Skip to main content

Advertisement

Log in

A critical review on pharmacological properties of marine macroalgae

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Macroalgae are considered as one of the breath-giving organisms in the marine environment. Macroalgae are divided into three divisions based on their pigmentation as Chlorophyta, Rhodophyta, and Phaeophyta. Macroalgae encompass several priceless beneficial and profitable components amid other organisms in the ocean, which are considered as bioactive compounds. Algal products such as agar, carrageenan, fucoidan, ulvan, algin, and other bioactive substances are widely employed in the food, cosmetic, paper, pharmaceutical, and other sectors. Macroalgae play a key role in providing nourishment for earthlings. This review tends to explain the uses of certain secondary metabolites (bioactive substances) in the pharmacological aspects, with emphasis on antimicrobial, antitumor, anti-inflammatory, antidiabetic, antiprotozoal, antiviral, and antioxidant activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abatis D, Vagias C, Galanakis D, Norris JN, Moreau D, Roussakis C, Roussis V (2005) Atomarianones A and B: two cytotoxic meroditerpenes from the brown alga Taonia atomaria. Tetrahedron Lett 46(49):8525–8529

    Article  Google Scholar 

  2. Abdel-Raouf N, Al-Enazi NM, Ibraheem IB (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039

    Article  Google Scholar 

  3. Abhilash KR, Sankar R, Purvaja R, Deepak SV, Sreeraj CR, Krishnan P, Ramesh R (2019) Impact of long-term seaweed farming on water quality: a case study from Palk Bay India. Journal of coastal conservation 23(2):485–499

    Article  Google Scholar 

  4. Ackman RG 1981. Algae as sources for edible lipids. In: New sources of oils and fats. Pyrde EH, Princen LH, Mukerjee KD (eds). AOAC Press, Illinois. p 28.

  5. Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics 10(2):42

    Article  Google Scholar 

  6. Akbary P, Liao LM, Aminikhoei Z, Tavabe KR, Hobbi M, Erfanifar E (2021) Sterol and fatty acid profiles of three macroalgal species collected from the Chabahar coasts, southeastern Iran. Aquacult Int 29(1):155–165

    Article  Google Scholar 

  7. Akelah A. (2013). Polymeric food additives. In Functionalized Polymeric Materials in Agriculture and the Food Industry (pp. 249–292). Springer, Boston, MA.

  8. Aramwit P. (2016). Introduction to biomaterials for wound healing. In Wound healing biomaterials (pp. 3–38). Woodhead Publishing.

  9. Araújo IWF, Chaves HV, Pacheco JM, Val DR, Vieira LV, Santos R, Benevides NMB (2017) Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria filiformis in induced temporomandibular joint pain. Int Immunopharmacol 44:160–167

    Article  Google Scholar 

  10. Armisen R. World-wide use and importance of Gracilaria .J Appl Phycol 7, 231 (1995). https://doi.org/10.1007/BF00003998

  11. Armisen R & Gaiatas F. (2009). Agar. In Handbook of hydrocolloids (pp. 82–107). Woodhead Publishing.

  12. Aruna P, Mansuya P, Sridhar S, Kumar JS, & Babu S (2010). Pharmacognostical and antifungal activity of selected seaweeds from Gulf of Mannar region. Recent Research in Science and Technology, 2(1).

  13. Aryee AN, Agyei D, Akanbi TO (2018) Recovery and utilization of seaweed pigments in food processing. Curr Opin Food Sci 19:113–119

    Article  Google Scholar 

  14. Asari F, Kusumi T, Kakisawa H (1989) Turbinaric acid, a cytotoxic secosqualene carboxylic acid from the brown alga Turbinaria ornata. J Nat Prod 52(5):1167–1169

    Article  Google Scholar 

  15. Awad NE, Selim MA, Metawe HM, Matloub AA (2008) Cytotoxic xenicanediterpenes from the brown alga Padina pavonia (L.) Gaill. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 22(12):1610–1613

  16. Babu M. (2014). Screening and characterization of antiviral compounds from Enteromorpha flexuosa against white spot syndrome vir...

  17. Bae M, Kim MB, Park YK, Lee JY (2020) Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids BBA-MOL CELL BIOL L 1865(11):158618

    Google Scholar 

  18. Balasubramaniam V, Chelyn LJ, Vimala S, Fairulnizal MM, Brownlee IA, Amin I (2020) Carotenoid composition and antioxidant potential of Eucheuma denticulatum Sargassum polycystum and Caulerpa lentillifera. Heliyon 6(8):e04654

    Article  Google Scholar 

  19. Balboa EM, Conde E, Moure A, Falqué E, Domínguez H (2013) In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem 138(2–3):1764–1785

    Article  Google Scholar 

  20. Bansemir A, Blume M, Schröder S, Lindequist U (2006) Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture 252(1):79–84

    Article  Google Scholar 

  21. BeMiller JN (2018) Carbohydrate chemistry for food scientists. Elsevier

    Google Scholar 

  22. Bermano G, Stoyanova T, Hennequart F, Wainwright CL (2020) Seaweed-derived bioactives as potential energy regulators in obesity and type 2 diabetes. Adv Pharmacol 87:205–256

    Article  Google Scholar 

  23. Bharathiraja B, Devaki P, Dheepa S, Mageshwari R, Jayamuthunagai J, Chakravarthy M, Praveenkumar R (2016) Environmental eco-friendly marine resource macro algae (Seaweeds): an omnipotent source for value added products and its applications-a review. Int J Curr Microbiol App Sci 5(7):19–47

    Article  Google Scholar 

  24. Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23(3):321–335

    Article  Google Scholar 

  25. Boubakri H. (2020). Induced resistance to biotic stress in plants by natural compounds: possible mechanisms. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants (pp. 79–99). Academic Press.

  26. Lapointe BE, Xavier Niell F, Fuentes JM (1981) Community structure, succession, and production of seaweeds associated with mussel-rafts in the Ria de Arosa, N.W.Spain. Mar Ecol Prog Ser 5:243–253

    Article  Google Scholar 

  27. Brito TV, Barros FC, Silva RO, Júnior GJD, Júnior JSC, Franco ÁX, Barbosa ALR (2016) Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats. Carbohyd Polym 151:957–964

    Article  Google Scholar 

  28. Brownlee IA, Allen A, Pearson JP, Dettmar PW, Havler ME, Atherton MR, Onsøyen E (2005) Alginate as a source of dietary fiber. Crit Rev Food Sci Nutr 45(6):497–510

    Article  Google Scholar 

  29. Burdick JA, & Stevens MM (2005). Biomedical hydrogels. In Biomaterials, artificial organs and tissue engineering (pp. 107–115). Woodhead Publishing.

  30. Burritt DJ, Larkindale J, Hurd CL (2002) Antioxidant metabolism in the intertidal red seaweed Stictosiphonia arbuscula following desiccation. Planta 215(5):829–838

    Article  Google Scholar 

  31. Caamal-Fuentes E, Chale-Dzul J, Moo-Puc R, Freile-Pelegrin Y, Robledo D (2014) Bioprospecting of brown seaweed (Ochrophyta) from the Yucatan Peninsula: cytotoxic, antiproliferative, and antiprotozoal activities. J Appl Phycol 26(2):1009–1017

    Article  Google Scholar 

  32. Cai J, Lovatelli A, Aguilar-Manjarrez J, Cornish L, Dabbadie L, Desrochers A, Diffey S, Garrido Gamarro E, Geehan J, Hurtado A, Lucente D, Mair G, Miao W, Potin P, Przybyla C, Reantaso M, Roubach R, Tauati M, Yuan X (2021) Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular No. 1229. Rome, FAO. https://doi.org/10.4060/cb5670en

  33. Calogero G, Citro I, Di Marco G, Minicante SA, Morabito M, Genovese G (2014) Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochim Acta Part A Mol Biomol Spectrosc 117:702–706

    Article  Google Scholar 

  34. Chandini SK, Ganesan P, Bhaskar N (2008) In vitro antioxidant activities of three selected brown seaweeds of India. Food Chem 107(2):707–713

    Article  Google Scholar 

  35. Charoensiddhi S, Abraham RE, Su P, Zhang W (2020) Seaweed and seaweed-derived metabolites as prebiotics. Adv Food Nutr Res 91:97–156

    Article  Google Scholar 

  36. Chee BS, & Nugent M (2019). Electrospun natural polysaccharide for biomedical application. In Natural Polysaccharides in Drug Delivery and Biomedical Applications (pp. 589–615). Academic Press.

  37. Cheng H, Zhang X, Cui Z, & Mao S. (2021). Grafted polysaccharides as advanced pharmaceutical excipients. In Advances and Challenges in Pharmaceutical Technology (pp. 75–129). Academic Press.

  38. Chennubhotla VS, Kaliaperumal N, Jayasankar R, Kalimuthu S, Ramalingam JR, Muniyandi K, & Selvaraj M (2000). Seaweeds. Marine Fisheries Research and Management, 21–37.

  39. Chennubhotla VS, Rao MU, Rao KS (2013) Commercial importance of marine macro algae. Seaweed Res Utiln 35(1 & 2):118–128

    Google Scholar 

  40. Chopin T, Tacon AG (2021) Importance of seaweeds and extractive species in global aquaculture production. Rev Fish Sci Aquac 29(2):139–148

    Article  Google Scholar 

  41. Coppen JJ W, & Nambiar P (1991). Agar and alginate production from seaweed in India (pp. 1–32). Bay of Bengal Programme.

  42. Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25(4):155–171

    Article  Google Scholar 

  43. Costa LEC, Brito TV, Damasceno ROS, Sousa WM, Barros FCN, Sombra VG, Freitas ALP (2020) Chemical structure, anti-inflammatory and antinociceptive activities of a sulfated polysaccharide from Gracilaria intermedia algae. Int J Biol Macromol 159:966–975

    Article  Google Scholar 

  44. Costa LS, Fidelis GP, Cordeiro SL, Oliveira RM, Sabry DDA, Câmara RBG, Rocha HAO (2010) Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed Pharmacother 64(1):21–28

    Article  Google Scholar 

  45. Coura CO, Souza RB, Rodrigues JAG, Vanderlei EDSO, de Araújo IWF, Ribeiro NA, Benevides NMB (2015) Mechanisms involved in the anti-inflammatory action of a polysulfated fraction from Gracilaria cornea in rats. PLoS ONE 10(3):e0119319

    Article  Google Scholar 

  46. D’Agnolo E, Rizzo R, Paoletti S, Murano E (1994) R-phycoerythrin from the red alga Gracilaria longa. Phytochemistry 35(3):693–696

    Article  Google Scholar 

  47. Dalavi PA, Murugan SS, Anil S, & Venkatesan J (2022). Biological macromolecules in tissue engineering. In Biological Macromolecules (pp. 381–392). Academic Press.

  48. Damonte E, Neyts J, Pujol CA, Snoeck R, Andrei G, Ikeda S, De Clerco E (1994) Antiviral activity of a sulphated polysaccharide from the red seaweed Nothogenia fastigiata. Biochem Pharmacol 47(12):2187–2192

    Article  Google Scholar 

  49. de Araújo IWF, Rodrigues JAG, Quinderé ALG, Silva JDFT, de Freitas Maciel G, Ribeiro NA, Benevides NMB (2016) Analgesic and anti-inflammatory actions on bradykinin route of a polysulfated fraction from alga Ulva lactuca. Int J Biol Macromol 92:820–830

    Article  Google Scholar 

  50. De Corato U, Salimbeni R, De Pretis A, Avella N, Patruno G (2017) Antifungal activity of crude extracts from brown and red seaweeds by a supercritical carbon dioxide technique against fruit postharvest fungal diseases. Postharvest Biol Technol 131:16–30

  51. de Sousa Oliveira Vanderlei E, de Araújo IWF, Quinderé ALG, Fontes BP, Eloy YRG, Rodrigues JAG,& Benevides NMB (2011). The involvement of the HO-1 pathway in the anti-inflammatory action of a sulfated polysaccharide isolated from the red seaweed Gracilaria birdiae. Inflammation Research, 60(12), 1121-1130

  52. Déléris P, Nazih H, & Bard JM (2016). Seaweeds in human health. Seaweed in health and disease prevention, 319–367.

  53. Devi GK, Thirumaran G, Manivannan K, Anantharaman P (2009) Element composition of certain seaweeds from Gulf of Mannar marine biosphere reserve; Southeast coast of India. World J Dairy Food Sci 4(1):46–55

    Google Scholar 

  54. Dhargalkar VK, & Pereira N (2005). Seaweed: promising plant of the millennium.

  55. Di T, Chen G, Sun Y, Ou S, Zeng X, Ye H (2017) Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J Funct Foods 28:64–75

    Article  Google Scholar 

  56. Dorta E, Cueto M, Dı́az-Marrero AR, Darias J (2002) Stypolactone, an interesting diterpenoid from the brown alga Stypopodium zonale. Tetrahedron letters 43(50):9043–9046

    Article  Google Scholar 

  57. Dos Santos MA, Grenha A (2015) Polysaccharide nanoparticles for protein and peptide delivery: exploring less-known materials. Adv Protein Chem Struct Biol 98:223–261

    Article  Google Scholar 

  58. Draget KI, Taylor C (2011) Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 25(2):251–256

    Article  Google Scholar 

  59. Draget KI, Skjåk-Bræk G, Smidsrød O (1997) Alginate based new materials. Int J Biol Macromol 21(1–2):47–55

    Article  Google Scholar 

  60. Brown EM, Allsopp PJ, Magee PJ, Gill CI, Nitecki S, Strain CR, McSorley EM (2014) Seaweed and human health. Nutr Rev 72(3):205–216. https://doi.org/10.1111/nure.12091

    Article  Google Scholar 

  61. El Gamal AA (2010) Biological importance of marine algae. Saudi Pharm J 18(1):1–25

    Article  Google Scholar 

  62. El Kassas HY, Attia AA (2014) Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG 2 cell line. Asian Pac J Cancer Prev 15(3):1299–1306

    Article  Google Scholar 

  63. El-Din SMM, El-Ahwany AM (2016) Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci 10(4):471–484

    Article  Google Scholar 

  64. El-Kassas HY, El-Sheekh MM (2014) Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 15(10):4311–4317

    Article  Google Scholar 

  65. Esteban R, Martinez B, Fernandez-Marin B, Maria Becerril J, García-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Corallina elongata. Eur J Phycol 44(2):221–230

    Article  Google Scholar 

  66. Fan D, Hodges DM, Critchley AT, Prithiviraj B (2013) A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun Soil Sci Plant Anal 44(12):1873–1884

    Article  Google Scholar 

  67. Featherstone S (Ed.). (2015). A complete course in canning and related processes: Volume 3 Processing Procedures for Canned Food Products. Woodhead Publishing.

  68. Fernández PV, Arata PX, & Ciancia M. (2014). Polysaccharides from Codium species: chemical structure and biological activity. Their role as components of the cell wall. In Advances in Botanical Research (Vol. 71, pp. 253–278). Academic Press.

  69. Flint PW, Haughey BH, Robbins KT, Thomas JR, Niparko JK, Lund VJ, & Lesperance MM (2014). Cummings otolaryngology-head and neck surgery e-book. Elsevier Health Sciences.

  70. Floreto EAT, Teshima S (1998) The fatty acid composition of seaweeds exposed to different levels of light intensity and salinity. Bot Mar 4:467–481

    Google Scholar 

  71. Fraunfelder FT, Fraunfelder FW, & Chambers WA (2008). Clinical ocular toxicology e-book: drug-induced ocular side effects. Elsevier Health Sciences.

  72. Galland-Irmouli AV, Pons L, Lucon M, Villaume C, Mrabet NT, Guéant JL, Fleurence J (2000) One-step purification of R-phycoerythrin from the red macroalga Palmaria palmata using preparative polyacrylamide gel electrophoresis. J Chromatogr B Biomed Sci Appl 739(1):117–123

    Article  Google Scholar 

  73. Ganesan M, Trivedi N, Gupta V, Madhav SV, Reddy CR, Levine IA (2019) Seaweed resources in India–current status of diversity and cultivation: prospects and challenges. Bot Mar 62(5):463–482

    Article  Google Scholar 

  74. Gao Y, Zhang L, Jiao W (2019) Marine glycan-derived therapeutics in China. Prog Mol Biol Transl Sci 163:113–134

    Article  Google Scholar 

  75. Glasson CR, Sims IM, Carnachan SM, de Nys R, Magnusson M (2017) A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. Algal Res 27:383–391

    Article  Google Scholar 

  76. Glicksman M (1987). Utilization of seaweed hydrocolloids in the food industry. In Twelfth international seaweed symposium (pp. 31–47). Springer, Dordrecht.

  77. Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2010) Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43(9):2289–2294

    Article  Google Scholar 

  78. Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J Nanosci Nanotechnol 9(9):5497–5501

    Article  Google Scholar 

  79. Graça JRV, Bezerra MM, Lima V, Rodrigues JAG, Monteiro DLS, Quinderé ALG, Benevides NMB (2011) Effect of a crude sulfated polysaccharide from Halymenia floresia (Rhodophyta) on gastrointestinal smooth muscle contractility. Braz Arch Biol Technol 54:907–916

    Article  Google Scholar 

  80. Guiry, M. D. (2014). The seaweed site: information on marine algae. Seaweed. ie.

  81. Guzman-Puyol S, Russo D, Penna I, Ceseracciu L, Palazon F, Scarpellini A, Athanassiou A (2017) Facile production of seaweed-based biomaterials with antioxidant and anti-inflammatory activities. Algal Res 27:1–11

    Article  Google Scholar 

  82. Häder DP (2021). Phycocolloids from macroalgae. In Natural Bioactive Compounds (pp. 187–201). Academic Press.

  83. Harden EA, Falshaw R, Carnachan SM, Kern ER, Prichard MN (2009) Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res 83(3):282–289

    Article  Google Scholar 

  84. Hardouin K, Bedoux G, Burlot AS, Nyvall-Collén P, Bourgougnon N (2014) Enzymatic recovery of metabolites from seaweeds: Potential applications. Adv Bot Res 71:279–320

    Article  Google Scholar 

  85. Hardouin K, Burlot AS, Umami A, Tanniou A, Stiger-Pouvreau V, Widowati I, Bourgougnon N (2014) Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds. J Appl Phycol 26(2):1029–1042

    Article  Google Scholar 

  86. He J, Xu Y, Chen H, Sun P (2016) Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. Int J Mol Sci 17(12):1988

    Article  Google Scholar 

  87. Hegazi MM, Pérez-Ruzafa A, Almela L, Candela ME (1998) Separation and identification of chlorophylls and carotenoids from Caulerpa prolifera, Jania rubens and Padina pavonica by reversed-phase high-performance liquid chromatography. J Chromatogr A 829(1–2):153–159

    Article  Google Scholar 

  88. Henley WJ, Ramus J (1989) Optimization of pigment content and the limits of photoacclimation for Ulva rotundata (Chlorophyta). Mar Biol 103(2):267–274

    Article  Google Scholar 

  89. Hermund DB (2018). Antioxidant properties of seaweed-derived substances. In Bioactive seaweeds for food applications (pp. 201–221). Academic Press.

  90. Hilditch CM, Balding P, Jenkins R, Smith AJ, Rogers LJ (1991) R-phycoerythrin from the macroalgaCorallina officinalis (Rhodophyceae) and application of a derived phycofluor probe for detecting sugar-binding sites on cell membranes. J Appl Phycol 3(4):345–354

    Article  Google Scholar 

  91. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597. https://doi.org/10.1007/s10811-010-9632-5

    Article  Google Scholar 

  92. Hussein LA (2022). Novel prebiotics and next-generation probiotics: opportunities and challenges. Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases, 431–457.

  93. Hwang PA, Hung YL, Phan NN, Hieu BTN, Chang PM, Li KL, Lin YC (2016) The in vitro and in vivo effects of the low molecular weight fucoidan on the bone osteogenic differentiation properties. Cytotechnology 68(4):1349–1359

    Article  Google Scholar 

  94. Ibraheem IBM, Abd-Elaziz BEE, Saad WF, Fathy WA (2016) Green biosynthesis of silver nanoparticles using marine Red Algae Acanthophora specifera and its antimicrobial activity. J Nanomed Nanotechnol 7(409):1–4

    Google Scholar 

  95. Iwai K (2008) Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A y mice. Plant Foods Hum Nutr 63(4):163

    Article  Google Scholar 

  96. Jeeva S, Marimuthu J, Domettila C, Anantham B, Mahesh M (2012) Preliminary phytochemical studies on some selected seaweeds from Gulf of Mannar, India. Asian Pac J Trop Biomed 2(1):S30–S33

    Article  Google Scholar 

  97. Jenkins DJ, Axelsen M, Kendall CW, Augustin LS, Vuksan V, Smith U (2000) Dietary fibre, lente carbohydrates and the insulin-resistant diseases. Br J Nutr 83(S1):S157–S163

    Article  Google Scholar 

  98. Jongaramruong J, Kongkam N (2007) Novel diterpenes with cytotoxic, anti-malarial and anti-tuberculosis activities from a brown alga Dictyota sp. J Asian Nat Prod Res 9(8):743–751

    Article  Google Scholar 

  99. Jude S, & Gopi S. (2021). Multitarget approach for natural products in inflammation. In Inflammation and Natural Products (pp. 83–111). Academic Press.

  100. Jung WK, Choi I, Oh S, Park SG, Seo SK, Lee SW, Choi IW (2009) Anti-asthmatic effect of marine red alga (Laurencia undulata) polyphenolic extracts in a murine model of asthma. Food Chem Toxicol 47(2):293–297

    Article  Google Scholar 

  101. Kadam SU, Álvarez C, Tiwari BK, & O’Donnell, C. P. (2015). Extraction of biomolecules from seaweeds. In Seaweed sustainability (pp. 243–269). Academic Press.

  102. Kaliaperumal N (2006). Seaweed resources, uses, conservatio and cultivation. GOMBRT Publication3. [Melkani, V.K., J.K. Patterson Edward, A. Murugan, Jamila Patterson and V.Nagananthan 2006 (October 2008). Capacity building in marine biodiversity conservation.Gulf of Mannar Biosphere Reserve Trust, Ramanathapuram and suganthi Devadason Marine Research Institute, Tuticorin, 136 pp. (December 2014)].

  103. Kaliaperumal N (2011). Seaweed products of commercial importance–their raw materials distribution, resources, production and utilisation. In Souvenir, Natl. Conference on Algae and Algal Products (pp. 39–49).

  104. Kaliaperumal N, Chennubhotla VS, Kalimuthu S (1987) Seaweed resources of India. Cmfri bulletin 41:51–54

    Google Scholar 

  105. Kaliaperumal N, Kalimuthu S, Ramalingam JR (2004) Present scenario of seaweed exploitation and industry in India. Seaweed Res Utiln 26(1 & 2):47–53

    Google Scholar 

  106. Kang JY, Khan MNA, Park NH, Cho JY, Lee MC, Fujii H, Hong YK (2008) Antipyretic, analgesic, and anti-inflammatory activities of the seaweed Sargassum fulvellum and Sargassum thunbergii in mice. J Ethnopharmacol 116(1):187–190

    Article  Google Scholar 

  107. Khalil HPS, Lai TK, Tye YY, Rizal S, Chong EWN, Yap SW & Paridah MT (2018). A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polymer Letters, 12(4).

  108. Khandare SD, Chaudhary DR, Jha B (2022) Marine bacteria-based polyvinyl chloride (PVC) degradation by-products: toxicity analysis on Vigna radiata and edible seaweed Ulva lactuca. Mar Pollut Bull 175:113366

    Article  Google Scholar 

  109. Kılınç B, Cirik S, Turan G, Tekogul H, & Koru E (2013). Seaweeds for food and industrial applications. In Food industry. IntechOpen.

  110. Kim SK (2014) Marine carbohydrates: fundamentals and applications. Academic Press, Part B

    Google Scholar 

  111. Kim SK, & Wijesekara I (2017). Role of marine nutraceuticals in cardiovascular health. In Sustained energy for enhanced human functions and activity (pp. 273–279). Academic Press.

  112. Kim SK, Thomas NV, Li X (2011) Anticancer compounds from marine macroalgae and their application as medicinal foods. Adv Food Nutr Res 64:213–224

    Article  Google Scholar 

  113. Kitade Y, Miyabe Y, Yamamoto Y, Takeda H, Shimizu T, Yasui H, Kishimura H (2018) Structural characteristics of phycobiliproteins from red alga Mazzaella japonica. J Food Biochem 42(1):e12436

    Article  Google Scholar 

  114. Koehn FE, Sarath GP, Neil DN, Cross SS (1991) Halitunal, an unusual diterpene aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett 32(2):169–172

    Article  Google Scholar 

  115. Kolanjinathan K, Ganesh P, Saranraj P (2014) Pharmacological importance of seaweeds: a review. World J Fish Mar Sci 6(1):1–15

    Google Scholar 

  116. Krstonošić V, Jovičić-Bata J, Maravić N, Nikolić I, & Dokić L (2021). Rheology, structure, and sensory perception of hydrocolloids. In Food Structure and Functionality (pp. 23–47). Academic Press.

  117. Ktari L, Guyot M (1999) A cytotoxic oxysterol from the marine alga Padina pavonica (L) Thivy. J Appl Phycol 11(6):511–513

    Article  Google Scholar 

  118. Kumar CS, Ganesan P, Suresh PV, & Bhaskar N (2008). Seaweeds as a source of nutritionally beneficial compounds-a review. Journal of Food Science and Technology, 45(1),

  119. Kumar IN, Megha B, Rita K (2015) Phytochemical analysis and antifungal activity of selected seaweeds from Okha coast, Gujarat India. J Coast Life Med 3(7):520–525

    Article  Google Scholar 

  120. Kumar NA, Vanlalzarzova B, Sridhar S, Baluswami M (2012) Effect of liquid seaweed fertilizer of Sargassum wightii Grev on the growth and biochemical content of green gram (Vigna radiata (L) R Wilczek). Recent Res Sci Technol 4(4):40–45

    Google Scholar 

  121. Kumar NJ, Barot M, Kumar RN (2017) Distribution and biochemical constituents of different seaweeds collected from Okha coast. Gujarat, India

    Google Scholar 

  122. Kumar N, Ji MB, & Kumar RN (2014) 7. Phytochemical analysis and antifungal activity of selected seaweeds from Okha Coast_ Gujarat_ India by Nirmal Kumar_ Ji _ Megha Barot and Rita N. Kumar. Life Sciences Leaflets, 52, 57-To.

  123. Kumar P, Senthamil Selvi S, Govindaraju M (2013) Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl Nanosci 3(6):495–500

    Article  Google Scholar 

  124. Kunda SK, Kaladharan P (2003) Agar factory discharge as fuel and manure. Seaweed Res Utiln 25(1 & 2):165–168

    Google Scholar 

  125. Łabowska MB, Michalak I, Detyna J (2019) Methods of extraction, physicochemical properties of alginates and their applications in biomedical field–a review. Open Chem 17(1):738–762

    Article  Google Scholar 

  126. Lavanya R, Veerappan N (2012) Pharmaceutical properties of marine macroalgal communities from Gulf of mannar against human fungal pathogens. Asian Pac J Trop Dis 2:S320–S323

    Article  Google Scholar 

  127. Leandro A, Pereira L, Gonçalves AM (2020) Diverse applications of marine macroalgae. Mar Drugs 18(1):17

    Article  Google Scholar 

  128. Leiro JM, Castro R, Arranz JA, Lamas J (2007) Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C Agardh. Int Immunopharmacol 7(7):879–888

    Article  Google Scholar 

  129. León-Deniz LV, Dumonteil E, Moo-Puc R, Freile-Pelegrin Y (2009) Antitrypanosomal in vitro activity of tropical marine algae extracts. Pharm Biol 47(9):864–871

  130. Li YX, Wijesekara I, Li Y, Kim SK (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46(12):2219–2224

    Article  Google Scholar 

  131. Liao YC, Chang CC, Nagarajan D, Chen CY, Chang JS (2021) Algae-derived hydrocolloids in foods: applications and health-related issues. Bioengineered 12(1):3787–3801

    Article  Google Scholar 

  132. Lins KO, Bezerra DP, Alves APN, Alencar NM, Lima MW, Torres VM, Costa-Lotufo LV (2009) Antitumor properties of a sulfated polysaccharide from the red seaweed Champia feldmannii (Diaz-Pifferer). J Appl Toxicol 29(1):20–26

    Article  Google Scholar 

  133. Liu LN, Chen XL, Zhang XY, Zhang YZ, Zhou BC (2005) One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J Biotechnol 116(1):91–100

    Article  Google Scholar 

  134. Lohrmann NL, Logan BA, Johnson AS (2004) Seasonal acclimatization of antioxidants and photosynthesis in Chondrus crispus and Mastocarpus stellatus, two co-occurring red algae with differing stress tolerances. Biol Bull 207(3):225–232

    Article  Google Scholar 

  135. Lourenço-Lopes C, Fraga-Corral M, Jimenez-Lopez C, Carpena M, Pereira AG, García-Oliveira P, Simal-Gandara J (2021) Biological action mechanisms of fucoxanthin extracted from algae for application in food and cosmetic industries. Trends Food Sci Technol 117:163–181

    Article  Google Scholar 

  136. Lourenço-Lopes C, Garcia-Oliveira P, Carpena M, Fraga-Corral M, Jimenez-Lopez C, Pereira AG, Simal-Gandara J (2020) Scientific approaches on extraction, purification and stability for the commercialization of fucoxanthin recovered from brown algae. Foods 9(8):1113

    Article  Google Scholar 

  137. Lu W, Li X, & Fang Y (2021). Introduction to Food Hydrocolloids. In Food Hydrocolloids (pp. 1–28). Springer, Singapore.

  138. SM Cardoso, LG Carvalho, PJ Silva, S Rodrigues, MR Pereira O., & Pereira, L. (2014). Bioproducts from seaweeds: a review with special focus on the Iberian Peninsula. Current Organic Chemistry, 18(7), 896-917.

  139. M Rinaudo (2007) Seaweed polysaccharides. Comprehensive Glycoscience, 2.2: Polysaccharide Functional Properties, Elsevier, pp 691–735

  140. Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4(4):103–107

    Article  Google Scholar 

  141. Maeda, H. (2013). Anti-obesity and anti-diabetic activities of algae. In Functional ingredients from algae for foods and nutraceuticals (pp. 453–472). Woodhead Publishing.

  142. Magdugo RP, Terme N, Lang M, Pliego-Cortés H, Marty C, Hurtado AQ, Bourgougnon N (2020) An analysis of the nutritional and health values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)—two chlorophyta collected from the Philippines. Molecules 25(12):2901

    Article  Google Scholar 

  143. Makkar HP, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, Ankers P (2016) Seaweeds for livestock diets: a review. Anim Feed Sci Technol 212:1–17

    Article  Google Scholar 

  144. Mancini-Filho J, Novoa AV, González AEB, de Andrade-Wartha ERS, Mancini DAP (2009) Free phenolic acids from the seaweed Halimeda monile with antioxidant effect protecting against liver injury. Zeitschrift für Naturforschung C 64(9–10):657–663

    Article  Google Scholar 

  145. Manivannan K, Thirumaran G, Karthikai Devi G, Anantharaman P, Balasubramanian T (2009) Proximate composition of different group of seaweeds from Vedalai Coastal waters (Gulf of Mannar): Southeast Coast of India. Middle-East J Sci Res 4(2):72–77

    Google Scholar 

  146. Manivasagan P, Bharathiraja S, Santha Moorthy M, Mondal S, Seo H, Dae Lee K, Oh J (2018) Marine natural pigments as potential sources for therapeutic applications. Crit Rev Biotechnol 38(5):745–761

    Article  Google Scholar 

  147. Mantri VA, Ganesan M, Gupta V, Krishnan P, Siddhanta AK (2019) An overview on agarophyte trade in India and need for policy interventions. J Appl Phycol 31(5):3011–3023

    Article  Google Scholar 

  148. Marcus JB (2013) Culinary nutrition: the science and practice of healthy cooking. Academic Press

    Google Scholar 

  149. Marimuthu J, Essakimuthu P, Narayanan J, Anantham B, Tharmaraj RJJM, Arumugam S (2012) Phytochemical characterization of brown seaweed Sargassum wightii. Asian Pac j trop med 2:S109–S113

    Article  Google Scholar 

  150. Mariya V, & Ravindran VS (2013). Biomedical and pharmacological significance of marine macro algae-review.

  151. McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15(6):513–524

    Article  Google Scholar 

  152. Medeiros VP, Queiroz KCS, Cardoso ML, Monteiro GRG, Oliveira FW, Chavante SF, Leite EL (2008) Sulfated galactofucan from Lobophora variegata: anticoagulant and anti-inflammatory properties. Biochem Mosc 73(9):1018–1024

    Article  Google Scholar 

  153. Meenakshi S, Gnanambigai DM, Mozhi ST, Arumugam M, Balasubramanian T (2009) Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast. Glob J Pharmacol 3(2):59–62

    Google Scholar 

  154. Meenakshi S, Umayaparvathi S, Arumugam M, Balasubramanian T (2011) In vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pac J Trop Biomed 1(1):S66–S70

    Article  Google Scholar 

  155. Menon V. V. (2011). Seaweed polysaccharides–food applications. Handbook of Marine Macroalgae, 541–555.

  156. Michalak I, Chojnacka K (2015) Algae as production systems of bioactive compounds. Eng Life Sci 15(2):160–176

    Article  Google Scholar 

  157. Mickymaray S, Alturaiki W (2018) Antifungal efficacy of marine macroalgae against fungal isolates from bronchial asthmatic cases. Molecules 23(11):3032

    Article  Google Scholar 

  158. Mišurcová L, Škrovánková S, Samek D, Ambrožová J, Machů L (2012) Health benefits of algal polysaccharides in human nutrition. Adv Food Nutr Res 66:75–145

    Article  Google Scholar 

  159. Miyashita K, & Hosokawa M. (2018). Therapeutic effect of fucoxanthin on metabolic syndrome and type 2 diabetes. In Nutritional and therapeutic interventions for diabetes and metabolic syndrome (pp. 343–355). Academic Press.

  160. Moghadam MH, Firouzi J, Saeidnia S, Hajimehdipoor H, Jamili S, Rustaiyan A, Gohari AR (2013) A cytotoxic hydroperoxy sterol from the brown alga, Nizamuddinia zanardinii. DARU J Pharm Sci 21(1):1–4

    Article  Google Scholar 

  161. Moo-Puc R, Robledo D, Freile-Pelegrin Y (2008) Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. J Ethnopharmacol 120(1):92–97

    Article  Google Scholar 

  162. Moo-Puc R, Robledo D, Freile-Pelegrín Y (2009) In vitro cytotoxic and antiproliferative activities of marine macroalgae from Yucatán. Mexico Cienc Mar 35(4):345–358

    Article  Google Scholar 

  163. Ferdosh S, Haque Akanda MJ, Ghafoor K, AH R, Ali ME, & Islam Sarker MZ (2018). Techniques for the extraction of phytosterols and their benefits in human health: a review. Separation Science and Technology, 53(14), 2206-2223.

  164. Mukherjee A, Patel JS (2020) Seaweed extract: biostimulator of plant defense and plant productivity. Int J Environ Sci Technol 17(1):553–558

    Article  Google Scholar 

  165. Naik KK, & Naik TP (2020). Seaweed culture-a brief review. Journal of environmental biotechnology1(2).

  166. Nakashima HYNYMN, Kido Y, Kobayashi N, Motoki Y, Neushul M, Yamamoto N (1987) Purification and characterization of an avian myeloblastosis and human immunodeficiency virus reverse transcriptase inhibitor, sulfated polysaccharides extracted from sea algae. Antimicrob Agents Chemother 31(10):1524–1528

    Article  Google Scholar 

  167. Nes WD (2011) Biosynthesis of cholesterol and other sterols. Chem Rev 111(10):6423–6451

    Article  Google Scholar 

  168. Nitta I, Watase H, Tomiie Y (1958) Structure of kainic acid and its isomer, allokainic acid. Nature 181(4611):761–762

    Article  Google Scholar 

  169. O’sullivan AM, O’callaghan YC, O’grady MN, Queguineur B, Hanniffy D, Troy DJ & O’brien NM (2011). In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food chemistry, 126(3), 1064-1070.

  170. Ohta S, Ono F, Shiomi Y, Nakao T, Aozasa O, Nagate T, Miyata H (1998) Anti-herpes simplex virus substances produced by the marine green alga, Dunaliellaprimolecta. J Appl Phycol 10(4):349–356

  171. Ojima T, Rahman MM, Kumagai Y, Nishiyama R, Narsico J, & Inoue A. (2018). Polysaccharide-degrading enzymes from marine gastropods. In Methods in Enzymology (Vol. 605, pp. 457–497). Academic Press.

  172. Oliveira C, Carvalho AC, Reis RL, Neves NN, Martins A, & Silva TH (2020). Marine-derived biomaterials for cancer treatment. In Biomaterials for 3D Tumor Modeling (pp. 551–576). Elsevier.Pal, A., Kamthania, M. C., & Kumar, A. (2014). Bioactive compounds and properties of seaweeds—a review. Open Access Library Journal, 1(4), 1–17.

  173. Pal A, Kamthania MC, Kumar A (2014) Bioactive compounds and properties of seaweeds—a review. Open Access Library Journal 1(4):1–17

  174. Park, H., & Lee, K. Y. (2008). Alginate hydrogels as matrices for tissue engineering. In Natural-based polymers for biomedical applications (pp. 515–532). Woodhead

  175. Patel, S. (2018). Seaweed-derived sulfated polysaccharides: scopes and challenges in implication in health care. In Bioactive Seaweeds for Food Applications (pp. 71–93). Academic Press.

  176. Pati MP, Sharma SD, Nayak LAKSHMAN, Panda CR (2016) Uses of seaweed and its application to human welfare: A review. Int J Pharm Pharm Sci 8:12–20

  177. Paul VJ, Fenical W (1983) Isolation of halimedatrial: chemical defense adaptation in the calcareous reef-building alga Halimeda. Science 221(4612):747–749

    Article  Google Scholar 

  178. Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23

    Google Scholar 

  179. Peasura N, Laohakunjit N, Kerdchoechuen O, Wanlapa S (2015) Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. Int J Biol Macromol 81:912–919

    Article  Google Scholar 

  180. Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G (2020) Seaweeds as a functional ingredient for a healthy diet. Mar Drugs 18(6):301

    Article  Google Scholar 

  181. Penicooke N, Walford K, Badal S, Delgoda R, Williams LA, Joseph-Nathan P, Gallimore W (2013) Antiproliferative activity and absolute configuration of zonaquinone acetate from the Jamaican alga Stypopodium zonale. Phytochemistry 87:96–101

    Article  Google Scholar 

  182. Pereira AG, Otero P, Echave J, Carreira-Casais A, Chamorro F, Collazo N, Prieto MA (2021) Xanthophylls from the sea: algae as source of bioactive carotenoids. Mar Drugs 19(4):188

    Article  Google Scholar 

  183. Pereira L. (2016). Edible seaweeds of the world. https://doi.org/10.1201/b19970

  184. Pereira L, Soares F, Freitas AC, Duarte AC, & Ribeiro-Claro P. (2017). Extraction, characterization, and use of carrageenans. In Industrial applications of marine biopolymers (pp. 37–90). CRC Press.

  185. Pérez-Gálvez A, Viera I, Roca M (2020) Carotenoids and chlorophylls as antioxidants. Antioxidants 9(6):505

    Article  Google Scholar 

  186. Pinteus S, Lemos MF, Alves C, Neugebauer A, Silva J, Thomas OP, Pedrosa R (2018) Marine invasive macroalgae: turning a real threat into a major opportunity-the biotechnological potential of Sargassum muticum and Asparagopsis armata. Algal Res 34:217–234

    Article  Google Scholar 

  187. Plastino EM, Ursi S, Fujii MT (2004) Color inheritance, pigment characterization, and growth of a rare light green strain of Gracilaria birdiae (Gracilariales, Rhodophyta). Phycol Res 52(1):45–52

    Article  Google Scholar 

  188. Prabhakaran S, Rajaram R, Balasubramanian V, Mathivanan K (2012) Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pac J Trop Biomed 2:S316–S322. https://doi.org/10.1016/S2221-169(12)60181-6

  189. Pradhan B, Bhuyan PP, Patra S, Nayak R, Behera PK, Behera C, Jena M (2022) Beneficial effects of seaweeds and seaweed-derived bioactive compounds: current evidence and future prospective. Biocatal Agric Biotechnol 39:102242

    Article  Google Scholar 

  190. Qin Y. (2018). Applications of bioactive seaweed substances in functional food products. In Bioactive seaweeds for food applications (pp. 111–134). Academic Press.

  191. Radhika D, Veerabahu C, Priya R (2012) Antibacterial activity of some selected seaweeds from the Gulf of Mannar Coast, South India. Asian J Pharm Clin Res 5(4):89–90

  192. Rajaram R, Rameshkumar S, Anandkumar A (2020) Health risk assessment and potentiality of green seaweeds on bioaccumulation of trace elements along the Palk Bay coast Southeastern India. Mar Pollut Bull 154:111069

    Article  Google Scholar 

  193. Rajasulochana P, Dhamotharan R, Krishnamoorthy P, Murugesan S (2009) Antibacterial activity of the extracts of marine red and brown algae Marsland Press. Am J Sci 5(3):20–25

    Google Scholar 

  194. Rameshkumar S, & Rajaram R (2019). A report on diversity and distribution of four non-indigenous red algae (Rhodophyceae) along the Tamil Nadu coast, Southeast coast of India.

  195. Ramus J, Beale SI, Mauzerall D, Howard KL (1976) Changes in photosynthetic pigment concentration in seaweeds as a function of water depth. Mar Biol 37(3):223–229

    Article  Google Scholar 

  196. Ranga RA, Vijaya RD, & Ravishankar GA (2017). Secondary metabolites from algae for nutraceutical application. Novel Techniques in Nutrition and Food Science, 1(1).

  197. Rao MU (1970) Economic seaweeds of India. CMFRI Bull 20:1–82

    Google Scholar 

  198. Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52:237–292

    Article  Google Scholar 

  199. Rossano R, Ungaro N, D’Ambrosio A, Liuzzi GM, Riccio P (2003) Extracting and purifying R-phycoerythrin from Mediterranean red algae Corallina elongata Ellis & Solander. J Biotechnol 101(3):289–293

    Article  Google Scholar 

  200. Saeed A, Abotaleb S, Alam N, ELMehalawy A, Gheda S (2020) In vitro assessment of antimicrobial, antioxidant and anticancer activities of some marine macroalgae. Egypt J Bot 60(1):81–96

  201. Salem KS, Rashid TU, Islam MM, Khan MN, Sharmeen S, Rahman MM, & Haque P (2016). Recent updates on immobilization of microbial cellulase. New and future developments in microbial biotechnology and bioengineering, 107–139.

  202. Saravana PS, Getachew AT, Cho YJ, Choi JH, Park YB, Woo HC, Chun BS (2017) Influence of co-solvents on fucoxanthin and phlorotannin recovery from brown seaweed using supercritical CO2. J Supercrit Fluids 120:295–303

    Article  Google Scholar 

  203. Sellimi S, Benslima A, Barragan-Montero V, Hajji M, Nasri M (2017) Polyphenolic-protein-polysaccharide ternary conjugates from Cystoseira barbata Tunisian seaweed as potential biopreservatives: Chemical, antioxidant and antimicrobial properties. Int J Biol Macromol 105:1375–1383

    Article  Google Scholar 

  204. Senevirathne WSM, & Kim SK (2013). Cosmeceuticals from algae. In Functional Ingredients from Algae for Foods and Nutraceuticals (pp. 694–713). Woodhead Publishing.

  205. Senthilkumar N, Suresh V, Thangam R, Kurinjimalar C, Kavitha G, Murugan P, Rengasamy R (2013) Isolation and characterization of macromolecular protein R-Phycoerythrin from Portieria hornemannii. Int J Biol Macromol 55:150–160

    Article  Google Scholar 

  206. Shah MT, Zodape ST, Chaudhary DR, Eswaran K, Chikara J (2013) Seaweed sap as an alternative liquid fertilizer for yield and quality improvement of wheat. J Plant Nutr 36(2):192–200

    Article  Google Scholar 

  207. Shalaby E (2011) Algae as promising organisms for environment and health. Plant Signal Behav 6(9):1338–1350

    Article  Google Scholar 

  208. Shams S & Silva EA (2020). Bioengineering strategies for gene delivery. In Engineering Strategies for Regenerative Medicine (pp. 107–148). Academic Press.

  209. Shanmugam H, Sathasivam R, Rathinam R, Arunkumar K, & Carvalho IS. (2018). Algal biotechnology: an update from industrial and medical point of view. In Omics Technologies and Bio-Engineering (pp. 31–52). Academic Press.

  210. Shannon E, Abu-Ghannam N (2018) Enzymatic extraction of fucoxanthin from brown seaweeds. Int J Food Sci Technol 53(9):2195–2204

    Article  Google Scholar 

  211. Shao P, Chen X, Sun P (2013) In vitro antioxidant and antitumor activities of different sulfated polysaccharides isolated from three algae. Int J Biol Macromol 62:155–161

    Article  Google Scholar 

  212. Shaw DH (2017). Drugs acting on the gastrointestinal tract. In Pharmacology and Therapeutics for Dentistry: Seventh Edition (pp. 404–416). Elsevier.

  213. Sheu JH, Wang GH, Sung PJ, Duh CY (1999) New cytotoxic oxygenated fucosterols from the brown alga Turbinaria conoides. J Nat Prod 62(2):224–227

    Article  Google Scholar 

  214. Sheu JH, Wang GH, Sung PJ, Chiu YH, Duh CY (1997) Cytotoxic sterols from the formosan brown alga Turbinaria ornata. Planta Med 63(06):571–572

    Article  Google Scholar 

  215. Shobier AH, Ghani SAA, Barakat KM (2016) GC/MS spectroscopic approach and antifungal potential of bioactive extracts produced by marine macroalgae. Egypt J Aquat Res 42(3):289–299

    Article  Google Scholar 

  216. Silva MMCL, dos Santos Lisboa L, Paiva WS, Batista LANC, Luchiari AC, Rocha HAO, Camara RBG (2022) Comparison of in vitro and in vivo antioxidant activities of commercial fucoidans from Macrocystispyrifera, Undariapinnatifida, and Fucusvesiculosus. Int J Biol Macromol

  217. Silva SS, Fernandes EM, Pina S, Silva-Correia J, Vieira S, Oliveira JM, & Reis RL (2017). 2.11 Polymers of biological origin.

  218. Singh IP, & Sidana J (2013). Phlorotannins. In Functional ingredients from algae for foods and nutraceuticals (pp. 181–204). Woodhead Publishing.

  219. Sirajunnisa AR, Surendhiran D (2016) Algae–a quintessential and positive resource of bioethanol production: a comprehensive review. Renew Sustain Energy Rev 66:248–267

    Article  Google Scholar 

  220. Sohn SI, Rathinapriya P, Balaji S, Jaya Balan D, Swetha TK, Durgadevi R, Pandian S (2021) Phytosterols in seaweeds: an overview on biosynthesis to biomedical applications. Int J Mol Sci 22(23):12691

    Article  Google Scholar 

  221. Souza BW, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Vicente AA (2012) Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids 27(2):287–292

    Article  Google Scholar 

  222. Stiger-Pouvreau V, Bourgougnon N, & Deslandes E (2016). Carbohydrates from seaweeds. In Seaweed in health and disease prevention (pp. 223–274). Academic press.

  223. Stirk WA, Van Staden J, Bornman CH (2004) Potential new applications for the southern African kelps. S Afr J Bot 70(1):145–151

    Article  Google Scholar 

  224. Sugawara T, Ganesan P, Li Z, Manabe Y, Hirata T (2014) Siphonaxanthin, a green algal carotenoid, as a novel functional compound. Mar Drugs 12(6):3660–3668

    Article  Google Scholar 

  225. Sun L, Wang S, Gong X, Zhao M, Fu X, Wang L (2009) Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expr Purif 64(2):146–154

    Article  Google Scholar 

  226. Sun Z, Dai Z, Zhang W, Fan S, Liu H, Liu R, & Zhao T (2018). Antiobesity, antidiabetic, antioxidative, and antihyperlipidemic activities of bioactive seaweed substances. In Bioactive seaweeds for food applications (pp. 239–253). Academic Press.

  227. Sunderland AM, Dettmar PW, Pearson JP (2000) Alginates inhibit pepsin activity in vitro; a justification for their use in gastro-oesophageal reflux disease (GORD). Gastroenterology 4(118):A21

    Article  Google Scholar 

  228. Susanto E, Fahmi AS, Abe M, Hosokawa M, Miyashita K (2016) Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquat Procedia 7:66–75

    Article  Google Scholar 

  229. Thammapalerd N, Supasiri T, Awakairt S, Chandrkrachang S (1996) Application of local products R-phycoerythrin and monoclonal antibody as a fluorescent antibody probe to detect Entamoeba histolytica trophozoites. Southeast Asian J Trop Med Public Health 27:297–303

    Google Scholar 

  230. Thinakaran T, Balamurugan M, & Sivakumar K (2012). Screening of phycochemical constituents qualitatively and quantitatively certain seaweeds from Gulf of Mannar biosphere reserve.

  231. Thiruchelvi R, Jayashree P, Mirunaalini K (2021) Synthesis of silver nanoparticle using marine red seaweed Gelidiella acerosa-a complete study on its biological activity and its characterisation. Mater Today Proc 37:1693–1698

    Article  Google Scholar 

  232. Tiwari H, Deshmukh H, Wagh NS, & Lakkakula J (2022). Biological macromolecules as anticancer agents. In Biological Macromolecules (pp. 243–272). Academic Press.

  233. Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13(4):375–380

    Article  Google Scholar 

  234. Tuzen M, Verep B, Ogretmen AO, Soylak M (2009) Trace element content in marine algae species from the Black sea Turkey. Environ Monit Assess 151(1):363–368

    Article  Google Scholar 

  235. Ushakiran B, Treesa M, Kaladharan P (2014) Review on resources, cultivation and utilisation of marine macroalgae in India. Seaweed Res Utiln 36(1 & 2):114–125

    Google Scholar 

  236. Usov AI (2011) Polysaccharides of the red algae. Adv Carbohydr Chem Biochem 65:115–217 (Academic Press)

    Article  Google Scholar 

  237. Valarmathi N, Ameen F, Almansob A, Kumar P, Arunprakash S, Govarthanan M (2020) Utilization of marine seaweed Spyridia filamentosa for silver nanoparticles synthesis and its clinical applications. Mater Lett 263:127244

    Article  Google Scholar 

  238. Veeragurunathan V, Prasad K, Singh N, Malarvizhi J, Mandal SK, Mantri VA (2016) Growth and biochemical characterization of green and red strains of the tropical agarophytes Gracilaria debilis and Gracilaria edulis (Gracilariaceae, Rhodophyta). J Appl Phycol 28(6):3479–3489

    Article  Google Scholar 

  239. Venkataraman K, Maelkani VK (2007) Marine biodiversity conservation in Tamil Nadu. GOMBRT Publication 7:13–28

    Google Scholar 

  240. Venkatesan J, Keekan KK, Anil S, Bhatnagar I, & Kim SK (2019). Phlorotannins. Encyclopedia of food chemistry, 515.

  241. Vijayabaskar P, Shiyamala V (2011) Antibacterial activities of brown marine algae (Sargassum wightii and Turbinaria ornata) from the Gulf of Mannar Biosphere Reserve. Adv Biol Res 5(2):99–102

    Google Scholar 

  242. Vivek M, Kumar PS, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3(3):143

    Google Scholar 

  243. Wijesinghe W, Jeon Y-J (2011) Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochem Rev 10:431–443. https://doi.org/10.1007/s11101-011-9214-4

    Article  Google Scholar 

  244. Wang J, Geng L, Yue Y, Zhang Q (2019) Use of fucoidan to treat renal diseases: a review of 15 years of clinic studies. Prog Mol Biol Transl Sci 163:95–111

    Article  Google Scholar 

  245. Wang T, Jonsdottir R, Ólafsdóttir G (2009) Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem 116(1):240–248

    Article  Google Scholar 

  246. Wong KH, Cheung PC (2000) Nutritional evaluation of some subtropical red and green seaweeds: part I—proximate composition, amino acid profiles and some physico-chemical properties. Food Chem 71(4):475–482

    Article  Google Scholar 

  247. Yaich H, Garna H, Besbes S, Paquot M, Blecker C, Attia H (2011) Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem 128(4):895–901

    Article  Google Scholar 

  248. Yuan H, Song J, Li X, Li N, Liu S (2011) Enhanced immune stimulatory and antitumor activity of different derivatives of κ-carrageenan oligosaccharides from Kappaphycus striatum. J Appl Phycol 23(1):59–65

    Article  Google Scholar 

  249. Zeece M (2020) Introduction to the chemistry of food. Academic Press

    Google Scholar 

  250. Zhang, H., Zhang, F., & Yuan, R. (2020). Applications of natural polymer-based hydrogels in the food industry. In Hydrogels based on natural polymers (pp. 357–410). Elsevier.

  251. Zhang L (2019) Progress in molecular biology and translational science: glycans and glycosaminoglycans as clinical biomarkers and therapeutics-part B. Academic Press

    Google Scholar 

  252. Zhang Z, Wang X, Zhao M, Yu S, Qi H (2013) The immunological and antioxidant activities of polysaccharides extracted from Enteromorpha linza. Int J Biol Macromol 57:45–49

    Article  Google Scholar 

  253. Zodape ST, Kawarkhe VJ, Patolia JS, Warade AD (2008) Effect of liquid seaweed fertilizer on yield and quality of okra (Abelmoschus esculentus L.). J Sci Ind Res 67:1115–1117

    Google Scholar 

  254. Zubia M, Payri C, Deslandes E (2008) Alginate, mannitol, phenolic compounds and biological activities of two range-extending brown algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French Polynesia). J Appl Phycol 20(6):1033–1043

Download references

Acknowledgements

All the authors are thankful to the authorities of Bharathidasan University for providing the necessary facilities to carry out the study.

Funding

The authors are grateful to DST—FIST for the support to the Department of Marine Science, Bharathidasan University, Tiruchirappalli-24, Tamil Nadu, India (SR/FST/ES-1/2019/62 – TPN-29356).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the review work: RR and KRP. Analyzed the data: RR, KRP, and SRS. Statistical data analysis and language editing: RR and SRS. Wrote the paper: KRP and RR. K.R.P—K.R. Priyanka. RR—Rajendran Rajaram. S.R.S—S.R. Sivakumar.

Corresponding author

Correspondence to R. Rajaram.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, K.R., Rajaram, R. & Sivakumar, S.R. A critical review on pharmacological properties of marine macroalgae. Biomass Conv. Bioref. (2022). https://doi.org/10.1007/s13399-022-03134-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-022-03134-4

Keywords

Navigation