Skip to main content

Advertisement

Log in

Custard apple crop residues combustion: an overall study of their energy behaviour under different fertilisation conditions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The current energy demand requires new energy sources. The use of biomass is an attractive option. In this work, the combustion thermal behaviour and kinetic of custard apple (Annona cherimola) crop remains derived from different plot fertilisation conditions (organic and inorganic) were studied. Thermogravimetry procedures were applied to seeds and wood under four heating rates (5, 10, 20 and 40 °C/min). Iso-conversional methods (Friedman, Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose) were used to determine the activation energy and the frequency factor. Fuel results showed a higher high heating value for seeds (~ 24.78 MJ/mol) when compared with wood (~ 19.33 MJ/mol). Thermogravimetric profiles denoted that, while seed samples were only affected by heating ramps, pruning remains were also influenced by the type of fertiliser. Organic fertiliser was responsible for higher maximum values on the second decomposition peak for wood samples, at 20 and 40 °C/min (56.78%/min and 23.03%/min). Kinetic indexes were also notably influenced by the fertiliser nature. Organic manure reduced the average activation energy results, being more perceptible in seeds (135.51–172.32 kJ/mol) than wood (140.32–144.43 kJ/mol). Hence, it is proven that the type of fertilisation affects the thermal behaviour of custard apple residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A:

Frequency factor

DGT:

Derived thermogravimetric profiles

DTGmax :

Maximum value reached of a DTG profile

E a :

Activation energy

FWO:

Ozawa-Flynn-Wall iso-conversional method

HHV:

High heating value

KAS:

Kissinger-Akahira-Sunose iso-conversional method

M1:

Casarabonela plot

M2:

Tolox plot

R 2 :

Correlation coefficients

SC:

Seed sample under organic fertiliser

SM:

Seed sample under mineral fertiliser

TG:

Thermogravimetric profiles

TGA:

Thermogravimetric analysis

WC:

Pruning remain sample under organic fertiliser

WM:

Pruning remain sample under mineral fertiliser

α :

Conversion grade

References

  1. Mishra RK, Mohanty K (2020) Pyrolysis characteristics, fuel properties, and compositional study of Madhuca longifolia seeds over metal oxide catalysts. Biomass Convers Biorefin 10:621–637. https://doi.org/10.1007/S13399-019-00469-3

    Article  Google Scholar 

  2. Ullah H, Lun L, Riaz L et al (2021) Physicochemical characteristics and thermal degradation behavior of dry and wet torrefied orange peel obtained by dry/wet torrefaction. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-021-01777-3

  3. Dada TK, Sheehan M, Murugavelh S, Antunes E (2021) A review on catalytic pyrolysis for high-quality bio-oil production from biomass. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-021-01391-3

  4. Cuong TT, Le HA, Khai NM et al (2021) Renewable energy from biomass surplus resource: potential of power generation from rice straw in Vietnam. Sci Rep 11. https://doi.org/10.1038/s41598-020-80678-3

  5. Vassilev SV, Vassileva CG, Song YC et al (2017) Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 208:377–409

    Article  Google Scholar 

  6. Grigiante M, Brighenti M, Maldina M (2021) A complete two-parameter kinetic model to describe the thermal pretreatment of biomasses. Biomass Convers Biorefin 11:2543–2556. https://doi.org/10.1007/S13399-020-00693-2

    Article  Google Scholar 

  7. Pardo RNC, Rojas GMA, Florez LM (2021) Thermal analysis of the physicochemical properties of organic waste to application in the compost process. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-021-01786-2

  8. Santos SA, Vilela C, Camacho JF et al (2016) Profiling of lipophilic and phenolic phytochemicals of four cultivars from cherimoya (Annona cherimola mill.). Food Chem 211:845–852. https://doi.org/10.1016/J.FOODCHEM.2016.05.123

    Article  Google Scholar 

  9. Jamkhande PG, Ajgunde BR, Jadge DR (2017) Annona cherimola mill. (custard apple): a review on its plant profile, nutritional values, traditional claims and ethnomedicinal properties. Orient Pharm Exp Med 17:189–201

    Article  Google Scholar 

  10. Jagtap UB, Bapat VA (2018) Custard apple— Annona squamosa L. Exotic Fruits:163–167. https://doi.org/10.1016/B978-0-12-803138-4.00019-8

  11. García-Salas P, Verardo V, Gori A et al (2016) Determination of lipid composition of the two principal cherimoya cultivars grown in Andalusian region. LWT Food Sci Technol 65:390–397. https://doi.org/10.1016/J.LWT.2015.08.004

    Article  Google Scholar 

  12. Mengqi Z, Shi A, Ajmal M et al (2021) Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-021-01438-5

  13. Haile A, Gelebo GG, Tesfaye T et al (2021) Pulp and paper mill wastes: utilizations and prospects for high value-added biomaterials. Bioresources and Bioprocessing 8. https://doi.org/10.1186/S40643-021-00385-3

  14. García-Carmona M, Márquez-San Emeterio L, Reyes-Martín MP et al (2020) Changes in nutrient contents in peel, pulp, and seed of cherimoya (Annona cherimola mill.) in relation to organic mulching on the Andalusian tropical coast (Spain). Sci Hortic 263(109120). https://doi.org/10.1016/j.scienta.2019.109120

  15. Benítez E, Viera W, Garrido P et al (2020) Current research on Andean fruit crop diseases. Agricultural, Forestry and Bioindustry Biotechnology and Biodiscovery 387–401. https://doi.org/10.1007/978-3-030-51358-0_19

  16. Durán-Zuazo VH, Tarifa DF, García-Tejero IF et al (2019) Water use and leaf nutrient status for terraced cherimoya trees in a subtropical mediterranean environment. Horticulturae 5:46. https://doi.org/10.3390/HORTICULTURAE5020046

    Article  Google Scholar 

  17. Zhang X, Davidson EA, Mauzerall DL et al (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    Article  Google Scholar 

  18. Rahman KMA, Zhang D (2018) Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 10:759. https://doi.org/10.3390/su10030759

    Article  Google Scholar 

  19. Dahunsi SO, Oranusi S, Efeovbokhan VE et al (2021) Crop performance and soil fertility improvement using organic fertilizer produced from valorization of Carica papaya fruit peel. Sci Rep 11. https://doi.org/10.1038/s41598-021-84206-9

  20. Paniagua S, Escudero L, Escapa C et al (2016) Effect of waste organic amendments on Populus sp biomass production and thermal characteristics. Renew Energy 94:166–174. https://doi.org/10.1016/j.renene.2016.03.019

    Article  Google Scholar 

  21. Paniagua S, Zanfaño L, Calvo LF (2020) Influence of the fertilizer type in the agronomic and energetic behaviour of the residues coming from oleander, cypress and quinoa. Fuel 272:117711. https://doi.org/10.1016/J.FUEL.2020.117711

    Article  Google Scholar 

  22. Paniagua Bermejo S, Prado-Guerra A, García Pérez AI, Calvo Prieto LF (2020) Study of quinoa plant residues as a way to produce energy through thermogravimetric analysis and indexes estimation. Renew Energy 146. https://doi.org/10.1016/j.renene.2019.08.056

  23. Paniagua S, Reyes S, Lima F et al (2021) Combustion of avocado crop residues: effect of crop variety and nature of nutrients. Fuel 291. https://doi.org/10.1016/j.fuel.2020.119660

  24. FAO (2014) Word reference base for soil resources. International soil classification system for naming soils and creating legends for soil map, Rome

  25. Astudillo ÁRM, Cueva BC, Valarezo PSA (2004) Genetic diversity and geographic distribution of Annona cherimola in, Southern Ecuador

  26. AENOR (2018) UNE-EN ISO 18135:2018. Solid biofuels - Sampling

    Google Scholar 

  27. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp:6:183

  28. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett 4:323–328. https://doi.org/10.1002/POL.1966.110040504

    Article  Google Scholar 

  29. Ozawa T (1965) A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn 38:1881–1886. https://doi.org/10.1246/BCSJ.38.1881

  30. Doyle CD (1965) Series approximations to the equation of thermogravimetric data. Nature 207(4994):290–291. https://doi.org/10.1038/207290a0

    Article  Google Scholar 

  31. Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand (4):57, 217

  32. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  Google Scholar 

  33. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69

    Article  Google Scholar 

  34. Yuan X, He T, Cao H, Yuan Q (2017) Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 107:489–496. https://doi.org/10.1016/j.renene.2017.02.026

    Article  Google Scholar 

  35. Yaras A, Demirel B, Akkurt F, Arslanoglu H (2021) Thermal conversion behavior of paper mill sludge: characterization, kinetic, and thermodynamic analyses. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-020-01232-9

  36. Elnajjar E, Al-Zuhair S, Hasan S et al (2020) Morphology characterization and chemical composition of United Arab Emirates date seeds and their potential for energy production. Energy 213. https://doi.org/10.1016/J.ENERGY.2020.118810

  37. Schroeder P, do Nascimento BP, Romeiro GA et al (2017) Chemical and physical analysis of the liquid fractions from soursop seed cake obtained using slow pyrolysis conditions. J Anal Appl Pyrolysis 124:161–174. https://doi.org/10.1016/j.jaap.2017.02.010

    Article  Google Scholar 

  38. Su CH, Nguyen HC, Pham UK et al (2018) Biodiesel production from a novel nonedible feedstock, Soursop (Annona muricata L.) seed oil, Energies (Basel), p 11. https://doi.org/10.3390/EN11102562

  39. Janković B, Manić N, Dodevski V et al (2020) Kinetic study of oxy-combustion of plane tree (Platanus orientalis) seeds (PTS) in O2/Ar atmosphere. J Therm Anal Calorim 142:953–976. https://doi.org/10.1007/S10973-019-09154-Z/TABLES/4

    Article  Google Scholar 

  40. Picchi G, Lombardini C, Pari L, Spinelli R (2018) Physical and chemical characteristics of renewable fuel obtained from pruning residues. J Clean Prod 171:457–463. https://doi.org/10.1016/J.JCLEPRO.2017.10.025

    Article  Google Scholar 

  41. Kethobile E, Ketlogetswe C, Gandure J (2020) Characterisation of the non-oil Jatropha biomass material for use as a source of solid fuel. Biomass Convers Biorefin 10:1251–1267. https://doi.org/10.1007/S13399-019-00511-4

    Article  Google Scholar 

  42. Mu L, Wang R, Zhai Z et al (2021) Evaluation of thermokinetics methodology, parameters, and coke characterization of co-pyrolysis of bituminous coal with herbaceous and agricultural biomass. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-021-01502-0

  43. Dorokhov VV, Kuznetsov GV, Yu K, Vershinina PAS (2021) Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making. Energy 234. https://doi.org/10.1016/j.energy.2021.121257

  44. Vicente ED, Vicente AM, Evtyugina M et al (2019) Emissions from residential pellet combustion of an invasive acacia species. Renew Energy 140:319–329. https://doi.org/10.1016/J.RENENE.2019.03.057

    Article  Google Scholar 

  45. Khan SR, Zeeshan M, Ahmed A, Saeed S (2021) Comparison of synthetic and low-cost natural zeolite for bio-oil focused pyrolysis of raw and pretreated biomass. J Clean Prod 313. https://doi.org/10.1016/J.JCLEPRO.2021.127760

  46. Coimbra RN, Paniagua S, Escapa C et al (2016) Thermal valorization of pulp mill sludge by co-processing with coal. Waste Biomass Valorization 7:995–1006

    Article  Google Scholar 

  47. Balsora HK, Kartik S, Rainey TJ et al (2021) Kinetic modelling for thermal decomposition of agricultural residues at different heating rates. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-021-01382-4

  48. Pal DB, Tiwari AK, Srivastava N et al (2021a) Thermal studies of biomass obtained from the seeds of Syzygium cumini and Cassia fistula L. and peel of Cassia fistula L. fruit. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-021-01492-Z

  49. Shrigiri BM (2021) Combustion characteristics of sugar apple seed (Annona squamosa) oil methyl ester and its blends on compression ignition engine. International Journal of Ambient Energy. https://doi.org/10.1080/01430750.2021.1888801

  50. Rami Reddy S, Murali G, Ahamad Shaik A et al (2021) Experimental evaluation of diesel engine powered with waste mango seed biodiesel at different injection timings and EGR rates. Fuel 285. https://doi.org/10.1016/J.FUEL.2020.119047

  51. Asokan MA, Senthur Prabu S, Kamesh S, Khan W (2018) Performance, combustion and emission characteristics of diesel engine fuelled with papaya and watermelon seed oil bio-diesel/diesel blends. Energy 145:238–245. https://doi.org/10.1016/J.ENERGY.2017.12.140

    Article  Google Scholar 

  52. Kougioumtzis MA, Kanaveli IP, Karampinis E et al (2021) Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency. Renew Energy 171:516–525. https://doi.org/10.1016/J.RENENE.2021.02.118

    Article  Google Scholar 

  53. Duranay ND, Akkuş G (2021) Solid fuel production with torrefaction from vineyard pruning waste. Biomass Convers Biorefin 11:2335–2346. https://doi.org/10.1007/S13399-019-00496-0

    Article  Google Scholar 

  54. Ozyuguran A, Akturk A, Yaman S (2018) Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel 214:640–646. https://doi.org/10.1016/J.FUEL.2017.10.082

    Article  Google Scholar 

  55. Zhai J, Burke IT, Mayes WM, Stewart DI (2021) New insights into biomass combustion ash categorisation: a phylogenetic analysis. Fuel 287:119469. https://doi.org/10.1016/J.FUEL.2020.119469

    Article  Google Scholar 

  56. Nudri NA, Bachmann RT, Ghani WAWAK et al (2020) Characterization of oil palm trunk biocoal and its suitability for solid fuel applications. Biomass Convers Biorefin 10:45–55. https://doi.org/10.1007/S13399-019-00419-Z

    Article  Google Scholar 

  57. Mishra RK, Mohanty K (2018a) Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Convers Biorefin 8:799–812. https://doi.org/10.1007/S13399-018-0332-8

    Article  Google Scholar 

  58. Castells B, Amez I, Medic L et al (2021) Study of lignocellulosic biomass ignition properties estimation from thermogravimetric analysis. https://doi.org/10.1016/j.jlp.2021.104425

  59. Du J, Zhong B, Subbiah V et al (2021) Lc-esi-qtof-ms/ms profiling and antioxidant activity of phenolics from custard apple fruit and by-products. Separations 8. https://doi.org/10.3390/SEPARATIONS8050062

  60. Ahmad MS, Mehmood MA, Al Ayed OS et al (2017) Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Bioresour Technol 224:708–713. https://doi.org/10.1016/J.BIORTECH.2016.10.090

    Article  Google Scholar 

  61. Boubacar Laougé Z, Merdun H (2020) Pyrolysis and combustion kinetics of Sida cordifolia L. using thermogravimetric analysis. Bioresour Technol 299:122602. https://doi.org/10.1016/j.biortech.2019.122602

  62. Paniagua S, Prado-Guerra A, García AI, Calvo LF (2019) Bioenergy derived from an organically fertilized poplar plot: overall TGA and index estimation study for combustion, gasification, and pyrolysis processes. Biomass Convers Biorefin 1–12. https://doi.org/10.1007/s13399-019-00392-7

  63. Sher F, Iqbal SZ, Liu H et al (2020) Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: a way forward to renewable energy sources. Energy Convers Manag 203. https://doi.org/10.1016/J.ENCONMAN.2019.112266

  64. Liu L, Pang Y, Lv D et al (2021) Thermal and kinetic analyzing of pyrolysis and combustion of self-heating biomass particles. Process Saf Environ Prot 151:39–50. https://doi.org/10.1016/J.PSEP.2021.05.011

    Article  Google Scholar 

  65. Pérez A, Martín-Lara MA, Gálvez-Pérez A et al (2018) Kinetic analysis of pyrolysis and combustion of the olive tree pruning by chemical fractionation. Bioresour Technol 249:557–566. https://doi.org/10.1016/J.BIORTECH.2017.10.045

    Article  Google Scholar 

  66. Altantzis AI, Kallistridis NC, Stavropoulos G, Zabaniotou A (2021) Apparent pyrolysis kinetics and index-based assessment of pretreated peach seeds. Processes (9):905. https://doi.org/10.3390/PR9060905

  67. Pal DB, Srivastava N, Pal SL et al (2021b) Lignocellulosic composition based thermal kinetic study of Mangiferaindica Lam, Artocarpus Heterophyllus lam and Syzygium Jambolana seeds. Bioresour Technol 341. https://doi.org/10.1016/J.BIORTECH.2021.125891

  68. Luo L, Guo X, Zhang Z et al (2020) Insight into pyrolysis kinetics of Lignocellulosic biomass: Isoconversional kinetic analysis by the modified Friedman method. Energy and Fuels 34:4874–4881

    Article  Google Scholar 

  69. Burnham AK, Dinh LN (2007) A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim 89:479–490. https://doi.org/10.1007/S10973-006-8486-1

    Article  Google Scholar 

  70. Al-Salem SM (2019) 9 - kinetic studies related to polymer degradation and stability. In: Al-Salem SM (ed) Plastics to energy. William Andrew Publishing, pp 233–268

    Google Scholar 

  71. Berčič G (2017) The universality of Friedman’s isoconversional analysis results in a model-less prediction of thermodegradation profiles. Thermochim Acta 650:1–7. https://doi.org/10.1016/J.TCA.2017.01.011

    Article  Google Scholar 

  72. Wang C, Jin L, Wang Y et al (2022) Thermogravimetric investigation on co-combustion characteristics and kinetics of antibiotic filter residue and vegetal biomass. J Therm Anal Calorim 147:925–938. https://doi.org/10.1007/S10973-020-10280-2

    Article  Google Scholar 

  73. Mohd Safaai NS, Pang S (2021) Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis. Renew Energy 175:200–213. https://doi.org/10.1016/J.RENENE.2021.04.117

    Article  Google Scholar 

  74. Garcia-Maraver A, Perez-Jimenez JA, Serrano-Bernardo F, Zamorano M (2015) Determination and comparison of combustion kinetics parameters ofagricultural biomass from olive trees. Renew Energy 83:897–904. https://doi.org/10.1016/J.RENENE.2015.05.049

    Article  Google Scholar 

  75. Kaur R, Gera P, Jha MK, Bhaskar T (2018) Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour Technol 250:422–428. https://doi.org/10.1016/j.biortech.2017.11.077

    Article  Google Scholar 

  76. Khasraw D, Spooner S, Hage H et al (2021) Devolatilisation characteristics of coal and biomass with respect to temperature and heating rate for HIsarna alternative ironmaking process. Fuel 284. https://doi.org/10.1016/J.FUEL.2020.119101

  77. Misse SE, Brillard A, Brilhac JF, et al (2018) Thermogravimetric analyses and kinetic modeling of three Cameroonian biomass. J Therm Anal Calorim 132:1979–1994. https://doi.org/10.1007/S10973-018-7108-Z

  78. Shen DK, Gu S, Jin B, Fang MX (2011) Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods. Bioresour Technol 102:2047–2052. https://doi.org/10.1016/J.BIORTECH.2010.09.081

    Article  Google Scholar 

  79. Nyakuma BB, Wong SL, Oladokun O et al (2020) Review of the fuel properties, characterisation techniques, and pre-treatment technologies for oil palm empty fruit bunches. Biomass Convers Biorefin. https://doi.org/10.1007/S13399-020-01133-X

  80. Mishra RK, Mohanty K (2018b) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–74. https://doi.org/10.1016/J.BIORTECH.2017.12.029

    Article  Google Scholar 

  81. Saveliev R, Chudnovsky B, Korytnyi E et al (2007) Prediction of performance and pollutant emission from bituminous and sub-bituminous coals in utility boilers. Proc ASME Power Conf:437–446. https://doi.org/10.1115/POWER2007-22065

  82. Zhao S, Pu W, Sun B et al (2019) Comparative evaluation on the thermal behaviors and kinetics of combustion of heavy crude oil and its SARA fractions. Fuel 239:117–125. https://doi.org/10.1016/J.FUEL.2018.11.014

    Article  Google Scholar 

  83. Wang X, Hu M, Hu W et al (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219:510–520. https://doi.org/10.1016/J.BIORTECH.2016.07.136

    Article  Google Scholar 

  84. Wang B, Li Y, Zhou J et al (2021) Thermogravimetric and kinetic analysis of high-temperature thermal conversion of pine wood sawdust under CO2/Ar. Energies 14:5328. https://doi.org/10.3390/EN14175328

    Article  Google Scholar 

  85. Özsin G, Pütün AE (2017) Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manag 64:315–326. https://doi.org/10.1016/J.WASMAN.2017.03.020

    Article  Google Scholar 

  86. Gu X, Liu C, Jiang X et al (2014) Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. J Anal Appl Pyrolysis 106:177–186. https://doi.org/10.1016/J.JAAP.2014.01.018

    Article  Google Scholar 

  87. Florentino-Madiedo L, Vega MF, Díaz-Faes E, Barriocanal C (2021) Evaluation of synergy during co-pyrolysis of torrefied sawdust, coal and paraffin. A kinetic and thermodynamic study. Fuel 292. https://doi.org/10.1016/J.FUEL.2021.120305

  88. Montiano MG, Díaz-Faes E, Barriocanal C (2016) Kinetics of co-pyrolysis of sawdust, coal and tar. Bioresour Technol 205:222–229. https://doi.org/10.1016/J.BIORTECH.2016.01.033

    Article  Google Scholar 

  89. Konwar K, Nath HP, Bhuyan N et al (2019) Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal. Fuel 256:115926. https://doi.org/10.1016/J.FUEL.2019.115926

    Article  Google Scholar 

  90. Paniagua S, Otero M, Coimbra RNR et al (2015) Simultaneous thermogravimetric and mass spectrometric monitoring of the pyrolysis, gasification and combustion of rice straw. J Therm Anal Calorim 121:603–611. https://doi.org/10.1007/s10973-015-4632-y

    Article  Google Scholar 

Download references

Funding

The authors thank the University of León and the University of Málaga for allowing the use of their facilities and resources to carry out this work. The Spanish Ministry of Science and Innovation is gratefully acknowledged for the Juan de la Cierva-Formation contract of Dr. Sergio Paniagua (FJC2020-043479-I).

Author information

Authors and Affiliations

Authors

Contributions

Alba Prado-Guerra: Conceptualisation, Investigation, Methodology, Writing—review and editing. Luis F. Calvo: Conceptualisation, Investigation, Supervision, Project administration. Sergio Reyes: Resources, Investigation, Visualisation. Francisco Lima: Resources, Investigation, Methodology. Sergio Paniagua: Conceptualisation, Investigation, Methodology, Supervision, Review and editing.

Corresponding authors

Correspondence to Luis F. Calvo or Sergio Paniagua.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prado-Guerra, A., Calvo, L.F., Reyes, S. et al. Custard apple crop residues combustion: an overall study of their energy behaviour under different fertilisation conditions. Biomass Conv. Bioref. 14, 10459–10473 (2024). https://doi.org/10.1007/s13399-022-03046-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03046-3

Keywords

Navigation