Skip to main content
Log in

Conversion of waste-activated sludge from wastewater treatment plants to 5-hydroxymethylfurfural by microwave hydrothermal treatment

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Waste-activated sludge (WAS) is a common renewable biomass resource rich in organics. In this study, microwave hydrothermal treatment (MHT) was used to produce 5-hydroxymethylfurfural (HMF) from WAS. The key MHT process parameters of holding temperature, holding time, and pH value were optimized by a Box–Behnken design and response surface methodology. The highest HMF yield (1.58%) was obtained with a holding temperature of 225 °C, holding time of 5 min, and pH value of 1.7. Economic evaluation showed that a profit of $4640 can be made from one ton of WAS by HMF production. This economical and feasible waste recycling method can produce HMF from WAS with considerable output under suitable MHT conditions and provides a new concept for WAS valorization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yan YX, Liu F, Gao JL, Wan JF, Ding JY, Li TT (2022) Enhancing enzyme activity via low-intensity ultrasound for protein extraction from excess sludge[J]. Chemosphere 303:134936. https://doi.org/10.1016/j.chemosphere.2022.134936

    Article  Google Scholar 

  2. Yang G, Zhang GM, Wang HC (2015) Current state of sludge production, management, treatment and disposal in China[J]. Water Res 78:60–73. https://doi.org/10.1016/j.watres.2015.04.002

    Article  Google Scholar 

  3. Wei LL, Zhu FY, Li QY, Xue CH, Xia XH, Yu H, Zhao QL, Jiang JQ, Bai SW (2020) Development, current state and future trends of sludge management in China: based on exploratory data and CO2-equivalent emissions analysis[J]. Environ Int 144:106093. https://doi.org/10.1016/j.envint.2020.106093

    Article  Google Scholar 

  4. Wainaina S, Awasthi MK, Sarsaiya S, Chen HY, Singh E, Kumar A, Ravindran B, Awasthi SK, Liu T, Duan YM, Kumar S, Zhang ZQ, Taherzadeh MJ (2020) Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies[J]. Biores Technol 301:122778. https://doi.org/10.1016/j.biortech.2020.122778

    Article  Google Scholar 

  5. Samolada MC, Zabaniotou AA (2014) Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece[J]. Waste Manag 34(2):411–420. https://doi.org/10.1016/j.wasman.2013.11.003

    Article  Google Scholar 

  6. Zhang XY, Li RY (2018) Variation of antibiotics in sludge pretreatment and anaerobic digestion processes: Degradation and solid-liquid distribution[J]. Bioresour Technol 255:266–272. https://doi.org/10.1016/j.biortech.2018.01.100

    Article  Google Scholar 

  7. Luo JY, Zhang Q, Zhao JN, Wu Y, Wu LJ, Li H, Tang M, Sun YQ, Guo W, Feng Q, Cao JS, Wang DB (2020) Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion: a review[J]. J Hazard Mater 383:121176. https://doi.org/10.1016/j.jhazmat.2019.121176

    Article  Google Scholar 

  8. Xu QX, Fu QZ, Liu XR, Wang DB, Wu YX, Li YF, Yang JN, Yang Q, Wang YL, Li HL, Ni BJ (2021) Mechanisms of potassium permanganate pretreatment improving anaerobic fermentation performance of waste activated sludge[J]. Chem Eng J 406:126797. https://doi.org/10.1016/j.cej.2020.126797

    Article  Google Scholar 

  9. Bora AP, Gupta DP, Durbha KS (2020) Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel[J]. Fuel 259:116262. https://doi.org/10.1016/j.fuel.2019.116262

    Article  Google Scholar 

  10. Villalobos-Delgado FJ, di Bitonto L, Reynel-Ávila HE, Mendoza-Castillo DI, Bonilla-Petriciolet A, Pastore C (2021) Efficient and sustainable recovery of lipids from sewage sludge using ethyl esters of volatile fatty acids as sustainable extracting solvent[J]. Fuel 295:120630. https://doi.org/10.1016/j.fuel.2021.120630

    Article  Google Scholar 

  11. Xiao KK, Zhou Y (2020) Protein recovery from sludge: a review[J]. J Clean Prod 249:119373. https://doi.org/10.1016/j.jclepro.2019.119373

    Article  Google Scholar 

  12. Hu D, Zhang M, Xu H, Wang YC, Yan K (2021) Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural[J]. Renew Sustain Energy Rev 147:111253. https://doi.org/10.1016/j.rser.2021.111253

    Article  Google Scholar 

  13. Nguyen CV, Lewis D, Chen WH, Huang HW, Alothman ZA, Yamauchi Y, Wu KCW (2016) Combined treatments for producing 5-hydroxymethylfurfural HMF from lignocellulosic biomass[J]. Catal Today 278:344–349. https://doi.org/10.1016/j.cattod.2016.03.022

    Article  Google Scholar 

  14. Yu IKM, Tsang DCW, Yip ACK, Su Z, De Oliveira Vigier K, Jérôme F, Poon CS, Ok YS (2018) Organic acid-regulated lewis acidity for selective catalytic hydroxymethylfurfural production from rice waste: an experimental–computational study[J]. ACS Sustain.Chem Eng 7(1):1437–1446

    Article  Google Scholar 

  15. Hoang PH, Cuong TD (2020) Simultaneous direct production of 5-hydroxymethylfurfural (HMF) and furfural from corncob biomass using porous HSO3-ZSM-5 zeolite catalyst[J]. Energy & Fuels 35(1):546–551. https://doi.org/10.1021/acs.energyfuels.0c03431

    Article  Google Scholar 

  16. Heo JB, Lee YS, Chung CH (2020) Toward sustainable hydroxymethylfurfural production using seaweeds[J]. Trends Biotechnol 38(5):487–496. https://doi.org/10.1016/j.tibtech.2020.01.010

    Article  Google Scholar 

  17. Liu XY, Zhu FF, Zhang RY, Zhao LY, Qi JJ (2021) Recent progress on biodiesel production from municipal sewage sludge[J]. Renew Sustain Energy Rev 135:110260. https://doi.org/10.1016/j.rser.2020.110260

    Article  Google Scholar 

  18. He C, Chen CL, Giannis A, Yang YH, Wang JY (2014) Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: a review[J]. Renew Sustain Energy Rev 39:1127–1142. https://doi.org/10.1016/j.rser.2014.07.141

    Article  Google Scholar 

  19. Li M, Jiang HN, Zhang L, Yu XJ, Liu H, Yagoub AEA, Zhou CS (2020) Synthesis of 5-HMF from an ultrasound-ionic liquid pretreated sugarcane bagasse by using a microwave-solid acid/ionic liquid system[J]. Ind Crops Prod 149:112361. https://doi.org/10.1016/j.indcrop.2020.112361

    Article  Google Scholar 

  20. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, Jusoh A, Lam WH, Ibrahim MD, Ma NL, Lam SS (2018) Microwave pyrolysis with KOH/NaOH mixture activation: a new approach to produce micro-mesoporous activated carbon for textile dye adsorption[J]. Bioresour. Technol. 266:1–10. https://doi.org/10.1016/j.biortech.2018.06.051

    Article  Google Scholar 

  21. Lyu XQ, Li H, Xiang HZ, Mu YB, Ji N, Lu XB, Fan XL, Gao X (2022) Energy efficient production of 5-hydroxymethylfurfural (5-HMF) over surface functionalized carbon superstructures under microwave irradiation[J]. Chem Eng J 428:131143. https://doi.org/10.1016/j.cej.2021.131143

    Article  Google Scholar 

  22. Shao YC, Tsang DCW, Shen DS, Zhou Y, Jin ZY, Zhou D, Lu WJ, Long YY (2020) Acidic seawater improved 5-hydroxymethylfurfural yield from sugarcane bagasse under microwave hydrothermal liquefaction[J]. Environ Res 184:109340. https://doi.org/10.1016/j.envres.2020.109340

    Article  Google Scholar 

  23. Shao YC, Long YY, Zhou Y, Jin ZY, Zhou D, Shen DS (2019) 5-Hydroxymethylfurfural production from watermelon peel by microwave hydrothermal liquefaction[J]. Energy 174:198–205. https://doi.org/10.1016/j.energy.2019.02.181

    Article  Google Scholar 

  24. Meng YJ, Zhou Y, Shao YC, Zhou D, Shen DS, Long YY (2021) Evaluating the potential of the microwave hydrothermal method for valorizing food waste by producing 5-hydroxymethylfurfural[J]. Fuel 306:121769. https://doi.org/10.1016/j.fuel.2021.121769

    Article  Google Scholar 

  25. Zhou Y, Shao YC, Zhou D, Meng YJ, Shen DS, Long YY (2021) Effect of mechano-chemical pretreatment on valorizing plant waste for 5-hydroxymethylfurfural under microwave hydrothermal treatment[J]. Renew Energy 180:536–543. https://doi.org/10.1016/j.renene.2021.08.095

    Article  Google Scholar 

  26. Wrigstedt P, Keskiväli J, Repo T (2016) Microwave-enhanced aqueous biphasic dehydration of carbohydrates to 5-hydroxymethylfurfural[J]. RSC Adv 6(23):18973–18979. https://doi.org/10.1039/C5RA25564C

    Article  Google Scholar 

  27. Pham VT, Guan CY, Han PC, Matsagar BM, Wu KCW, Ahamad T, Chang C., and Yu CP, 2021 Acid-catalyzed hydrothermal treatment of sewage sludge: effects of reaction temperature and acid concentration on the production of hydrolysis by-products[J]. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01495-w.

  28. Zhou XM, Zhang ZH, Liu B, Xu Z, Deng KJ (2013) Microwave-assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural by ScCl3 in ionic liquids[J]. Carbohyd Res 375:68–72. https://doi.org/10.1016/j.carres.2013.04.003

    Article  Google Scholar 

  29. Yemiş O, Mazza G (2012) Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process[J]. Biores Technol 109:215–223. https://doi.org/10.1016/j.biortech.2012.01.031

    Article  Google Scholar 

  30. Li MF, Zhang QT, Luo B, Chen CZ, Wang SF, Min DY (2020) Lignin-based carbon solid acid catalyst prepared for selectively converting fructose to 5-hydroxymethylfurfural[J]. Ind Crops Prod 145:111920. https://doi.org/10.1016/j.indcrop.2019.111920

    Article  Google Scholar 

  31. Hantoko D, Antoni Kanchanatip E, Yan M, Weng ZC, Gao ZL, Zhong YJ (2019) Assessment of sewage sludge gasification in supercritical water for H2-rich syngas production[J]. Process Saf Environ Prot 131:63–72. https://doi.org/10.1016/j.psep.2019.08.035

    Article  Google Scholar 

  32. Wang SS, Han YL, Lu XQ, Zhi ZX, Zhang RL, Cai T, Zhang ZY, Qin X, Song YN, Zhen GY (2021) Microbial mechanism underlying high methane production of coupled alkali-microwave–H2O2–oxidation pretreated sewage sludge by in-situ bioelectrochemical regulation[J]. J Clean Prod 305:127195. https://doi.org/10.1016/j.jclepro.2021.127195

    Article  Google Scholar 

  33. Olkiewicz M, Caporgno MP, Fortuny A, Stüber F, Fabregat A, Font J, Bengoa C (2014) Direct liquid–liquid extraction of lipid from municipal sewage sludge for biodiesel production[J]. Fuel Process Technol 128:331–338. https://doi.org/10.1016/j.fuproc.2014.07.041

    Article  Google Scholar 

  34. Xiang YL, Xiang YK, Jiao YR (2019) Simultaneous disintegration of municipal sludge and generation of ethanol with magnetic layered double hydroxides[J]. Biores Technol 289:121654. https://doi.org/10.1016/j.biortech.2019.121654

    Article  Google Scholar 

Download references

Funding

The work was supported by the Natural Science Foundation of Zhejiang Province (LGF20E080004).

Author information

Authors and Affiliations

Authors

Contributions

Liqun Xiao: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Data curation, Writing—original draft, Visualization. Yanjun Meng: Writing—review and editing, Investigation. Haihong Jin: Methodology, Resources. Yanhong Wang: Writing—review & editing, Investigation. Lijiao Fan: Writing—review and editing, Investigation. Dongsheng Shen: Methodology, Supervision, Project administration, Funding acquisition. Yuyang Long: Conceptualization, Methodology, Validation, Resources, Writing—review and editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Yuyang Long.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Meng, Y., Jin, H. et al. Conversion of waste-activated sludge from wastewater treatment plants to 5-hydroxymethylfurfural by microwave hydrothermal treatment. Biomass Conv. Bioref. 14, 10389–10397 (2024). https://doi.org/10.1007/s13399-022-03076-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03076-x

Keywords

Navigation