Skip to main content
Log in

Catalytic conversion of glucose and its biopolymers into renewable compounds by inducing C–C bond scission and formation

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Transportation fuels and chemicals can be produced renewably by selectively altering the carbon skeleton of biomass-derived glucose. The predominantly catalytic processes incorporate carbon–carbon (CC) bond scission and formation reactions with concomitant defunctionalization and refunctionalization steps. The production and synthetic upgrading of various biochemicals achieved by the CC bond-scission (C1C5) and CC bond-forming (> C6) reactions from glucose and its biopolymers (e.g., starch, cellulose) have been reviewed. The details of transforming glucose and its polymers into targeted biochemicals, such as mechanistic pathway, process parameters, product selectivity, and specifics of the catalysts employed, have been elaborated. The interconversions of these chemicals of commercial significance under catalytic conditions are also highlighted. This review will assist the researchers in comprehending this field from a distinct perspective, reassess the challenges, identify the research gaps, and critically appraise the emerging research avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

ABE:

Acetone-butanol-ethanol

AA:

Acetic acid

1,4-AHX:

1,4-Anhydroxylitol

AGL:

Angelica lactone

APR:

Aqueous phase reforming

1,2-BD:

1,2-Butanediol

1,4-BD:

1,4-Butanediol

2,3-BD:

2,3-Butanediol

BUA:

Butyric acid

CTH:

Catalytic transfer hydrogenation

DDTMX:

1,5-Diamino-1,5-dideoxy-2,3,4-tri-O-methyl xylitol

2,3-DHP:

2,3-Dihydroxypropanal

1,3-DHA:

1,3­Dihydroxyacetone

EG:

Ethylene glycol

FA:

Formic acid

FF:

Furfural

FAL:

Furfuryl alcohol

FMA:

Fumaric acid

GCD:

Glyceraldehyde

GRAS:

Generally recognized as safe

GLY:

Glycerol

GLD:

Glycolaldehyde

GLA:

Glycolic acid

HMF:

5-(Hydroxymethyl)furfural

3HP:

3-Hydroxypropionic acid

HPA:

Heteropoly acid

HPN:

3-Hydroxypropionaldehyde

LAC:

Lactic acid

LA:

Levulinic acid

MA:

Maleic acid

MAN:

Maleic anhydride

MAL:

Malonic acid

MWCNT:

Multi-walled carbon nanotube

NP:

Nanoparticle

OA:

Oxalic acid

1,2-PDO:

Propane-1,2-diol

1,3-PDO:

Propane-1,3-diol

1,5-PDO:

Pentane-1,5-diol

PA:

Propionic acid

SA:

Succinic acid

TA:

Tartaric acid

TTA:

Tartronic acid

GVL:

γ-Valerolactone

References

  1. Hsu CS, Robinson PR (2006) Practical advances in petroleum processing. Springer, New York, New York, USA

    Book  Google Scholar 

  2. Otto A, Grube T, Schiebahn S, Stolten D (2015) Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ Sci 8:3283–3297. https://doi.org/10.1039/C5EE02591E

    Article  Google Scholar 

  3. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/C5PY00263J

    Article  Google Scholar 

  4. Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: a review. Energies 11:3366. https://doi.org/10.3390/en11123366

    Article  Google Scholar 

  5. https://www.eia.gov/energyexplained/oil-and-petroleum-products. Accessed 17 Feb 2022

  6. McGrath HG, Charles ME (1971) Origin and Refining of Petroleum. American Chemical Society, Washington, D. C.

    Book  Google Scholar 

  7. Straathof AJJ, Bampouli A (2017) Potential of commodity chemicals to become bio-based according to maximum yields and petrochemical prices. Biofuels, Bioprod Biorefin 11:798–810. https://doi.org/10.1002/bbb.1786

    Article  Google Scholar 

  8. Szmant HH (1989) Organic building blocks of the chemical industry. Wiley, New York

    Google Scholar 

  9. Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40:5266–5281. https://doi.org/10.1039/c1cs15131b

    Article  Google Scholar 

  10. Liu W-J, Li W-W, Jiang H, Yu H-Q (2017) Fates of chemical elements in biomass during its pyrolysis. Chem Rev 117:6367–6398. https://doi.org/10.1021/acs.chemrev.6b00647

    Article  Google Scholar 

  11. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  Google Scholar 

  12. Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renewable Sustainable Energy Rev 45:530–539. https://doi.org/10.1016/j.rser.2015.02.007

    Article  Google Scholar 

  13. Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53. https://doi.org/10.1002/masy.200950606

    Article  Google Scholar 

  14. Zhang Y, Huang M, Su J, Hu H, Yang M, Huang Z, Chen D, Wu J, Feng Z (2019) Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose. Biotechnol Biofuels 12:12. https://doi.org/10.1186/s13068-019-1354-6

    Article  Google Scholar 

  15. Amezcua-Allieri MA, Sánchez Durán T, Aburto J (2017) Study of chemical and enzymatic hydrolysis of cellulosic material to obtain fermentable sugars. J Chem 2017:5680105. https://doi.org/10.1155/2017/5680105

    Article  Google Scholar 

  16. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–78. https://doi.org/10.1385/ABAB:76:2:65

    Article  Google Scholar 

  17. Ubando AT, Felix CB, Chen W-H (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585. https://doi.org/10.1016/j.biortech.2019.122585

    Article  Google Scholar 

  18. Deng W, Zhang Q, Wang Y (2015) Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C-C bond cleavage. J Energy Chem 24:595–607. https://doi.org/10.1016/j.jechem.2015.08.016

    Article  Google Scholar 

  19. Zang H, Chen EYX (2015) Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency. Int J Mol Sci 16:7143–7158. https://doi.org/10.3390/ijms16047143

    Article  Google Scholar 

  20. Dutta S, Bhat NS (2022) Chemocatalytic value addition of glucose without carbon–carbon bond cleavage/formation reactions: an overview. RSC Adv 12:4891–4912. https://doi.org/10.1039/D1RA09196D

    Article  Google Scholar 

  21. Delidovich I, Palkovits R (2016) Catalytic versus stoichiometric reagents as a key concept for green chemistry. Green Chem 18:590–593. https://doi.org/10.1039/C5GC90070K

    Article  Google Scholar 

  22. Höfer R, Bigorra J (2008) Biomass-based green chemistry: sustainable solutions for modern economies. Green Chem Lett Rev 1:79–97. https://doi.org/10.1080/17518250802342519

    Article  Google Scholar 

  23. Xie H, Gathergood N (2012) The role of green chemistry in biomass processing and conversion. John Wiley & Sons Inc, Hoboken, NJ, USA. https://doi.org/10.1002/9781118449400

    Article  Google Scholar 

  24. Zhou C-H, Xia X, Lin C-X, Tong D-S, Beltramini J (2011) Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev 40:5588–5617. https://doi.org/10.1039/c1cs15124j

    Article  Google Scholar 

  25. Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF (2018) Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 47:8349–8402. https://doi.org/10.1039/C8CS00410B

    Article  Google Scholar 

  26. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 118:4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776

    Article  Google Scholar 

  27. Deuss PJ, Barta K, de Vries JG (2014) Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal Sci Technol 4:1174–1196. https://doi.org/10.1039/C3CY01058A

    Article  Google Scholar 

  28. Dutta S, Bhat NS, Vinod N (2020) Oxidation and reduction of biomass-derived 5-(hydroxymethyl)furfural and levulinic acid by nanocatalysis. In: Sudarsanam P, Singh L (eds) ACS Symposium Series. American Chemical Society, Washington, DC, pp 239–259

    Google Scholar 

  29. De S, Burange AS, Luque R (2022) Conversion of biomass-derived feedstocks into value-added chemicals over single-atom catalysts. Green Chem 24:2267–2286. https://doi.org/10.1039/D1GC04285H

    Article  Google Scholar 

  30. Walker TW, Motagamwala AH, Dumesic JA, Huber GW (2019) Fundamental catalytic challenges to design improved biomass conversion technologies. J Catal 369:518–525. https://doi.org/10.1016/j.jcat.2018.11.028

    Article  Google Scholar 

  31. Wilson K, Lee AF (2016) Catalyst design for biorefining. Philos Trans R Soc, A 374:20150081. https://doi.org/10.1098/rsta.2015.0081

    Article  Google Scholar 

  32. Hara M, Nakajima K, Kamata K (2015) Recent progress in the development of solid catalysts for biomass conversion into high value-added chemicals. Sci Technol Adv Mater 16:034903. https://doi.org/10.1088/1468-6996/16/3/034903

    Article  Google Scholar 

  33. Arias PL, Cecilia JA, Gandarias I, Iglesias J, López Granados M, Mariscal R, Morales G, Moreno-Tost R, Maireles-Torres P (2020) Oxidation of lignocellulosic platform molecules to value-added chemicals using heterogeneous catalytic technologies. Catal Sci Technol 10:2721–2757. https://doi.org/10.1039/D0CY00240B

    Article  Google Scholar 

  34. Teong SP, Li X, Zhang Y (2019) Hydrogen peroxide as an oxidant in biomass-to-chemical processes of industrial interest. Green Chem 21:5753–5780. https://doi.org/10.1039/C9GC02445J

    Article  Google Scholar 

  35. Jin X, Yin B, Xia Q, Fang T, Shen J, Kuang L, Yang C (2019) Catalytic transfer hydrogenation of biomass-derived substrates to value-added chemicals on dual-function catalysts: opportunities and challenges. ChemSusChem 12:71–92. https://doi.org/10.1002/cssc.201801620

    Article  Google Scholar 

  36. Thakur IS, Kumar M, Varjani SJ, Wu Y, Gnansounou E, Ravindran S (2018) Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: opportunities and challenges. Bioresour Technol 256:478–490. https://doi.org/10.1016/j.biortech.2018.02.039

    Article  Google Scholar 

  37. Modak A, Bhanja P, Dutta S, Chowdhury B, Bhaumik A (2020) Catalytic reduction of CO2 into fuels and fine chemicals. Green Chem 22:4002–4033. https://doi.org/10.1039/D0GC01092H

    Article  Google Scholar 

  38. Peter SC (2018) Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett 3:1557–1561. https://doi.org/10.1021/acsenergylett.8b00878

    Article  Google Scholar 

  39. Javaid R, Kawasaki S, Suzuki A, Suzuki TM (2013) Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors. Beilstein J Org Chem 9:1156–1163. https://doi.org/10.3762/bjoc.9.129

    Article  Google Scholar 

  40. Lv P, Yuan Z, Wu C, Ma L, Chen Y, Tsubaki N (2007) Bio-syngas production from biomass catalytic gasification. Energy Convers Manage 48:1132–1139. https://doi.org/10.1016/j.enconman.2006.10.014

    Article  Google Scholar 

  41. Mandal S, Daggupati S, Majhi S, Thakur S, Bandyopadhyay R, Das AK (2019) Catalytic gasification of biomass in dual-bed gasifier for producing tar-free syngas. Energy Fuels 33:2453–2466. https://doi.org/10.1021/acs.energyfuels.8b04305

    Article  Google Scholar 

  42. Hu J, Yu F, Lu Y (2012) Application of Fischer-Tropsch synthesis in biomass to liquid conversion. Catalysts 2:303–326. https://doi.org/10.3390/catal2020303

    Article  Google Scholar 

  43. Gruber H, Groß P, Rauch R, Reichhold A, Zweiler R, Aichernig C, Müller S, Ataimisch N, Hofbauer H (2021) Fischer-Tropsch products from biomass-derived syngas and renewable hydrogen. Biomass Convers Biorefin 11:2281–2292. https://doi.org/10.1007/s13399-019-00459-5

    Article  Google Scholar 

  44. Giuliano A, Freda C, Catizzone E (2020) Techno-economic assessment of bio-syngas production for methanol synthesis: a focus on the water–gas shift and carbon capture sections. Bioengineering 7:70. https://doi.org/10.3390/bioengineering7030070

    Article  Google Scholar 

  45. Rauch R, Hrbek J, Hofbauer H (2014) Biomass gasification for synthesis gas production and applications of the syngas. Wiley Interdiscip Rev: Energy Environ 3:343–362. https://doi.org/10.1002/wene.97

    Article  Google Scholar 

  46. Hietala J, Vuori A, Johnsson P, Pollari I, Reutemann W, Kieczka H (2016) Formic acid. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/14356007.a12_013.pub3

  47. Supronowicz W, Ignatyev IA, Lolli G, Wolf A, Zhao L, Mleczko L (2015) Formic acid: a future bridge between the power and chemical industries. Green Chem 17:2904–2911. https://doi.org/10.1039/C5GC00249D

    Article  Google Scholar 

  48. Mellmann D, Sponholz P, Junge H, Beller M (2016) Formic acid as a hydrogen storage material – development of homogeneous catalysts for selective hydrogen release. Chem Soc Rev 45:3954–3988. https://doi.org/10.1039/C5CS00618J

    Article  Google Scholar 

  49. Leitner W (1995) Carbon dioxide as a raw material: the synthesis of formic acid and its derivatives from CO2. Angew Chem, Int Ed Engl 34:2207–2221. https://doi.org/10.1002/anie.199522071

    Article  Google Scholar 

  50. Preti D, Squarcialupi S, Fachinetti G (2012) Conversion of syngas into formic acid. ChemCatChem 4:469–471. https://doi.org/10.1002/cctc.201200046

    Article  Google Scholar 

  51. Moret S, Dyson PJ, Laurenczy G (2014) Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nat Commun 5:4017. https://doi.org/10.1038/ncomms5017

    Article  Google Scholar 

  52. Navlani-García M, Mori K, Salinas-Torres D, Kuwahara Y, Yamashita H (2019) New approaches toward the hydrogen production from formic acid dehydrogenation over Pd-based heterogeneous catalysts. Front Mater 6:44. https://doi.org/10.3389/fmats.2019.00044

    Article  Google Scholar 

  53. Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li XB (2021) Formic acid as a potential on-board hydrogen storage method: development of homogeneous noble metal catalysts for dehydrogenation reactions. Chem Sus Chem 14:2655–2681. https://doi.org/10.1002/cssc.202100602

    Article  Google Scholar 

  54. Weingarten R, Conner WC, Huber GW (2012) Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy Environ Sci 5:7559–7574. https://doi.org/10.1039/c2ee21593d

    Article  Google Scholar 

  55. Valentini F, Kozell V, Petrucci C, Marrocchi A, Gu Y, Gelman D, Vaccaro L (2019) Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ Sci 12:2646–2664. https://doi.org/10.1039/C9EE01747J

    Article  Google Scholar 

  56. Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R (1996) Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid−triethylamine mixture. J Am Chem Soc 118:2521–2522. https://doi.org/10.1021/ja954126l

    Article  Google Scholar 

  57. Nie R, Tao Y, Nie Y, Lu T, Wang J, Zhang Y, Lu X, Xu CC (2021) Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts. ACS Catal 11:1071–1095. https://doi.org/10.1021/acscatal.0c04939

    Article  Google Scholar 

  58. Müller K, Brooks K, Autrey T (2017) Hydrogen storage in formic acid: a comparison of process options. Energy Fuels 31:12603–12611. https://doi.org/10.1021/acs.energyfuels.7b02997

    Article  Google Scholar 

  59. Liu J, Zeng X, Cheng M, Yun J, Li Q, Jing Z, Jin F (2012) Reduction of formic acid to methanol under hydrothermal conditions in the presence of Cu and Zn. Bioresour Technol 114:658–662. https://doi.org/10.1016/j.biortech.2012.03.032

    Article  Google Scholar 

  60. Gromov NV, Medvedeva TB, Rodikova YA, Babushkin DE, Panchenko VN, Timofeeva MN, Zhizhina EG, Taran OP, Parmon VN (2020) One-pot synthesis of formic acid via hydrolysis–oxidation of potato starch in the presence of cesium salts of heteropoly acid catalysts. RSC Adv 10:28856–28864. https://doi.org/10.1039/D0RA05501H

    Article  Google Scholar 

  61. Xu J, Zhao Y, Xu H, Zhang H, Yu B, Hao L, Liu Z (2014) Selective oxidation of glycerol to formic acid catalyzed by Ru(OH)4/r-GO in the presence of FeCl3. Appl Catal, B 154–155:267–273. https://doi.org/10.1016/j.apcatb.2014.02.034

    Article  Google Scholar 

  62. Hou Y, Niu M, Wu W (2020) Catalytic oxidation of biomass to formic acid using O2 as an oxidant. Ind Eng Chem Res 59:16899–16910. https://doi.org/10.1021/acs.iecr.0c01088

    Article  Google Scholar 

  63. Chen X, Liu Y, Wu J (2020) Sustainable production of formic acid from biomass and carbon dioxide. Mol Catal 483:110716. https://doi.org/10.1016/j.mcat.2019.110716

    Article  Google Scholar 

  64. Shen F, Smith RL Jr, Li J, Guo H, Zhang X, Qi X (2021) Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid. Green Chem 23:1536–1561. https://doi.org/10.1039/D0GC04263C

    Article  Google Scholar 

  65. Shen F, Li Y, Qin X, Guo H, Li J, Yang J, Ding Y (2022) Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts. Renewable Energy 185:139–146. https://doi.org/10.1016/j.renene.2021.12.043

    Article  Google Scholar 

  66. Maerten S, Kumpidet C, Voß D, Bukowski A, Wasserscheid P, Albert J (2020) Glucose oxidation to formic acid and methyl formate in perfect selectivity. Green Chem 22:4311–4320. https://doi.org/10.1039/D0GC01169J

    Article  Google Scholar 

  67. Wang C, Chen X, Qi M, Wu J, Gözaydın G, Yan N, Zhong H, Jin F (2019) Room temperature, near-quantitative conversion of glucose into formic acid. Green Chem 21:6089–6096. https://doi.org/10.1039/C9GC02201E

    Article  Google Scholar 

  68. Zhang P, Guo Y-J, Chen J, Zhao Y-R, Chang J, Junge H, Beller M, Li Y (2018) Streamlined hydrogen production from biomass. Nat Catal 1:332–338. https://doi.org/10.1038/s41929-018-0062-0

    Article  Google Scholar 

  69. Lu T, Hou Y, Wu W, Niu M, Ren S, Lin Z, Ramani VK (2018) Catalytic oxidation of biomass to oxygenated chemicals with exceptionally high yields using H5PV2Mo10O40. Fuel 216:572–578. https://doi.org/10.1016/j.fuel.2017.12.044

    Article  Google Scholar 

  70. Lu T, Hou Y, Wu W, Niu M, Li W, Ren S (2018) Catalytic oxidation of cellulose to formic acid in V(V)-Fe(III)-H2SO4 aqueous solution with O2. Fuel Process Technol 173:197–204. https://doi.org/10.1016/j.fuproc.2018.02.001

    Article  Google Scholar 

  71. Hou Y, Lin Z, Niu M, Ren S, Wu W (2018) Conversion of cellulose into formic acid by iron(III)-catalyzed oxidation with O2 in acidic aqueous solutions. ACS Omega 3:14910–14917. https://doi.org/10.1021/acsomega.8b01409

    Article  Google Scholar 

  72. Wang G, Meng Y, Zhou J, Zhang L (2018) Selective hydrothermal degradation of cellulose to formic acid in alkaline solutions. Cellulose 25:5659–5668. https://doi.org/10.1007/s10570-018-1979-9

    Article  Google Scholar 

  73. Liu Q, Zhou D, Li Z, Luo W, Guo C (2017) Efficient and bio-inspired conversion of cellulose to formic acid catalyzed by metalloporphyrins in alkaline solution. Chin J Chem 35:1063–1068. https://doi.org/10.1002/cjoc.201600465

    Article  Google Scholar 

  74. Reichert J, Albert J (2017) Detailed kinetic investigations on the selective oxidation of biomass to formic acid (OxFA process) using model substrates and real biomass. ACS Sustainable Chem Eng 5:7383–7392. https://doi.org/10.1021/acssuschemeng.7b01723

    Article  Google Scholar 

  75. Gromov NV, Taran OP, Delidovich IV, Pestunov AV, Rodikova YA, Yatsenko DA, Zhizhina EG, Parmon VN (2016) Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts. Catal Today 278:74–81. https://doi.org/10.1016/j.cattod.2016.03.030

    Article  Google Scholar 

  76. Lu T, Niu M, Hou Y, Wu W, Ren S, Yang F (2016) Catalytic oxidation of cellulose to formic acid in H5PV2Mo10O40 + H2SO4 aqueous solution with molecular oxygen. Green Chem 18:4725–4732. https://doi.org/10.1039/C6GC01271J

    Article  Google Scholar 

  77. Yun J, Yao G, Jin F, Zhong H, Kishita A, Tohji K, Enomoto H, Wang L (2016) Low-temperature and highly efficient conversion of saccharides into formic acid under hydrothermal conditions. AIChE J 62:3657–3663. https://doi.org/10.1002/aic.15287

    Article  Google Scholar 

  78. Bayu A, Guan G, Karnjanakom S, Hao X, Kusakabe K, Abudula A (2016) Catalytic synthesis of levulinic acid and formic acid from glucose in choline chloride aqueous solution. ChemistrySelect 1:180–188. https://doi.org/10.1002/slct.201500008

    Article  Google Scholar 

  79. Reichert J, Brunner B, Jess A, Wasserscheid P, Albert J (2015) Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts–boosting FA selectivity by in-situ extraction. Energy Environ Sci 8:2985–2990. https://doi.org/10.1039/C5EE01706H

    Article  Google Scholar 

  80. Niu M, Hou Y, Ren S, Wang W, Zheng Q, Wu W (2015) The relationship between oxidation and hydrolysis in the conversion of cellulose in NaVO3–H2SO4 aqueous solution with O2. Green Chem 17:335–342. https://doi.org/10.1039/C4GC00970C

    Article  Google Scholar 

  81. Niu M, Hou Y, Ren S, Wu W, Marsh KN (2015) Conversion of wheat straw into formic acid in NaVO3–H2SO4 aqueous solution with molecular oxygen. Green Chem 17:453–459. https://doi.org/10.1039/C4GC01440E

    Article  Google Scholar 

  82. Albert J, Wasserscheid P (2015) Expanding the scope of biogenic substrates for the selective production of formic acid from water-insoluble and wet waste biomass. Green Chem 17:5164–5171. https://doi.org/10.1039/C5GC01474C

    Article  Google Scholar 

  83. Xu J, Zhang H, Zhao Y, Yang Z, Yu B, Xu H, Liu Z (2014) Heteropolyanion-based ionic liquids catalysed conversion of cellulose into formic acid without any additives. Green Chem 16:4931–4935. https://doi.org/10.1039/C4GC01252F

    Article  Google Scholar 

  84. Albert J, Lüders D, Bösmann A, Guldi DM, Wasserscheid P (2014) Spectroscopic and electrochemical characterization of heteropoly acids for their optimized application in selective biomass oxidation to formic acid. Green Chem 16:226–237. https://doi.org/10.1039/C3GC41320A

    Article  Google Scholar 

  85. Zhang J, Sun M, Liu X, Han Y (2014) Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields. Catal Today 233:77–82. https://doi.org/10.1016/j.cattod.2013.12.010

    Article  Google Scholar 

  86. Wang W, Niu M, Hou Y, Wu W, Liu Z, Liu Q, Ren S, Marsh KN (2014) Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen. Green Chem 16:2614–2618. https://doi.org/10.1039/c4gc00145a

    Article  Google Scholar 

  87. Tang Z, Deng W, Wang Y, Zhu E, Wan X, Zhang Q, Wang Y (2014) Transformation of cellulose and its derived carbohydrates into formic and lactic acids catalyzed by vanadyl cations. ChemSusChem 7:1557–1567. https://doi.org/10.1002/cssc.201400150

    Article  Google Scholar 

  88. Li J, Ding D, Deng L, Guo Q, Fu Y (2012) Catalytic air oxidation of biomass-derived carbohydrates to formic acid. Chem Sus Chem 5:1313–1318. https://doi.org/10.1002/cssc.201100466

    Article  Google Scholar 

  89. Wölfel R, Taccardi N, Bösmann A, Wasserscheid P (2011) Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chem 13:2759–2763. https://doi.org/10.1039/c1gc15434f

    Article  Google Scholar 

  90. Jin F, Yun J, Li G, Kishita A, Tohji K, Enomoto H (2008) Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chem 10:612–615. https://doi.org/10.1039/b802076k

    Article  Google Scholar 

  91. Li J, Smith RL, Xu S, Li D, Yang J, Zhang K, Shen F (2022) Manganese oxide as an alternative to vanadium-based catalysts for effective conversion of glucose to formic acid in water. Green Chem 24:315–324. https://doi.org/10.1039/D1GC03637H

    Article  Google Scholar 

  92. Takagaki A, Obata W, Ishihara T (2021) Oxidative conversion of glucose to formic acid as a renewable hydrogen source using an abundant solid base catalyst. ChemistryOpen 10:954–959. https://doi.org/10.1002/open.202100074

    Article  Google Scholar 

  93. Su Y, Lu M, Su R, Zhou W, Xu X, Li Q (2021) A 3D MIL-101@rGO composite as catalyst for efficient conversion of straw cellulose into valuable organic acid. Chin Chem Lett 33:2573–2578. https://doi.org/10.1016/j.cclet.2021.08.078

    Article  Google Scholar 

  94. Choudhary H, Nishimura S, Ebitani K (2015) Synthesis of high-value organic acids from sugars promoted by hydrothermally loaded Cu oxide species on magnesia. Appl Catal, B 162:1–10. https://doi.org/10.1016/j.apcatb.2014.05.012

    Article  Google Scholar 

  95. Zargari N, Kim Y, Jung KW (2015) Conversion of saccharides into formic acid using hydrogen peroxide and a recyclable palladium(ii) catalyst in aqueous alkaline media at ambient temperatures. Green Chem 17:2736–2740. https://doi.org/10.1039/C4GC02362E

    Article  Google Scholar 

  96. Sato R, Choudhary H, Nishimura S, Ebitani K (2015) Synthesis of formic acid from monosaccharides using calcined Mg-Al hydrotalcite as reusable catalyst in the presence of aqueous hydrogen peroxide. Org Process Res Dev 19:449–453. https://doi.org/10.1021/op5004083

    Article  Google Scholar 

  97. Albert J, Jess A, Kern C, Pöhlmann F, Glowienka K, Wasserscheid P (2016) Formic acid-based Fischer-Tropsch synthesis for green fuel production from wet waste biomass and renewable excess energy. ACS Sustainable Chem Eng 4:5078–5086. https://doi.org/10.1021/acssuschemeng.6b01531

    Article  Google Scholar 

  98. Peng J-B, Geng H-Q, Wu X-F (2019) The chemistry of CO: carbonylation. Chem 5:526–552. https://doi.org/10.1016/j.chempr.2018.11.006

    Article  Google Scholar 

  99. dos Santos RG, Alencar AC (2020) Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. Int J Hydrogen Energy 45:18114–18132. https://doi.org/10.1016/j.ijhydene.2019.07.133

    Article  Google Scholar 

  100. Fasolini A, Cucciniello R, Paone E, Mauriello F, Tabanelli T (2019) A short overview on the hydrogen production via aqueous phase reforming (APR) of cellulose, C6–C5 sugars and polyols. Catalysts 9:917. https://doi.org/10.3390/catal9110917

    Article  Google Scholar 

  101. Pipitone G, Zoppi G, Frattini A, Bocchini S, Pirone R, Bensaid S (2020) Aqueous phase reforming of sugar-based biorefinery streams: from the simplicity of model compounds to the complexity of real feeds. Catal Today 345:267–279. https://doi.org/10.1016/j.cattod.2019.09.031

    Article  Google Scholar 

  102. Amos WA (2004) Biological water-gas shift conversion of carbon monoxide to hydrogen: milestone completion report (No. NREL/MP-560–35592). National Renewable Energy Lab, Golden, CO. (US)

  103. https://www.energy.gov/eere/fuelcells/hydrogen-production-biomass-gasification. Accessed 18 Feb 2022

  104. Jaffar MM, Nahil MA, Williams PT (2020) Pyrolysis-catalytic hydrogenation of cellulose-hemicellulose-lignin and biomass agricultural wastes for synthetic natural gas production. J Anal Appl Pyrolysis 145:104753. https://doi.org/10.1016/j.jaap.2019.104753

    Article  Google Scholar 

  105. Mishra AK, Belgamwar R, Jana R, Datta A, Polshettiwar V (2020) Defects in nanosilica catalytically convert CO2 to methane without any metal and ligand. Proc Natl Acad Sci U S A 117:6383–6390. https://doi.org/10.1073/pnas.1917237117

    Article  Google Scholar 

  106. Minowa T, Ogi T, Dote Y, Yokoyama S (1994) Methane production from cellulose by catalytic gasification. Renewable Energy 5:813–815. https://doi.org/10.1016/0960-1481(94)90094-9

    Article  Google Scholar 

  107. Wang H, Zhang C, Liu Q, Zhu C, Chen L, Wang C, Ma L (2018) Direct hydrogenolysis of cellulose into methane under mild conditions. Energy Fuels 32:11529–11537. https://doi.org/10.1021/acs.energyfuels.8b02235

    Article  Google Scholar 

  108. https://netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/methanol. Accessed 20 Mar 2022

  109. Olah GA, Goeppert A, Czaun M, Mathew T, May RB, Prakash GKS (2015) Single step bi-reforming and oxidative bi-reforming of methane (natural gas) with steam and carbon dioxide to metgas (CO-2H2) for methanol synthesis: self-sufficient effective and exclusive oxygenation of methane to methanol with oxygen. J Am Chem Soc 137:8720–8729. https://doi.org/10.1021/jacs.5b02029

    Article  Google Scholar 

  110. Ravi M, Ranocchiari M, van Bokhoven JA (2017) The direct catalytic oxidation of methane to methanol- a critical assessment. Angew Chem, Int Ed 56:16464–16483. https://doi.org/10.1002/anie.201702550

    Article  Google Scholar 

  111. An B, Li Z, Wang Z, Zeng X, Han X, Cheng Y, Sheveleva AM, Zhang Z, Tuna F, McInnes EJL, Frogley MarkD, Ramirez-Cuesta AJ, S. Natrajan L, Wang C, Lin W, Yang S, Schröder M (2022) Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat Mater. https://doi.org/10.1038/s41563-022-01279-1

  112. Farrell BL, Igenegbai VO, Linic S (2016) A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal 6:4340–4346. https://doi.org/10.1021/acscatal.6b01087

    Article  Google Scholar 

  113. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616–619. https://doi.org/10.1126/science.1253150

    Article  Google Scholar 

  114. Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938. https://doi.org/10.1021/acscatal.5b00007

    Article  Google Scholar 

  115. Yarulina I, Chowdhury AD, Meirer F, Weckhuysen BM, Gascon J (2018) Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nat Catal 1:398–411. https://doi.org/10.1038/s41929-018-0078-5

    Article  Google Scholar 

  116. Anukam A, Mohammadi A, Naqvi M, Granström K (2019) Review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Processes 7:504. https://doi.org/10.3390/pr7080504

    Article  Google Scholar 

  117. Hernández B, Blázquez CG, Aristizábal-Marulanda V, Martı́n M (2020) Production of H2 and methanol via dark fermentation: a process optimization study. Ind Eng Chem Res 59:16720–16729. https://doi.org/10.1021/acs.iecr.0c03336

  118. Deshmukh G, Manyar H (2021) Production pathways of acetic acid and its versatile applications in the food industry. In: Peixoto Basso T, Olitta Basso T, Carlos Basso L (eds) Biotechnological Applications of Biomass. IntechOpen. https://doi.org/10.5772/intechopen.92289

  119. Vidra A, Németh Á (2017) Bio-produced acetic acid: a review. Period Polytech, Chem Eng 62:245–256. https://doi.org/10.3311/PPch.11004

    Article  Google Scholar 

  120. Yoneda N, Kusano S, Yasui M, Pujado P, Wilcher S (2001) Recent advances in processes and catalysts for the production of acetic acid. Appl Catal, A 221:253–265. https://doi.org/10.1016/S0926-860X(01)00800-6

    Article  Google Scholar 

  121. Armstrong RD, Hutchings GJ, Taylor SH (2016) An overview of recent advances of the catalytic selective oxidation of ethane to oxygenates. Catalysts 6:71. https://doi.org/10.3390/catal6050071

    Article  Google Scholar 

  122. Qian Q, Zhang J, Cui M, Han B (2016) Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2. Nat Commun 7:11481. https://doi.org/10.1038/ncomms11481

    Article  Google Scholar 

  123. Deng W, Zhang Q, Wang Y (2014) Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal Today 234:31–41. https://doi.org/10.1016/j.cattod.2013.12.041

    Article  Google Scholar 

  124. Li L, Chen P, Gloyna EF (1991) Generalized kinetic model for wet oxidation of organic compounds. AIChE J 37:1687–1697. https://doi.org/10.1002/aic.690371112

    Article  Google Scholar 

  125. Calvo L, Vallejo D (2002) Formation of organic acids during the hydrolysis and oxidation of several wastes in sub- and supercritical water. Ind Eng Chem Res 41:6503–6509. https://doi.org/10.1021/ie020441m

    Article  Google Scholar 

  126. Jin F, Zhou Z, Moriya T, Kishida H, Higashijima H, Enomoto H (2005) Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate biomass. Environ Sci Technol 39:1893–1902. https://doi.org/10.1021/es048867a

    Article  Google Scholar 

  127. Jin F, Enomoto H (2011) Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions. Energy Environ Sci 4:382–397. https://doi.org/10.1039/C004268D

    Article  Google Scholar 

  128. Wang Y, Jin F, Sasaki M, Wahyudiono WF, Jing Z, Goto M (2013) Selective conversion of glucose into lactic acid and acetic acid with copper oxide under hydrothermal conditions. AIChE J 59:2096–2104. https://doi.org/10.1002/aic.13960

    Article  Google Scholar 

  129. Gao J, Li Z, Dong M, Fan W, Wang J (2020) Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction. Front Chem Sci Eng 14:847–856. https://doi.org/10.1007/s11705-019-1848-6

    Article  Google Scholar 

  130. Weissermel K, Arpe H-J (2003) Industrial organic chemistry, 4th ed. Wiley. https://doi.org/10.1002/9783527619191

  131. Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105. https://doi.org/10.1016/j.biotechadv.2007.09.002

    Article  Google Scholar 

  132. McAloon A, Taylor F, Yee W, Ibsen K, Wooley R (2000) Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks (No. NREL/TP-580–28893). National Renewable Energy Lab, U. S. https://doi.org/10.2172/766198

  133. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465. https://doi.org/10.1146/annurev.energy.21.1.403

    Article  Google Scholar 

  134. Wang C, Zeraati-Rezaei S, Xiang L, Xu H (2017) Ethanol blends in spark ignition engines: RON, octane-added value, cooling effect, compression ratio, and potential engine efficiency gain. Appl Energy 191:603–619. https://doi.org/10.1016/j.apenergy.2017.01.081

    Article  Google Scholar 

  135. Zhang M, Yu Y (2013) Dehydration of ethanol to ethylene. Ind Eng Chem Res 52:9505–9514. https://doi.org/10.1021/ie401157c

    Article  Google Scholar 

  136. Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874. https://doi.org/10.1016/j.biortech.2009.11.009

    Article  Google Scholar 

  137. Wang C, Zhang J, Qin G, Wang L, Zuidema E, Yang Q, Dang S, Yang C, Xiao J, Meng X, Mesters C, Xiao F-S (2020) Direct conversion of syngas to ethanol within zeolite crystals. Chem 6:646–657. https://doi.org/10.1016/j.chempr.2019.12.007

    Article  Google Scholar 

  138. Liu Q, Wang H, Xin H, Wang C, Yan L, Wang Y, Zhang Q, Zhang X, Xu Y, Huber GW, Ma L (2019) Selective cellulose hydrogenolysis to ethanol using Ni@C combined with phosphoric acid catalysts. Chem Sus Chem 12:3977–3987. https://doi.org/10.1002/cssc.201901110

    Article  Google Scholar 

  139. Song H, Wang P, Li S, Deng W, Li Y, Zhang Q, Wang Y (2019) Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles. Chem Commun 55:4303–4306. https://doi.org/10.1039/C9CC00619B

    Article  Google Scholar 

  140. Yang C, Miao Z, Zhang F, Li L, Liu Y, Wang A, Zhang T (2018) Hydrogenolysis of methyl glycolate to ethanol over a Pt–Cu/SiO2 single-atom alloy catalyst: a further step from cellulose to ethanol. Green Chem 20:2142–2150. https://doi.org/10.1039/C8GC00309B

    Article  Google Scholar 

  141. Chu D, Luo Z, Xin Y, Jiang C, Gao S, Wang Z, Zhao C (2021) One-pot hydrogenolysis of cellulose to bioethanol over Pd-Cu-WOx/SiO2 catalysts. Fuel 292:120311. https://doi.org/10.1016/j.fuel.2021.120311

    Article  Google Scholar 

  142. Gumina B, Espro C, Galvagno S, Pietropaolo R, Mauriello F (2019) Bioethanol production from unpretreated cellulose under neutral selfsustainable hydrolysis/hydrogenolysis conditions promoted by the heterogeneous Pd/Fe3O4 catalyst. ACS Omega 4:352–357. https://doi.org/10.1021/acsomega.8b03088

    Article  Google Scholar 

  143. Li C, Xu G, Wang C, Ma L, Qiao Y, Zhang Y, Fu Y (2019) One-pot chemocatalytic transformation of cellulose to ethanol over Ru-WOx/HZSM-5. Green Chem 21:2234–2239. https://doi.org/10.1039/C9GC00719A

    Article  Google Scholar 

  144. Yue H, Zhao Y, Ma X, Gong J (2012) Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev 41:4218–4244. https://doi.org/10.1039/c2cs15359a

    Article  Google Scholar 

  145. https://www.chemicals.co.uk/blog/what-are-the-uses-of-ethylene-glycol. Accessed 21 Feb 2022

  146. Zheng M, Pang J, Wang A, Zhang T (2014) One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: from fundamental discovery to potential commercialization. Chin J Catal 35:602–613. https://doi.org/10.1016/S1872-2067(14)60013-9

    Article  Google Scholar 

  147. Li Y, Liao Y, Cao X, Wang T, Ma L, Long J, Liu Q, Xua Y (2015) Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose. Biomass Bioenergy 74:148–161. https://doi.org/10.1016/j.biombioe.2014.12.025

    Article  Google Scholar 

  148. Song H, Jin R, Kang M, Chen J (2013) Progress in synthesis of ethylene glycol through C1 chemical industry routes. Chin J Catal 34:1035–1050. https://doi.org/10.1016/S1872-2067(12)60529-4

    Article  Google Scholar 

  149. Wang A, Zhang T (2013) One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc Chem Res 46:1377–1386. https://doi.org/10.1021/ar3002156

    Article  Google Scholar 

  150. Tai Z, Zhang J, Wang A, Pang J, Zheng M, Zhang T (2013) Catalytic conversion of cellulose to ethylene glycol over a low-cost binary catalyst of raney Ni and tungstic acid. Chem Sus Chem 6:652–658. https://doi.org/10.1002/cssc.201200842

    Article  Google Scholar 

  151. Shao L, Zhou J, Zhang M, Zhang Q, Wang N, Zhu F, Wang K, Li N (2022) MOFs-derived hierarchical porous carbon confining the monodisperse Ni and defective WOx for efficient and stable hydrogenolysis of cellulose to ethylene glycol. Res Chem Intermed 48:2489–2507. https://doi.org/10.1007/s11164-022-04718-5

    Article  Google Scholar 

  152. Sreekantan S, Kirali AA, Marimuthu B (2021) Enhanced one-pot selective conversion of cellulose to ethylene glycol over NaZSM-5 supported metal catalysts. New J Chem 45:19244–19254. https://doi.org/10.1039/D1NJ03257G

    Article  Google Scholar 

  153. Kirali AA, Sreekantan S, Marimuthu B (2020) Fabrication of mesoporous carbon supported Ni–Mo catalysts for the enhanced conversion of glucose to ethylene glycol. New J Chem 44:15958–15965. https://doi.org/10.1039/D0NJ03196H

    Article  Google Scholar 

  154. Wang H, Hu X, Liu S, Cai C, Zhu C, Xin H, Xiu Z, Wang C, Liu Q, Zhang Q, Zhang X, Ma L (2020) Selective (ligno) cellulose hydrogenolysis to ethylene glycol and propyl monophenolics over Ni–W@C catalysts. Cellulose 27:7591–7605. https://doi.org/10.1007/s10570-020-03340-1

    Article  Google Scholar 

  155. Chu D, Zhao C (2020) Reduced oxygen-deficient CuWO4 with Ni catalyzed selective hydrogenolysis of cellulose to ethylene glycol. Catal Today 351:125–132. https://doi.org/10.1016/j.cattod.2018.10.006

    Article  Google Scholar 

  156. Xiao Z, Zhang Q, Chen T, Wang X, Fan Y, Ge Q, Zhai R, Sun R, Ji J, Mao J (2018) Heterobimetallic catalysis for lignocellulose to ethylene glycol on nickel-tungsten catalysts: influenced by hydroxy groups. Fuel 230:332–343. https://doi.org/10.1016/j.fuel.2018.04.115

    Article  Google Scholar 

  157. Li M-Q, Ma Y-L, Ma X-X, Sun Y-G, Song Z (2018) Insight into the efficient catalytic conversion of biomass to EG and 1,2-PG over W-Ni bimetallic catalyst. RSC Adv 8:10907–10913. https://doi.org/10.1039/C8RA00584B

    Article  Google Scholar 

  158. Li N, Ji Z, Wei L, Zheng Y, Shen Q, Ma Q, Tan M, Zhan M, Zhou J (2018) Effect of the surface acid sites of tungsten trioxide for highly selective hydrogenation of cellulose to ethylene glycol. Bioresour Technol 264:58–65. https://doi.org/10.1016/j.biortech.2018.05.026

    Article  Google Scholar 

  159. Li N, Zheng Y, Wei L, Teng H, Zhou J (2017) Metal nanoparticles supported on WO3 nanosheets for highly selective hydrogenolysis of cellulose to ethylene glycol. Green Chem 19:682–691. https://doi.org/10.1039/C6GC01327A

    Article  Google Scholar 

  160. Cao Y, Wang J, Kang M, Zhu Y (2014) Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. J Mol Catal A: Chem 381:46–53. https://doi.org/10.1016/j.molcata.2013.10.002

    Article  Google Scholar 

  161. Zheng M-Y, Wang A-Q, Ji N, Pang J-F, Wang X-D, Zhang T (2010) Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. Chem Sus Chem 3:63–66. https://doi.org/10.1002/cssc.200900197

    Article  Google Scholar 

  162. Zhang Y, Wang A, Zhang T (2010) A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem Commun 46:862–864. https://doi.org/10.1039/B919182H

    Article  Google Scholar 

  163. Ji N, Zhang T, Zheng M, Wang A, Wang H, Wang X, Chen JG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem, Int Ed 47:8510–8513. https://doi.org/10.1002/anie.200803233

    Article  Google Scholar 

  164. Cao Y-L, Wang J-W, Kang M-Q, Zhu Y-L (2016) Catalytic conversion of glucose and cellobiose into ethylene glycol over various tungsten-based catalysts. J Fuel Chem Technol 44:845–852. https://doi.org/10.1016/S1872-5813(16)30038-X

    Article  Google Scholar 

  165. Xu G, Wang A, Pang J, Zhao X, Xu J, Lei N, Wang J, Zheng M, Yin J, Zhang T (2017) Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol. Chem Sus Chem 10:1390–1394. https://doi.org/10.1002/cssc.201601714

    Article  Google Scholar 

  166. Yu J, Liang J, Chen X, Wang L, Wei X, Li Y, Qin Y (2021) Synergistic effect of Ni/W/Cu on MgAl2O4 for one-pot hydrogenolysis of cellulose to ethylene glycol at a low H2 pressure. ACS Omega 6:11650–11659. https://doi.org/10.1021/acsomega.1c00979

    Article  Google Scholar 

  167. Yu J, Liang J, Chen X, Wang L, Wei X, Qin Y, Li Y, Ling Y (2021) Reaction network and kinetics for the one-pot hydrogenolysis of cellulose to ethylene glycol over NiOx-WOy-Cu/MgAl2O4. React Kinet, Mech Catal 133:55–71. https://doi.org/10.1007/s11144-021-01975-0

    Article  Google Scholar 

  168. Manaenkov O, Kosivtsov Y, Sapunov V, Kislitsa O, Sulman M, Bykov A, Sidorov A, Matveeva V (2021) Kinetic modeling for the “one-pot” hydrogenolysis of cellulose to glycols over Ru@Fe3O4/polymer catalyst. Reactions 3:1–11. https://doi.org/10.3390/reactions3010001

    Article  Google Scholar 

  169. Wiesfeld JJ, Peršolja P, Rollier FA, Elemans-Mehring AM, Hensen EJM (2019) Cellulose conversion to ethylene glycol by tungsten oxide-based catalysts. Mol Catal 473:110400. https://doi.org/10.1016/j.mcat.2019.110400

    Article  Google Scholar 

  170. Ribeiro LS, Órfão J, de Melo Órfão JJ, Pereira MFR (2018) Hydrolytic hydrogenation of cellulose to ethylene glycol over carbon nanotubes supported Ru–W bimetallic catalysts. Cellulose 25:2259–2272. https://doi.org/10.1007/s10570-018-1721-7

    Article  Google Scholar 

  171. Ribeiro LS, Rey-Raap N, Figueiredo JL, Melo Órfão JJ, Pereira MFR (2019) Glucose-based carbon materials as supports for the efficient catalytic transformation of cellulose directly to ethylene glycol. Cellulose 26:7337–7353. https://doi.org/10.1007/s10570-019-02583-x

    Article  Google Scholar 

  172. Yu S, Cao X, Liu S, Li L, Wu Q (2018) Production of ethylene glycol from direct catalytic conversion of cellulose over a binary catalyst of metal-loaded modified SBA-15 and phosphotungstic acid. RSC Adv 8:24857–24865. https://doi.org/10.1039/C8RA03806F

    Article  Google Scholar 

  173. Xin Q, Jiang L, Yu S, Liu S, Yin D, Li L, Xie C, Wu Q, Yu H, Liu Y, Liu Y (2021) Bimetal oxide catalysts selectively catalyze cellulose to ethylene glycol. J Phys Chem C 125:18170–18179. https://doi.org/10.1021/acs.jpcc.1c04446

    Article  Google Scholar 

  174. Xin Q, Yu S, Jiang L, Yin D, Li L, Xie C, Wu Q, Yu H, Liu Y, Liu Y, Liu S (2021) Bifunctional catalyst with a yolk–shell structure catalyzes glucose to produce ethylene glycol. J Phys Chem C 125:6632–6642. https://doi.org/10.1021/acs.jpcc.0c10914

    Article  Google Scholar 

  175. Gu M, Shen Z, Yang L, Dong W, Kong L, Zhang W, Peng B-Y, Zhang Y (2019) Reaction route selection for cellulose hydrogenolysis into C2/C3 glycols by ZnO-modified Ni-W/β-zeolite catalysts. Sci Rep 9:11938. https://doi.org/10.1038/s41598-019-48103-6

    Article  Google Scholar 

  176. Mankar AR, Modak A, Pant KK (2021) High yield synthesis of hexitols and ethylene glycol through one-pot hydrolytic hydrogenation of cellulose. Fuel Process Technol 218:106847. https://doi.org/10.1016/j.fuproc.2021.106847

    Article  Google Scholar 

  177. Hamdy MS, Eissa MA, Keshk SMAS (2017) New catalyst with multiple active sites for selective hydrogenolysis of cellulose to ethylene glycol. Green Chem 19:5144–5151. https://doi.org/10.1039/C7GC02122D

    Article  Google Scholar 

  178. Liang G, Wang A, Li L, Xu G, Yan N, Zhang T (2017) Production of primary amines by reductive amination of biomass-derived aldehydes/ketones. Angew Chem, Int Ed 56:3050–3054. https://doi.org/10.1002/anie.201610964

    Article  Google Scholar 

  179. Modvig A, Riisager A (2019) Selective formation of formic acid from biomass-derived glycolaldehyde with supported ruthenium hydroxide catalysts. Catal Sci Technol 9:4384–4392. https://doi.org/10.1039/C9CY00271E

    Article  Google Scholar 

  180. Schnaidt J, Heinen M, Jusys Z, Behm RJ (2013) Oxidation of the partly oxidized ethylene glycol oxidation products glycolaldehyde, glyoxal, glycolic acid, glyoxylic acid, and oxalic acid on Pt electrodes: a combined ATR-FTIRS and DEMS spectroelectrochemical study. J Phys Chem C 117:12689–12701. https://doi.org/10.1021/jp402986z

    Article  Google Scholar 

  181. Salusjärvi L, Havukainen S, Koivistoinen O, Toivari M (2019) Biotechnological production of glycolic acid and ethylene glycol: current state and perspectives. Appl Microbiol Biotechnol 103:2525–2535. https://doi.org/10.1007/s00253-019-09640-2

    Article  Google Scholar 

  182. Lachaux C, Frazao CJR, Krauβer F, Morin N, Walther T, François JM (2019) A new synthetic pathway for the bioproduction of glycolic acid from lignocellulosic sugars aimed at maximal carbon conservation. Front Bioeng Biotechnol 7:359. https://doi.org/10.3389/fbioe.2019.00359

    Article  Google Scholar 

  183. Sasaki M, Goto K, Tajima K, Adschiri T, Arai K (2002) Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem 4:285–287. https://doi.org/10.1039/b203968k

    Article  Google Scholar 

  184. Kostetskyy P, Coile MW, Terrian JM, Collins JW, Martin KJ, Brazdil JF, Broadbelt LJ (2020) Selective production of glycolaldehyde via hydrothermal pyrolysis of glucose: experiments and microkinetic modeling. J Anal Appl Pyrolysis 149:104846. https://doi.org/10.1016/j.jaap.2020.104846

    Article  Google Scholar 

  185. Schandel CB, Høj M, Osmundsen CM, Jensen AD, Taarning E (2020) Thermal cracking of sugars for the production of glycolaldehyde and other small oxygenates. Chem Sus Chem 13:688–692. https://doi.org/10.1002/cssc.201902887

    Article  Google Scholar 

  186. Jiang Z, Zhang Z, Song J, Meng Q, Zhou H, He Z, Han B (2016) Metal-oxide-catalyzed efficient conversion of cellulose to oxalic acid in alkaline solution under low oxygen pressure. ACS Sustainable Chem Eng 4:305–311. https://doi.org/10.1021/acssuschemeng.5b01212

    Article  Google Scholar 

  187. Riemenschneider W, Tanifuji M (2000) Oxalic acid. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/14356007.a18_247.pub2

  188. Othmer DF, Gamer CH, Jacobs JJ (1942) Oxalic acid from sawdust - Optimum conditions for manufacture. Ind Eng Chem 34:262–267. https://doi.org/10.1021/ie50387a003

    Article  Google Scholar 

  189. Ventura M, Williamson D, Lobefaro F, Jones MD, Mattia D, Nocito F, Aresta M, Dibenedetto A (2018) Sustainable synthesis of oxalic and succinic acid through aerobic oxidation of C6 polyols under mild conditions. Chem Sus Chem 11:1073–1081. https://doi.org/10.1002/cssc.201702347

    Article  Google Scholar 

  190. Castillo Martinez FA, Balciunas EM, Salgado JM, Domínguez González JM, Converti A, de Souza Oliveira RP (2013) Lactic acid properties, applications and production: a review. Trends Food Sci Technol 30:70–83. https://doi.org/10.1016/j.tifs.2012.11.007

    Article  Google Scholar 

  191. Dusselier M, Van Wouwe P, Dewaele A, Makshina E, Sels BF (2013) Lactic acid as a platform chemical in the biobased economy: the role of chemocatalysis. Energy Environ Sci 6:1415. https://doi.org/10.1039/c3ee00069a

    Article  Google Scholar 

  192. https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras. Accessed 20 Mar 2022

  193. https://www.fortunebusinessinsights.com/lactic-acid-market-102119. Accessed 20 Mar 2022

  194. Singhvi MS, Zinjarde SS, Gokhale DV (2019) Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 127:1612–1626. https://doi.org/10.1111/jam.14290

    Article  Google Scholar 

  195. Yin C, Li X, Dai Y, Chen Z, Yang D, Liu R, Zou W, Tang C, Dong L (2021) The facet-regulated oxidative dehydrogenation of lactic acid to pyruvic acid on α-Fe2O3. Green Chem 23:328–332. https://doi.org/10.1039/D0GC03468A

    Article  Google Scholar 

  196. Liu S, Feng H, Li T, Wang Y, Rong N, Yang W (2020) Highly selective production of propionic acid from lactic acid catalyzed by NaI. Green Chem 22:7468–7475. https://doi.org/10.1039/D0GC02676J

    Article  Google Scholar 

  197. Liu K, Huang X, Pidko EA, Hensen EJM (2018) Hydrogenation of lactic acid to 1,2-propanediol over Ru-based catalysts. ChemCatChem 10:810–817. https://doi.org/10.1002/cctc.201701329

    Article  Google Scholar 

  198. Zhang X, Lin L, Zhang T, Liu H, Zhang X (2016) Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts. Chem Eng J 284:934–941. https://doi.org/10.1016/j.cej.2015.09.039

    Article  Google Scholar 

  199. Abedi E, Hashemi SMB (2020) Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon 6:e04974. https://doi.org/10.1016/j.heliyon.2020.e04974

    Article  Google Scholar 

  200. Starr JN, Westhoff G (2014) Lactic acid. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. https://doi.org/10.1002/14356007.a15_097.pub3

  201. Onda A, Ochi T, Kajiyoshi K, Yanagisawa K (2008) Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water. Catal Commun 9:1050–1053. https://doi.org/10.1016/j.catcom.2007.10.005

    Article  Google Scholar 

  202. Xu S, He T, Li J, Huang Z, Hu C (2021) Enantioselective synthesis of D-lactic acid via chemocatalysis using MgO: experimental and molecular-based rationalization of the triose’s reactivity and preliminary insights with raw biomass. Appl Catal, B 292:120145. https://doi.org/10.1016/j.apcatb.2021.120145

    Article  Google Scholar 

  203. Zhang W, Xu S, Xiao Y, Qin D, Li J, Hu C (2021) The insights into the catalytic performance of rare earth metal ions on lactic acid formation from biomass via microwave heating. Chem Eng J 421:130014. https://doi.org/10.1016/j.cej.2021.130014

    Article  Google Scholar 

  204. Kim KH, Kim CS, Wang Y, Yoo CG (2020) Integrated process for the production of lactic acid from lignocellulosic biomass: from biomass fractionation and characterization to chemocatalytic conversion with lanthanum(III) triflate. Ind Eng Chem Res 59:10832–10839. https://doi.org/10.1021/acs.iecr.0c01666

    Article  Google Scholar 

  205. Deng W, Wang P, Wang B, Wang Y, Yan L, Li Y, Zhang Q, Cao Z, Wang Y (2018) Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)–Sn(II) catalysts. Green Chem 20:735–744. https://doi.org/10.1039/C7GC02975F

    Article  Google Scholar 

  206. Li L, Shen F, Smith RL, Qi X (2017) Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature. Green Chem 19:76–81. https://doi.org/10.1039/C6GC02443B

    Article  Google Scholar 

  207. Lei X, Wang F-F, Liu C-L, Yang R-Z, Dong W-S (2014) One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst. Appl Catal, A 482:78–83. https://doi.org/10.1016/j.apcata.2014.05.029

    Article  Google Scholar 

  208. Wang X, Song Y, Huang C, Liang F, Chen B (2014) Lactic acid production from glucose over polymer catalysts in aqueous alkaline solution under mild conditions. Green Chem 16:4234–4240. https://doi.org/10.1039/C4GC00811A

    Article  Google Scholar 

  209. Wang F-F, Liu C-L, Dong W-S (2013) Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem 15:2091–2095. https://doi.org/10.1039/c3gc40836a

    Article  Google Scholar 

  210. Wang Y, Deng W, Wang B, Zhang Q, Wan X, Tang Z, Wang Y, Zhu C, Cao Z, Wang G, Wan H (2013) Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water. Nat Commun 4:2141. https://doi.org/10.1038/ncomms3141

    Article  Google Scholar 

  211. Xiao Y, Liao S, Xu S, Li J, Lu Z, Hu C (2022) Selective transformation of typical sugars to lactic acid catalyzed by dealuminated ZSM-5 supported erbium. Renewable Energy 187:551–560. https://doi.org/10.1016/j.renene.2022.01.100

    Article  Google Scholar 

  212. Liu W, Zhou Z, Guo Z, Wei Z, Zhang Y, Zhao X, Miao G, Zhu L, Luo H, Sun M, Wang Y, Li S, Kong L (2022) Microwave-induced controlled-isomerization during glucose conversion into lactic acid over a Sn-beta catalyst. Sustainable Energy Fuels 6:1264–1268. https://doi.org/10.1039/D1SE01971F

    Article  Google Scholar 

  213. Ye X, Shi X, Zhong H, Wang T, Duo J, Jin B, Jin F (2022) Photothermal strategy for the highly efficient conversion of glucose into lactic acid at low temperatures over a hybrid multifunctional multi-walled carbon nanotube/layered double hydroxide catalyst. Green Chem 24:813–822. https://doi.org/10.1039/D1GC03761G

    Article  Google Scholar 

  214. Zhao X, Zhou Z, Luo H, Zhang Y, Liu W, Miao G, Zhu L, Kong L, Li S, Sun Y (2021) γ-Valerolactone-introduced controlled-isomerization of glucose for lactic acid production over an Sn-Beta catalyst. Green Chem 23:2634–2639. https://doi.org/10.1039/D1GC00378J

    Article  Google Scholar 

  215. Ma J, Jin D, Li Y, Xiao D, Jiao G, Liu Q, Guo Y, Xiao L, Chen X, Li X, Zhou J, Sun R (2021) Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Appl Catal, B 283:119520. https://doi.org/10.1016/j.apcatb.2020.119520

    Article  Google Scholar 

  216. Ma J, Li Y, Jin D, Ali Z, Jiao G, Zhang J, Wang S, Sun R (2020) Functional B@mCN-assisted photocatalytic oxidation of biomass-derived pentoses and hexoses to lactic acid. Green Chem 22:6384–6392. https://doi.org/10.1039/D0GC01896A

    Article  Google Scholar 

  217. Wang F-F, Liu J, Li H, Liu C-L, Yang R-Z, Dong W-S (2015) Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10. Green Chem 17:2455–2463. https://doi.org/10.1039/C4GC02131B

    Article  Google Scholar 

  218. Li S, Deng W, Li Y, Zhang Q, Wang Y (2019) Catalytic conversion of cellulose-based biomass and glycerol to lactic acid. J Energy Chem 32:138–151. https://doi.org/10.1016/j.jechem.2018.07.012

    Article  Google Scholar 

  219. Liu X, Zhang Q, Wang R, Li H (2020) Sustainable conversion of biomass-derived carbohydrates into lactic acid using heterogeneous catalysts. Curr Green Chem 7:282–289. https://doi.org/10.2174/2213346106666191127123730

    Article  Google Scholar 

  220. Dusselier M, Sels BF (2014) Selective catalysis for cellulose conversion to lactic acid and other α-hydroxy acids. In: Nicholas KM (ed) Selective Catalysis for Renewable Feedstocks and Chemicals. Springer International Publishing, Cham, pp 85–125. https://doi.org/10.1007/128_2014_540

  221. Mäki-Arvela P, Simakova IL, Salmi T, Murzin DYu (2014) Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem Rev 114:1909–1971. https://doi.org/10.1021/cr400203v

    Article  Google Scholar 

  222. Ye J, Chen C, Zheng Y, Zhou D, Liu Y, Chen D, Ni L, Xu G, Wang F (2021) Efficient conversion of cellulose to lactic acid over yttrium modified siliceous beta zeolites. Appl Catal, A 619:118133. https://doi.org/10.1016/j.apcata.2021.118133

    Article  Google Scholar 

  223. Xu S, Wu Y, Li J, He T, Xiao Y, Zhou C, Hu C (2020) Directing the simultaneous conversion of hemicellulose and cellulose in raw biomass to lactic acid. ACS Sustainable Chem Eng 8:4244–4255. https://doi.org/10.1021/acssuschemeng.9b07552

    Article  Google Scholar 

  224. Xu S, Li J, Li J, Wu Y, Xiao Y, Hu C (2019) D-Excess-LaA production directly from biomass by trivalent yttrium species. iScience 12:132–140. https://doi.org/10.1016/j.isci.2019.01.008

    Article  Google Scholar 

  225. Zhao H, Li C-F, Yong X, Kumar P, Palma B, Hu Z-Y, Van Tendeloo G, Siahrostami S, Larter S, Zheng D, Wang S, Chen Z, Kibria MG, Hu J (2021) Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. iScience 24:102109. https://doi.org/10.1016/j.isci.2021.102109

  226. Sánchez C, Serrano L, Llano-Ponte R, Labidi J (2014) Bread residues conversion into lactic acid by alkaline hydrothermal treatments. Chem Eng J 250:326–330. https://doi.org/10.1016/j.cej.2014.04.023

    Article  Google Scholar 

  227. He T, Jiang Z, Wu P, Yi J, Li J, Hu C (2016) Fractionation for further conversion: from raw corn stover to lactic acid. Sci Rep 6:38623. https://doi.org/10.1038/srep38623

    Article  Google Scholar 

  228. Zan Y, Sun Y, Kong L, Miao G, Bao L, Wang H, Li S, Sun Y (2018) Formic acid-induced controlled-release hydrolysis of microalgae (Scenedesmus) to lactic acid over Sn-Beta catalyst. Chem Sus Chem 11:2492–2496. https://doi.org/10.1002/cssc.201801087

    Article  Google Scholar 

  229. Ramírez-López CA, Ochoa-Gómez JR, Fernández-Santos M, Gómez-Jiménez-Aberasturi O, Alonso-Vicario A, Torrecilla-Soria J (2010) Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. Ind Eng Chem Res 49:6270–6278. https://doi.org/10.1021/ie1001586

    Article  Google Scholar 

  230. Sharninghausen LS, Campos J, Manas MG, Crabtree RH (2014) Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nat Commun 5:5084. https://doi.org/10.1038/ncomms6084

    Article  Google Scholar 

  231. Ranaei V, Pilevar Z, Mousavi Khaneghah A, Hosseini H (2020) Propionic acid: method of production, current state and perspectives. Food Technol Biotechnol 58:115–127. https://doi.org/10.17113/ftb.58.02.20.6356

    Article  Google Scholar 

  232. Cavinato G, Toniolo L (2014) Carbonylation of ethene catalysed by Pd(II)-phosphine complexes. Molecules 19:15116–15161. https://doi.org/10.3390/molecules190915116

    Article  Google Scholar 

  233. Ahmadi N, Khosravi-Darani K, Mortazavian AM (2017) An overview of biotechnological production of propionic acid: from upstream to downstream processes. Electron J Biotechnol 28:67–75. https://doi.org/10.1016/j.ejbt.2017.04.004

    Article  Google Scholar 

  234. Huo Z, Xiao J, Ren D, Jin F, Wang T, Yao G (2017) Chemoselective synthesis of propionic acid from biomass and lactic acid over a cobalt catalyst in aqueous media. Green Chem 19:1308–1314. https://doi.org/10.1039/C6GC03036J

    Article  Google Scholar 

  235. Serrano-Ruiz JC, Dumesic JA (2009) Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C-C coupling reactions. Green Chem 11:1101–1104. https://doi.org/10.1039/b906869d

    Article  Google Scholar 

  236. Odell B, Earlam G, Cole-Hamilton DJ (1985) Hydrothermal reactions of lactic acid catalysed by group: VIII Metal complexes. J Organomet Chem 290:241–248. https://doi.org/10.1016/0022-328X(85)87436-2

    Article  Google Scholar 

  237. Korstanje TJ, Kleijn H, Jastrzebski JTBH, Gebbink RJK (2013) Biopropionic acid production via molybdenum-catalyzed deoxygenation of lactic acid. Green Chem 15:982–988. https://doi.org/10.1039/c3gc36874b

    Article  Google Scholar 

  238. Li X, Zhai Z, Tang C, Sun L, Zhang Y, Bai W (2016) Production of propionic acid via hydrodeoxygenation of lactic acid over FexOy catalysts. RSC Adv 6:62252–62262. https://doi.org/10.1039/C6RA10096A

    Article  Google Scholar 

  239. Li X, Pang J, Zhang J, Yin C, Zou W, Tang C, Dong L (2019) Vapor-phase deoxygenation of lactic acid to biopropionic acid over dispersant-enhanced molybdenum oxide catalyst. Ind Eng Chem Res 58:101–109. https://doi.org/10.1021/acs.iecr.8b04713

    Article  Google Scholar 

  240. Zhang D, Hillmyer MA, Tolman WB (2004) A new synthetic route to poly[3-hydroxypropionic acid] (P[3-HP]): ring-opening polymerization of 3-HP macrocyclic esters. Macromolecules 37:8198–8200. https://doi.org/10.1021/ma048092q

    Article  Google Scholar 

  241. Andreeßen B, Taylor N, Steinbüchel A (2014) Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Appl Environ Microbiol 80:6574–6582. https://doi.org/10.1128/AEM.02361-14

    Article  Google Scholar 

  242. Bhagwat SS, Li Y, Cortés-Peña YR, Brace EC, Martin TA, Zhao H, Guest JS (2021) Sustainable production of acrylic acid via 3-hydroxypropionic acid from lignocellulosic biomass. ACS Sustainable Chem Eng 9:16659–16669. https://doi.org/10.1021/acssuschemeng.1c05441

    Article  Google Scholar 

  243. Kildegaard KR, Wang Z, Chen Y, Nielsen J, Borodina I (2015) Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab Eng Commun 2:132–136. https://doi.org/10.1016/j.meteno.2015.10.001

    Article  Google Scholar 

  244. Della Pina C, Falletta E, Rossi M (2011) A green approach to chemical building blocks. The case of 3-hydroxypropanoic acid. Green Chem 13:1624–1632. https://doi.org/10.1039/c1gc15052a

    Article  Google Scholar 

  245. Li C, Zhu Q, Cui Z, Wang B, Fang Y, Tan T (2018) Highly efficient and selective production of acrylic acid from 3-hydroxypropionic acid over acidic heterogeneous catalysts. Chem Eng Sci 183:288–294. https://doi.org/10.1016/j.ces.2018.03.030

    Article  Google Scholar 

  246. Dishisha T, Pyo S-H, Hatti-Kaul R (2015) Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb Cell Fact 14:200. https://doi.org/10.1186/s12934-015-0388-0

    Article  Google Scholar 

  247. Blanco E, Loridant S, Pinel C (2016) Valorization of lactic acid and derivatives to acrylic acid derivatives: review of mechanistic studies. In: Schlaf M, Zhang ZC (eds) Reaction Pathways and Mechanisms in Thermocatalytic Biomass Conversion II. Springer Singapore, Singapore, pp 39–62. https://doi.org/10.1007/978-981-287-769-7_3

  248. Wu L, Dutta S, Mascal M (2015) Efficient, chemical-catalytic approach to the production of 3-hydroxypropanoic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. Chem Sus Chem 8:1167–1169. https://doi.org/10.1002/cssc.201500025

    Article  Google Scholar 

  249. Monteiro MR, Kugelmeier CL, Pinheiro RS, Batalha MO, da Silva CA (2018) Glycerol from biodiesel production: technological paths for sustainability. Renewable Sustainable Energy Rev 88:109–122. https://doi.org/10.1016/j.rser.2018.02.019

    Article  Google Scholar 

  250. Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol- a byproduct of biodiesel production. Biotechnol Biofuels 5:13. https://doi.org/10.1186/1754-6834-5-13

    Article  Google Scholar 

  251. Vivek N, Pandey A, Binod P (2017) Production and applications of 1,3-propanediol. In: Current Developments in Biotechnology and Bioengineering. Elsevier, pp 719–738

  252. Kraus GA (2008) Synthetic methods for the preparation of 1,3-propanediol. Clean: Soil. Air, Water 36:648–651. https://doi.org/10.1002/clen.200800084

    Article  Google Scholar 

  253. Samudrala SP (2019) Glycerol transformation to value-added 1,3-propanediol production: a paradigm for a sustainable biorefinery process. In: Frediani M, Bartoli M, Rosi L (eds) Glycerine Production and Transformation-An Innovative Platform for Sustainable Biorefinery and Energy. IntechOpen. https://doi.org/10.5772/intechopen.83694

  254. Hartlep M, Hussmann W, Prayitno N, Meynial-Salles I, Zeng A-P (2002) Study of two-stage processes for the microbial production of 1,3-propanediol from glucose. Appl Microbiol Biotechnol 60:60–66. https://doi.org/10.1007/s00253-002-1111-8

    Article  Google Scholar 

  255. Sun Y-Q, Shen J-T, Yan L, Zhou J-J, Jiang L-L, Chen Y, Yuan J-L, Feng E, Xiu Z-L (2018) Advances in bioconversion of glycerol to 1,3-propanediol: prospects and challenges. Process Biochem 71:134–146. https://doi.org/10.1016/j.procbio.2018.05.009

    Article  Google Scholar 

  256. Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre P-L, Reynes O, Latapie L (2015) A review: conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renewable Sustainable Energy Rev 42:963–972. https://doi.org/10.1016/j.rser.2014.10.033

    Article  Google Scholar 

  257. da Silva Ruy AD, de Brito Alves RM, Reis Hewer TL, de Aguiar PD, Gomes Teixeira LS, Magalhães Pontes LA (2021) Catalysts for glycerol hydrogenolysis to 1,3-propanediol: a review of chemical routes and market. Catal Today 381:243–253. https://doi.org/10.1016/j.cattod.2020.06.035

    Article  Google Scholar 

  258. Tan Z, Shi L, Zan Y, Miao G, Li S, Kong L, Li S, Sun Y (2018) Crucial role of support in glucose selective conversion into 1,2-propanediol and ethylene glycol over Ni-based catalysts: a combined experimental and computational study. Appl Catal, A 560:28–36. https://doi.org/10.1016/j.apcata.2018.04.026

    Article  Google Scholar 

  259. Nanda MR, Yuan Z, Qin W, Xu C (2016) Recent advancements in catalytic conversion of glycerol into propylene glycol: a review. Catal Rev 58:309–336. https://doi.org/10.1080/01614940.2016.1166005

    Article  Google Scholar 

  260. Liu C, Zhang C, Hao S, Sun S, Liu K, Xu J, Zhu Y, Li Y (2016) WOx modified Cu/Al2O3 as a high-performance catalyst for the hydrogenolysis of glucose to 1,2-propanediol. Catal Today 261:116–127. https://doi.org/10.1016/j.cattod.2015.06.030

    Article  Google Scholar 

  261. Pang J, Zheng M, Li X, Jiang Y, Zhao Y, Wang A, Wang J, Wang X, Zhang T (2018) Selective conversion of concentrated glucose to 1,2-propylene glycol and ethylene glycol by using RuSn/AC catalysts. Appl Catal, B 239:300–308. https://doi.org/10.1016/j.apcatb.2018.08.022

    Article  Google Scholar 

  262. Lv M, Zhang Y, Xin Q, Yin D, Yu S, Liu S, Li L, Xie C, Wu Q, Yu H, Liu Y (2020) Pd@Al-containing mesoporous silica yolk–shell-structured nanospheres as high performance nanoreactors for the selective hydrogenolysis of glucose to 1,2-propylene glycol. Chem Eng J 396:125274. https://doi.org/10.1016/j.cej.2020.125274

    Article  Google Scholar 

  263. Kirali AAB, Sreekantan S, Marimuthu B (2022) Ce promoted Cu/γ-Al2O3 catalysts for the enhanced selectivity of 1,2-propanediol from catalytic hydrogenolysis of glucose. Catal Commun 165:106447. https://doi.org/10.1016/j.catcom.2022.106447

    Article  Google Scholar 

  264. Liu C, Shang Y, Wang S, Liu X, Wang X, Gui J, Zhang C, Zhu Y, Li Y (2020) Boron oxide modified bifunctional Cu/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol. Mol Catal 485:110514. https://doi.org/10.1016/j.mcat.2019.110514

    Article  Google Scholar 

  265. Liu C, Zhang C, Sun S, Liu K, Hao S, Xu J, Zhu Y, Li Y (2015) Effect of WOx on bifunctional Pd–WOx/Al2O3 catalysts for the selective hydrogenolysis of glucose to 1,2-propanediol. ACS Catal 5:4612–4623. https://doi.org/10.1021/acscatal.5b00800

    Article  Google Scholar 

  266. Lv M, Xin Q, Yin D, Jia Z, Yu C, Wang T, Yu S, Liu S, Li L, Liu Y (2020) Magnetically recoverable bifunctional catalysts for the conversion of cellulose to 1,2-propylene glycol. ACS Sustainable Chem Eng 8:3617–3625. https://doi.org/10.1021/acssuschemeng.9b06264

    Article  Google Scholar 

  267. Liu Y, Luo C, Liu H (2012) Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem, Int Ed 51:3249–3253. https://doi.org/10.1002/anie.201200351

    Article  Google Scholar 

  268. Moreno BM, Li N, Lee J, Huber GW, Klein MT (2013) Modeling aqueous-phase hydrodeoxygenation of sorbitol over Pt/SiO2–Al2O3. RSC Adv 3:23769–23784. https://doi.org/10.1039/c3ra45179h

    Article  Google Scholar 

  269. Chambon F, Rataboul F, Pinel C, Cabiac A, Guillon E, Essayem N (2013) Cellulose conversion with tungstated-alumina-based catalysts: influence of the presence of platinum and mechanistic studies. Chem Sus Chem 6:500–507. https://doi.org/10.1002/cssc.201200880

    Article  Google Scholar 

  270. Yan L, Qi X (2014) Degradation of cellulose to organic acids in its homogeneous alkaline aqueous solution. ACS Sustainable Chem Eng 2:897–901. https://doi.org/10.1021/sc400507s

    Article  Google Scholar 

  271. Caselli G, Mantovanini M, Gandolfi CA, Allegretti M, Fiorentino S, Pellegrini L, Melillo G, Bertini R, Sabbatini W, Anacardio R, Clavenna G, Sciortino G, Teti A (1997) Tartronates: a new generation of drugs affecting bone metabolism. J Bone Miner Res 12:972–981. https://doi.org/10.1359/jbmr.1997.12.6.972

    Article  Google Scholar 

  272. Tian X, Wang Z, Yang P, Hao R, Jia S, Li N, Li L, Zhu Z (2016) Green oxidation of bio-lactic acid with H2O2 into tartronic acid under UV irradiation. RSC Adv 6:41007–41010. https://doi.org/10.1039/C6RA05028J

    Article  Google Scholar 

  273. Jin X, Zhao M, Zeng C, Yan W, Song Z, Thapa PS, Subramaniam B, Chaudhari RV (2016) Oxidation of glycerol to dicarboxylic acids using cobalt catalysts. ACS Catal 6:4576–4583. https://doi.org/10.1021/acscatal.6b00961

    Article  Google Scholar 

  274. Rakopoulos DC, Rakopoulos CD, Giakoumis EG, Dimaratos AM, Kyritsis DC (2010) Effects of butanol–diesel fuel blends on the performance and emissions of a high-speed DI diesel engine. Energy Convers Manage 51:1989–1997. https://doi.org/10.1016/j.enconman.2010.02.032

    Article  Google Scholar 

  275. Wang Y, Janssen H, Blaschek HP (2014) Fermentative biobutanol production: an old topic with remarkable recent advances. In: Bisaria VS, Kondo A (eds) Bioprocessing of Renewable Resources to Commodity Bioproducts. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp 227–260. https://doi.org/10.1002/9781118845394.ch9

  276. Donaldson GK, Huang LL, Maggio-Hall LA, Nagarajan V, Nakamura CE, Suh W (2016) Fermentive production of four carbon alcohols. US7851188B2

  277. Jin C, Yao M, Liu H, Lee CF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15:4080–4106. https://doi.org/10.1016/j.rser.2011.06.001

    Article  Google Scholar 

  278. Ndaba B, Chiyanzu I, Marx S (2015) n-Butanol derived from biochemical and chemical routes: a review. Biotechnol Rep 8:1–9. https://doi.org/10.1016/j.btre.2015.08.001

    Article  Google Scholar 

  279. Riittonen T, Toukoniitty E, Madnani DK, Leino A-R, Kordas K, Szabo M, Sapi A, Arve K, Wärnå J, Mikkola J-P (2012) One-pot liquid-phase catalytic conversion of ethanol to 1-butanol over aluminium oxide-the effect of the active metal on the selectivity. Catalysts 2:68–84. https://doi.org/10.3390/catal2010068

    Article  Google Scholar 

  280. Carmona-Garcia E, Marín-Valencia PA, Solarte-Toro JC, Moustakas K, Cardona-Alzate CA (2021) Comparison of acetone–butanol–ethanol fermentation and ethanol catalytic upgrading as pathways for butanol production: a techno-economic and environmental assessment. Biofuel Res J 8:1384–1399. https://doi.org/10.18331/BRJ2021.8.2.4

    Article  Google Scholar 

  281. Cho S-H, Kim J, Han J, Lee D, Kim HJ, Kim YT, Cheng X, Xu Y, Lee J, Kwon EE (2019) Bioalcohol production from acidogenic products via a two-step process: a case study of butyric acid to butanol. Appl Energy 252:113482. https://doi.org/10.1016/j.apenergy.2019.113482

    Article  Google Scholar 

  282. Lee J-M, Upare PP, Chang J-S, Hwang YK, Lee JH, Hwang DW, Hong D-Y, Lee SH, Jeong M-G, Kim YD, Kwon Y-U (2014) Direct hydrogenation of biomass-derived butyric acid to n-butanol over a ruthenium-tin bimetallic catalyst. Chem Sus Chem 7:2998–3001. https://doi.org/10.1002/cssc.201402311

    Article  Google Scholar 

  283. Saxena RK, Saran S, Isar J, Kaushik R (2017) Production and applications of succinic acid. In: Pandey A, Negi S, Soccol CR (eds) Current Developments in Biotechnology and Bioengineering. Elsevier, pp 601–630. https://doi.org/10.1016/B978-0-444-63662-1.00027-0

  284. Lu J, Li J, Gao H, Zhou D, Xu H, Cong Y, Zhang W, Xin F, Jiang M (2021) Recent progress on bio-succinic acid production from lignocellulosic biomass. World J Microbiol Biotechnol 37:16. https://doi.org/10.1007/s11274-020-02979-z

    Article  Google Scholar 

  285. Verma M, Mandyal P, Singh D, Gupta N (2020) Recent developments in heterogeneous catalytic routes for the sustainable production of succinic acid from biomass resources. Chem Sus Chem 13:4026–4034. https://doi.org/10.1002/cssc.202000690

    Article  Google Scholar 

  286. Podolean I, Rizescu C, Bala C, Rotariu L, Parvulescu VI, Coman SM, Garcia H (2016) Unprecedented catalytic wet oxidation of glucose to succinic acid induced by the addition of n-butylamine to a RuIII catalyst. Chem Sus Chem 9:2307–2311. https://doi.org/10.1002/cssc.201600474

    Article  Google Scholar 

  287. Podolean I, Cojocaru B, Garcia H, Teodorescu C, Parvulescu VI, Coman SM (2018) From glucose direct to succinic acid: an optimized recyclable bi-functional Ru@MNP-MWCNT catalyst. Top Catal 61:1866–1876. https://doi.org/10.1007/s11244-018-1012-4

    Article  Google Scholar 

  288. Podolean I, Anita F, García H, Parvulescu VI, Coman SM (2017) Efficient magnetic recoverable acid-functionalized-carbon catalysts for starch valorization to multiple bio-chemicals. Catal Today 279:45–55. https://doi.org/10.1016/j.cattod.2016.07.007

    Article  Google Scholar 

  289. Rizescu C, Podolean I, Albero J, Parvulescu VI, Coman SM, Bucur C, Puche M, Garcia H (2017) N-Doped graphene as a metal-free catalyst for glucose oxidation to succinic acid. Green Chem 19:1999–2005. https://doi.org/10.1039/C7GC00473G

    Article  Google Scholar 

  290. Rizescu C, Podolean I, Cojocaru B, Parvulescu VI, Coman SM, Albero J, Garcia H (2017) RuCl3 supported on N-doped graphene as a reusable catalyst for the one-step glucose oxidation to succinic acid. ChemCatChem 9:3314–3321. https://doi.org/10.1002/cctc.201700383

    Article  Google Scholar 

  291. El Fergani M, Candu N, Coman S, Parvulescu VI (2017) Nb-based zeolites: efficient bi-functional catalysts for the one-pot synthesis of succinic acid from glucose. Molecules 22:2218. https://doi.org/10.3390/molecules22122218

    Article  Google Scholar 

  292. Celińska E, Grajek W (2009) Biotechnological production of 2,3-butanediol-Current state and prospects. Biotechnol Adv 27:715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  Google Scholar 

  293. Harvey BG, Merriman WW, Quintana RL (2016) Renewable gasoline, solvents, and fuel additives from 2,3-butanediol. Chem Sus Chem 9:1814–1819. https://doi.org/10.1002/cssc.201600225

    Article  Google Scholar 

  294. Li Z, Teng H, Xiu Z (2010) Aqueous two-phase extraction of 2,3-butanediol from fermentation broths using an ethanol/ammonium sulfate system. Process Biochem 45:731–737. https://doi.org/10.1016/j.procbio.2010.01.011

    Article  Google Scholar 

  295. Kim J-H, Kim MS, Kim HJ, Kim J-R, Ahn C-H (2022) Novel potentially biobased copolyesters comprising 1,3-butanediol, 1,4-cyclohexanedimethanol and dimethyl terephthalate; Effect of different catalysts on polymerization behavior. Macromol Res 30:51–60. https://doi.org/10.1007/s13233-022-0008-x

    Article  Google Scholar 

  296. Wang R, Li X, Na J, Wu Y, Zhao R, Yan Y, Li H, Gao X (2020) Reversible reaction-assisted intensification process for separating ethanediol and 1,2-butanediol: competitive kinetics study and conceptual design. Sep Purif Technol 237:116323. https://doi.org/10.1016/j.seppur.2019.116323

    Article  Google Scholar 

  297. Ji J, Xu Y, Liu Y, Zhang Y (2020) A nanosheet Ru/WO3 catalyst for efficient conversion of glucose to butanediol. Catal Commun 144:106074. https://doi.org/10.1016/j.catcom.2020.106074

    Article  Google Scholar 

  298. Chen B, Munson EJ (2002) Investigation of the mechanism of n-butane oxidation on vanadium phosphorus oxide catalysts: evidence from isotopic labeling studies. J Am Chem Soc 124:1638–1652. https://doi.org/10.1021/ja010285v

    Article  Google Scholar 

  299. Wojcieszak R, Santarelli F, Paul S, Dumeignil F, Cavani F, Gonçalves RV (2015) Recent developments in maleic acid synthesis from bio-based chemicals. Sustainable Chem Processes 3:9. https://doi.org/10.1186/s40508-015-0034-5

    Article  Google Scholar 

  300. Lan J, Lin J, Chen Z, Yin G (2015) Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts. ACS Catal 5:2035–2041. https://doi.org/10.1021/cs501776n

    Article  Google Scholar 

  301. Rodenas Y, Mariscal R, Fierro JLG, Martín Alonso D, Dumesic JA, López Granados M (2018) Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of γ-valerolactone. Green Chem 20:2845–2856. https://doi.org/10.1039/C8GC00857D

    Article  Google Scholar 

  302. Chen W, Chen X, Yi S (2019) Kinetic study on the preparation of fumaric acid from maleic acid by batch noncatalytic isomerization. ACS Omega 4:8274–8281. https://doi.org/10.1021/acsomega.9b00316

    Article  Google Scholar 

  303. Church JM, Blumberg R (1951) Synthesis of tartaric acid. Ind Eng Chem 43:1780–1786. https://doi.org/10.1021/ie50500a030

    Article  Google Scholar 

  304. Xuan J, Feng Y (2019) Enantiomeric tartaric acid production using cis-epoxysuccinate hydrolase: history and perspectives. Molecules 24:903. https://doi.org/10.3390/molecules24050903

    Article  Google Scholar 

  305. Liu M, Jin X, Zhang G, Xia Q, Lai L, Wang J, Zhang W, Sun Y, Ding J, Yan H, Yang C (2020) Bimetallic AuPt/TiO2 catalysts for direct oxidation of glucose and gluconic acid to tartaric acid in the presence of molecular O2. ACS Catal 10:10932–10945. https://doi.org/10.1021/acscatal.0c02238

    Article  Google Scholar 

  306. Fu J, Vasiliadou ES, Goulas KA, Saha B, Vlachos DG (2017) Selective hydrodeoxygenation of tartaric acid to succinic acid. Catal Sci Technol 7:4944–4954. https://doi.org/10.1039/C7CY01374D

    Article  Google Scholar 

  307. Peterson ME (2013) Xylitol. Top Companion Anim Med 28:18–20. https://doi.org/10.1053/j.tcam.2013.03.008

    Article  Google Scholar 

  308. Arcaño YD, García ODV, Mandelli D, Carvalho WA, Magalhães Pontes LA (2020) Xylitol: a review on the progress and challenges of its production by chemical route. Catal Today 344:2–14. https://doi.org/10.1016/j.cattod.2018.07.060

    Article  Google Scholar 

  309. Felipe Hernández-Pérez A, de Arruda PV, Sene L, da Silva SS, Kumar Chandel A, de Almeida Felipe MDG (2019) Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 39:924–943. https://doi.org/10.1080/07388551.2019.1640658

    Article  Google Scholar 

  310. Kusema BT, Faba L, Kumar N, Mäki-Arvela P, Díaz E, Ordóñez S, Salmi T, Murzin DYu (2012) Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catal Today 196:26–33. https://doi.org/10.1016/j.cattod.2012.02.031

    Article  Google Scholar 

  311. Murzin DYu, Kusema B, Murzina EV, Aho A, Tokarev A, Boymirzaev AS, Wärnå J, Dapsens PY, Mondelli C, Pérez-Ramírez J, Salmi T (2015) Hemicellulose arabinogalactan hydrolytic hydrogenation over Ru-modified H-USY zeolites. J Catal 330:93–105. https://doi.org/10.1016/j.jcat.2015.06.022

    Article  Google Scholar 

  312. Andrews MA, Klaeren SA (1988) Decarbonylation of sugars by chlorotris(triphenylphosphine)rhodium. J Chem Soc, Chem Commun 1266. https://doi.org/10.1039/c39880001266311

  313. Payormhorm J, Chuangchote S, Laosiripojana N (2017) CTAB-assisted sol-microwave method for fast synthesis of mesoporous TiO2 photocatalysts for photocatalytic conversion of glucose to value-added sugars. Mater Res Bull 95:546–555. https://doi.org/10.1016/j.materresbull.2017.08.016

    Article  Google Scholar 

  314. Tronci S, Pittau B (2015) Conversion of glucose and sorbitol in the presence of Ru/C and Pt/C catalysts. RSC Adv 5:23086–23093. https://doi.org/10.1039/C4RA14073G

    Article  Google Scholar 

  315. Colmenares JC, Magdziarz A, Bielejewska A (2011) High-value chemicals obtained from selective photo-oxidation of glucose in the presence of nanostructured titanium photocatalysts. Bioresour Technol 102:11254–11257. https://doi.org/10.1016/j.biortech.2011.09.101

    Article  Google Scholar 

  316. Payormhorm J, Chuangchote S, Kiatkittipong K, Chiarakorn S, Laosiripojana N (2017) Xylitol and gluconic acid productions via photocatalytic-glucose conversion using TiO2 fabricated by surfactant-assisted techniques: effects of structural and textural properties. Mater Chem Phys 196:29–36. https://doi.org/10.1016/j.matchemphys.2017.03.058

    Article  Google Scholar 

  317. Roongraung K, Chuangchote S, Laosiripojana N, Sagawa T (2020) Electrospun Ag-TiO2 nanofibers for photocatalytic glucose conversion to high-value chemicals. ACS Omega 5:5862–5872. https://doi.org/10.1021/acsomega.9b04076

    Article  Google Scholar 

  318. Mäkinen KK (2010) Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review. Int J Dent 2010:981072. https://doi.org/10.1155/2010/981072

    Article  Google Scholar 

  319. Kumdam H, Murthy SN, Gummadi SN (2013) Production of ethanol and arabitol by Debaryomyces nepalensis: influence of process parameters. AMB Expr 3:23. https://doi.org/10.1186/2191-0855-3-23

    Article  Google Scholar 

  320. Andrews MA, Gould GL, Klaeren SA (1989) Decarbonylation of unprotected aldose sugars by chlorotris(triphenylphosphine)rhodium(I). A new descent of series approach to alditols, deoxyalditols, and glycosylalditols. J Org Chem 54:5257–5264. https://doi.org/10.1021/jo00283a017

    Article  Google Scholar 

  321. Monrad RN, Madsen R (2007) Rhodium-catalyzed decarbonylation of aldoses. J Org Chem 72:9782–9785. https://doi.org/10.1021/jo7017729

    Article  Google Scholar 

  322. Blanc B, Bourrel A, Gallezot P, Haas T, Taylor P (2000) Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts. Green Chem 2:89–91. https://doi.org/10.1039/a909131i

    Article  Google Scholar 

  323. Xia Q, Jin X, Zhang G, Liu M, Wang J, Li Y, Fang T, Ding J, Zhang D, Meng K, Chen X, Yang C (2021) Catalytic deoxygenation of xylitol to renewable chemicals: advances on catalyst design and mechanistic studies. Chem Rec 21:133–148. https://doi.org/10.1002/tcr.202000101

    Article  Google Scholar 

  324. Auneau F, Berchu M, Aubert G, Pinel C, Besson M, Todaro D, Bernardi M, Ponsetti T, Di Felice R (2014) Exploring the reaction conditions for Ru/C catalyzed selective hydrogenolysis of xylitol alkaline aqueous solutions to glycols in a trickle-bed reactor. Catal Today 234:100–106. https://doi.org/10.1016/j.cattod.2013.12.039

    Article  Google Scholar 

  325. Zin X, Dang L, Lohrman J, Subramaniam B, Ren S, Chaudhari RV (2013) Lattice-matched bimetallic CuPd-graphene nanocatalysts for facile conversion of biomass-derived polyols to chemicals. ACS Nano 7:1309–1316. https://doi.org/10.1021/nn304820v

    Article  Google Scholar 

  326. Liu L, Cao J, Nakagawa Y, Betchaku M, Tamura M, Yabushita M, Tomishige K (2021) Hydrodeoxygenation of C4–C6 sugar alcohols to diols or mono-alcohols with the retention of the carbon chain over a silica-supported tungsten oxide-modified platinum catalyst. Green Chem 23:5665–5679. https://doi.org/10.1039/D1GC01486B

    Article  Google Scholar 

  327. Beine AK, Krüger AJD, Artz J, Weidenthaler C, Glotzbach C, Hausoul PJC, Palkovits R (2018) Selective production of glycols from xylitol over Ru on covalent triazine frameworks–suppressing decarbonylation reactions. Green Chem 20:1316–1322. https://doi.org/10.1039/C8GC00208H

    Article  Google Scholar 

  328. Jin X, Roy D, Thapa PS, Subramaniam B, Chaudhari RV (2013) Atom economical aqueous-phase conversion (APC) of biopolyols to lactic acid, glycols, and linear alcohols using supported metal catalysts. ACS Sustainable Chem Eng 1:1453–1462. https://doi.org/10.1021/sc400189d

    Article  Google Scholar 

  329. Manas MG, Campos J, Sharninghausen LS, Lin E, Crabtree RH (2015) Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chem 17:594–600. https://doi.org/10.1039/C4GC01694G

    Article  Google Scholar 

  330. Oltmanns JU, Palkovits S, Palkovits R (2013) Kinetic investigation of sorbitol and xylitol dehydration catalyzed by silicotungstic acid in water. Appl Catal, A 456:168–173. https://doi.org/10.1016/j.apcata.2013.02.023

    Article  Google Scholar 

  331. Garcia-Martinez MG, Pérez RR, Hernández EB, Galbis JA (2001) Synthesis of l-arabinitol and xylitol monomers for the preparation of polyamides. Preparation of an l-arabinitol-based polyamide. Carbohydr Res 333:95–103. https://doi.org/10.1016/S0008-6215(01)00137-9

    Article  Google Scholar 

  332. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554. https://doi.org/10.1039/b922014c

    Article  Google Scholar 

  333. Antonetti C, Licursi D, Fulignati S, Valentini G, Galletti AMR (2016) New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6:196. https://doi.org/10.3390/catal6120196

    Article  Google Scholar 

  334. Kang S, Fu J, Zhang G (2018) From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis. Renewable Sustainable Energy Rev 94:340–362. https://doi.org/10.1016/j.rser.2018.06.016

    Article  Google Scholar 

  335. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2005) The biofine process– Production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-Industrial Processes and Products. Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 139–164. https://doi.org/10.1002/9783527619849.ch7

  336. Dutta S, Bhat NS (2021) Recent advances in the value addition of biomass-derived levulinic acid: a review focusing on its chemical reactivity patterns. ChemCatChem 13:3202–3222. https://doi.org/10.1002/cctc.202100032

    Article  Google Scholar 

  337. Pileidis FD, Titirici M-M (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. Chem Sus Chem 9:562–582. https://doi.org/10.1002/cssc.201501405

    Article  Google Scholar 

  338. Girisuta B, Heeres HJ (2017) Levulinic acid from biomass: synthesis and applications. In: Fang Z, Smith RL, Qi X (eds) Production of Platform Chemicals from Sustainable Resources. Springer Singapore, Singapore, pp 143–169. https://doi.org/10.1007/978-981-10-4172-3_5

  339. Nakagawa Y, Tomishige K (2012) Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol. Catal Today 195:136–143. https://doi.org/10.1016/j.cattod.2012.04.048

    Article  Google Scholar 

  340. Cen X, Liu Y, Chen B, Liu D, Chen Z (2021) Metabolic engineering of Escherichia coli for De Novo production of 1,5-pentanediol from glucose. ACS Synth Biol 10:192–203. https://doi.org/10.1021/acssynbio.0c00567

    Article  Google Scholar 

  341. Audemar M, Wang Y, Zhao D, Royer S, Jérôme F, Len C, De Oliveira VK (2020) Synthesis of furfuryl alcohol from furfural: a comparison between batch and continuous flow reactors. Energies 13:1002. https://doi.org/10.3390/en13041002

    Article  Google Scholar 

  342. Chaffey DR, Davies TE, Taylor SH, Graham AE (2018) Etherification reactions of furfuryl alcohol in the presence of orthoesters and ketals: application to the synthesis of furfuryl ether biofuels. ACS Sustainable Chem Eng 6:4996–5002. https://doi.org/10.1021/acssuschemeng.7b04636

    Article  Google Scholar 

  343. Kim MG, Wasson L, Burris M, Wu Y, Watt C, Strickland RC (1998) Furfuryl alcohol emulsion resins as co-binders for urea-formaldehyde resin-bonded particleboards. In: Wood and Fiber Science. pp 238–249

  344. Bonita Y, Jain V, Geng F, O’Connell TP, Wilson WN, Rai N, Hicks JC (2019) Direct synthesis of furfuryl alcohol from furfural: catalytic performance of monometallic and bimetallic Mo and Ru phosphides. Catal Sci Technol 9:3656–3668. https://doi.org/10.1039/C9CY00705A

    Article  Google Scholar 

  345. An N, Ainembabazi D, Reid C, Samudrala K, Wilson K, Lee AF, Voutchkova-Kostal A (2020) Microwave-assisted decarbonylation of biomass-derived aldehydes using Pd-doped hydrotalcites. Chem Sus Chem 13:312–320. https://doi.org/10.1002/cssc.201901934

    Article  Google Scholar 

  346. Chatterjee M, Ishizaka T, Kawanami H (2018) Accelerated decarbonylation of 5-hydroxymethylfurfural in compressed carbon dioxide: a facile approach. Green Chem 20:2345–2355. https://doi.org/10.1039/C8GC00174J

    Article  Google Scholar 

  347. Meng Q, Zheng H, Zhu Y, Li Y (2016) Study on the reaction pathway in decarbonylation of biomass-derived 5-hydroxymethylfurfural over Pd-based catalyst. J Mol Catal A: Chem 421:76–82. https://doi.org/10.1016/j.molcata.2016.05.012

    Article  Google Scholar 

  348. Rosenfeld C, Konnerth J, Sailer-Kronlachner W, Solt P, Rosenau T, Herwijnen HWG (2020) Current situation of the challenging scale-up development of hydroxymethylfurfural production. Chem Sus Chem 13:3544–3564. https://doi.org/10.1002/cssc.202000581

    Article  Google Scholar 

  349. Chen S, Wojcieszak R, Dumeignil F, Marceau E, Royer S (2018) How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural. Chem Rev 118:11023–11117. https://doi.org/10.1021/acs.chemrev.8b00134

    Article  Google Scholar 

  350. Gupta D, Ahmad E, Pant KK, Saha B (2017) Efficient utilization of potash alum as a green catalyst for production of furfural, 5-hydroxymethylfurfural and levulinic acid from mono-sugars. RSC Adv 7:41973–41979. https://doi.org/10.1039/C7RA07147G

    Article  Google Scholar 

  351. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 308:1446–1450. https://doi.org/10.1126/science.1111166

    Article  Google Scholar 

  352. Shinde SH, Rode CV (2018) An integrated production of diesel fuel precursors from carbohydrates and 2-methylfuran over Sn-Mont catalyst. ChemistrySelect 3:4039–4046. https://doi.org/10.1002/slct.201800694

    Article  Google Scholar 

  353. Hronec M, Fulajtárova K, Liptaj T, Štolcová M, Prónayová N, Soták T (2014) Cyclopentanone: a raw material for production of C15 and C17 fuel precursors. Biomass Bioenergy 63:291–299. https://doi.org/10.1016/j.biombioe.2014.02.025

    Article  Google Scholar 

  354. Malkar RS, Daly H, Hardacre C, Yadav GD (2019) Aldol condensation of 5-hydroxymethylfurfural to fuel precursor over novel aluminum exchanged-DTP@ZIF-8. ACS Sustainable Chem Eng 7:16215–16224. https://doi.org/10.1021/acssuschemeng.9b02939

    Article  Google Scholar 

  355. Simakova IL, Murzin DYu (2016) Transformation of bio-derived acids into fuel-like alkanes via ketonic decarboxylation and hydrodeoxygenation: design of multifunctional catalyst, kinetic and mechanistic aspects. J Energy Chem 25:208–224. https://doi.org/10.1016/j.jechem.2016.01.004

    Article  Google Scholar 

  356. Gaertner CA, Serrano-Ruiz JC, Braden DJ, Dumesic JA (2010) Ketonization reactions of carboxylic acids and esters over ceria−zirconia as biomass-upgrading processes. Ind Eng Chem Res 49:6027–6033. https://doi.org/10.1021/ie1004338

    Article  Google Scholar 

  357. Lu B, Li J, Lv G, Qi Y, Wang Y, Hou X, Yang Y (2017) Production of high value C10–C20 products from controllable angelica lactone self-aggregation process. J Cleaner Prod 162:330–335. https://doi.org/10.1016/j.jclepro.2017.06.090

    Article  Google Scholar 

  358. Xu J, Li N, Yang X, Li G, Wang A, Cong Y, Wang X, Zhang T (2017) Synthesis of diesel and jet fuel range alkanes with furfural and angelica lactone. ACS Catal 7:5880–5886. https://doi.org/10.1021/acscatal.7b01992

    Article  Google Scholar 

  359. Mascal M, Dutta S, Gandarias I (2014) Hydrodeoxygenation of the angelica lactone dimer, a cellulose-based feedstock: simple, high-yield synthesis of branched C7–C10 gasoline-like hydrocarbons. Angew Chem Int Ed 53:1854–1857. https://doi.org/10.1002/anie.201308143

    Article  Google Scholar 

Download references

Acknowledgements

NSB, NV, and PSP thank NITK, Surathkal, for their fellowship support. HNA thanks CSIR, India, for fellowship support.

Author information

Authors and Affiliations

Authors

Contributions

Harshitha N. Anchan wrote the C1 and C3 chemicals in the original manuscript; Navya Subray Bhat edited the manuscript, verified the references, and made formatting changes; Nivedha Vinod wrote C2 and C4 chemicals in the original manuscript; Poornachandra Shamanna Prabhakar wrote the C5 and >C6 chemicals in the original manuscript; Saikat Dutta conceptualized the review, edited, and wrote the introduction. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saikat Dutta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anchan, H.N., Bhat, N.S., Vinod, N. et al. Catalytic conversion of glucose and its biopolymers into renewable compounds by inducing C–C bond scission and formation. Biomass Conv. Bioref. 14, 9915–9948 (2024). https://doi.org/10.1007/s13399-022-03105-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03105-9

Keywords

Navigation