005

    Article  Google Scholar 

  161. Khwanjaisakun N, Amornraksa S, Simasatitkul L et al (2020) Techno-economic analysis of vanillin production from Kraft lignin: Feasibility study of lignin valorization. Biores Technol 299:122559. https://doi.org/10.1016/J.BIORTECH.2019.122559

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Honorable Founder, Vice Chancellor, Director General (Research) and Dean of the School of Biotechnology and Chemical Technology, KIIT Deemed-to-be University for their inspiration and motivation. JN is thankful to the Chairman, Chancellor, Vice-chancellor and the Management of Mahindra University, for the required infrastructure facility and visionary leadership. The study was utilized the funds received from the University Grant Commission, Govt. of India under UGC-FRPS scheme. RK acknowledges the Creative and Challenging Research Program sponsored by the National Research Foundation (NRF), Republic of Korea.

Funding

The authors express gratitude to the Honorable Founder and Vice Chancellor KIIT Deemed to be University for their inspiration and motivation. The overall study was carried out with the utilization of fund received from University Grant Commission, Govt. of India under UGC-FRPS scheme (Project Number: No. F.30–575/2021 (BSR)). One of the authors (R. Kumar) would like to acknowledge the Creative and Challenging Research Program sponsored from National Research Foundation of Korea [grant no. 2021R1I1A1A01060846] through the National Research Foundation (NRF) of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design of the present review work. The collection of data and methodologies have been reviewed by Anuradha Upadhaya, Sanchari Ghosh, Aradhana Basu, Bhaskar Bishayee, and Madhubonti Pal. The manuscript was originally drafted by Dr. Jayato Nayak, Dr. Sankha Chakrabortty, Dr. Pinaki Dey, Dr. Suraj K Tripathy, Dr. Shirsendu Banerjee, Smruti Rekha Mishra, Snehasish Mishra, and Dr. Bikram Basak. It was critically revised by Dr. Parimal Pal, Dr. Ramesh Kumar, Prof. B-H. Jeon, and finally edited by Dr. Snehasish Mishra.

Corresponding authors

Correspondence to Byong-Hun Jeon or Sankha Chakrabortty.

Ethics declarations

Ethics approval

No ethical approval was required as this paper did not deal with any live species.

Consent to participate

All the authors have acknowledged their participation, and the levels of participation are detailed under “Author contribution.”

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Various biomass treatments for vanillin synthesis have been reviewed.

• Membrane distillation allows product recovery with high purity.

• Membrane-based integrated system enables production and facilitates catalyst recovery.

• The cost analysis for sustainable industrialization enhance the scale-up confidence.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, J., Basu, A., Dey, P. et al. Transformation of agro-biomass into vanillin through novel membrane integrated value-addition process: a state-of-art review. Biomass Conv. Bioref. 13, 14317–14340 (2023). https://doi.org/10.1007/s13399-022-03283-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03283-6

Keywords

Navigation