Skip to main content

Advertisement

Log in

Effect of Al2O3 and MgO nanofiller on the mechanical behaviour of alkaline-treated jute fibre–reinforced epoxy bio-nanocomposite

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Composite materials increasingly use biofibres because of their lightweight, remarkable strength, stiffness, and biodegradability. Nanofillers are becoming more common in bio-nanocomposite (BNC) applications in industries like aeronautics and marine engineering. Research is underway to determine the effects of nanofiller alumina (Al2O3) and magnesia (MgO) on BNC tensile, bending, and impact properties when coupled with reinforcing surface-treated jute fibres. Vacuum-bagged composite laminates were made by adding Al2O3 and MgO nanofiller (50 nm in diameter) to the epoxy range from 1 to 4% by weight. One set of fibres was treated with a 5% NaOH solution to see the effect of surface treatment and nanofillers on the mechanical properties of the composite. Surface-treated jute-reinforced composite outperformed untreated in tensile, bending, and impact properties. While on the additive inclusion of 3% of nanofiller, the highest properties were achieved, the treated jute-reinforced MgO-filled laminates increased the tensile strength by 60%, flexural strength by 67%, and impact strength by 42% as compared to laminates without nanofillers. SEM images show an array of imperfections, including interfacial performance, fibre breakage, fibre withdrawal, agglomeration, cracks, and voids. Surface treatment and nanofillers were shown to enhance the BNC’s mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Boopalan M, Umapathy MJ, Jenyfer P (2012) A comparative study on the mechanical properties of jute and sisal fiber reinforced polymer composites. SILICON 4:145–149. https://doi.org/10.1007/s12633-012-9110-6

    Article  Google Scholar 

  2. Amjad A, Anjang Ab Rahman A, Abidin MSZ (2022) Effect of nanofillers on mechanical and water absorption properties of alkaline treated jute fiber reinforced epoxy bio nanocomposites. J Nat Fibers 1–17.https://doi.org/10.1080/15440478.2022.2068171

  3. Amjad A, Anjang A, Abidin MSZ (2022) Effect of nanofiller concentration on the density and void content of natural fiber - reinforced epoxy composites. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-022-02839-w

    Article  Google Scholar 

  4. Greco A, Maffezzoli A, Casciaro G, Caretto F (2014) Mechanical properties of basalt fibers and their adhesion to polypropylene matrices. Compos B Eng 67:233–238. https://doi.org/10.1016/j.compositesb.2014.07.020

    Article  Google Scholar 

  5. Ganesh S, Keerthiveettil Ramakrishnan S, Palani V et al (2022) Investigation on the mechanical properties of ramie/kenaf fibers under various parameters using GRA and TOPSIS methods. Polym Compos 43:130–143. https://doi.org/10.1002/pc.26362

    Article  Google Scholar 

  6. Kicińska-Jakubowska A, Bogacz E, Zimniewska M (2012) Review of natural fibers. Part I-Vegetable Fibers. J Nat Fibers 9:150–167. https://doi.org/10.1080/15440478.2012.703370

    Article  Google Scholar 

  7. Keerthiveettil Ramakrishnan S, Vijayananth K, Pudhupalayam Muthukutti G et al (2022) The effect of various composite and operating parameters in wear properties of epoxy-based natural fiber composites. J Mater Cycles Waste Manage 24:667–679. https://doi.org/10.1007/s10163-022-01357-1

    Article  Google Scholar 

  8. Pujari S (2013) Comparison of jute and banana fiber composites: a review. Int J Curr Eng Technol 2:121–126. https://doi.org/10.14741/ijcet/spl.2.2014.22

    Article  Google Scholar 

  9. Burrola-Núñez H, Herrera-Franco PJ, Rodríguez-Félix DE et al (2019) Surface modification and performance of jute fibers as reinforcement on polymer matrix: an overview. J Nat Fibers 16:944–960. https://doi.org/10.1080/15440478.2018.1441093

    Article  Google Scholar 

  10. Amjad A, Abidin MSZ, Alshahrani H, Ab Rahman AA (2021) Effect of fibre surface treatment and nanofiller addition on the mechanical properties of flax/pla fibre reinforced epoxy hybrid nanocomposite. Polymers 13:3842. https://doi.org/10.3390/polym13213842

    Article  Google Scholar 

  11. Amjad A, Awais H, Ali MZ et al (2020) Effect of alumina nanofiller on the mechanical properties of 2d woven biotex flax/pla fiber-reinforced nanocomposite. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp 383–391. https://doi.org/10.1007/978-981-15-4756-0_32

  12. Awais H, Nawab Y, Amjad A et al (2021) Environmental benign natural fibre reinforced thermoplastic composites: a review. Compos Part C: Open Access 4:100082. https://doi.org/10.1016/j.jcomc.2020.100082

    Article  Google Scholar 

  13. Amjad A, Awais H, Anjang Ab Rahman A, Abidin MSZ (2021) Effect of nanofillers on mechanical and water absorption properties of alkaline treated flax/PLA fibre reinforced epoxy hybrid nanocomposites. Adv Compos Mater 00:1–17. https://doi.org/10.1080/09243046.2021.1993563

    Article  Google Scholar 

  14. Yang J, Guo Y, Yao L et al (2018) Effects of Kevlar volume fraction and fabric structures on the mechanical properties of 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composites. J Ind Text 47:2074–2091. https://doi.org/10.1177/1528083717720204

    Article  Google Scholar 

  15. Awais H, Nawab Y, Amjad A et al (2020) Mechanical properties of hollow glass microspheres filled jute woven comingled composites. Key Eng Mat 858 KEM:41–46. https://doi.org/10.4028/www.scientific.net/KEM.858.41

    Article  Google Scholar 

  16. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892

    Article  Google Scholar 

  17. Godara MSS, Godara SS, Godara MSS (2019) Effect of chemical modification of fiber surface on natural fiber composites: a review. Mater Today: Proc 18:3428–3434. https://doi.org/10.1016/j.matpr.2019.07.270

    Article  Google Scholar 

  18. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422. https://doi.org/10.3144/expresspolymlett.2008.50

    Article  Google Scholar 

  19. Ferreira DP, Cruz J, Fangueiro R (2018) Surface modification of natural fibers in polymer composites. Green Compos. Automot. Appl 3–41. https://doi.org/10.1016/B978-0-08-102177-4.00001-X

  20. Vinayagamoorthy R (2019) Influence of fiber surface modifications on the mechanical behavior of Vetiveria zizanioides reinforced polymer composites. J Nat Fibers 16:163–174. https://doi.org/10.1080/15440478.2017.1410513

    Article  Google Scholar 

  21. Khan J, Mariatti M (2021) The influence of substrate functionalization for enhancing the interfacial bonding between graphene oxide and nonwoven polyester. Fibers Polym 22:3192–3202. https://doi.org/10.1007/s12221-021-1386-y

    Article  Google Scholar 

  22. Ravikumar P, Rajeshkumar G, Manimegalai P et al (2022) Delamination and surface roughness analysis of jute/polyester composites using response surface methodology: consequence of sodium bicarbonate treatment. J Ind Text. https://doi.org/10.1177/15280837221077040

    Article  Google Scholar 

  23. Ali A, Shaker K, Nawab Y et al (2015) Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. J Reinf Plast Compos 34:2059–2068. https://doi.org/10.1177/0731684415610007

    Article  Google Scholar 

  24. Ibrahim ID, Jamiru T, Sadiku ER et al (2016) Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. J Nanotechnol 2016:1–9. https://doi.org/10.1155/2016/4235975

    Article  Google Scholar 

  25. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

    Article  Google Scholar 

  26. Eichhorn SJ, Dufresne A, Aranguren M et al (2010) Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. https://doi.org/10.1007/s10853-009-3874-0

    Article  Google Scholar 

  27. Srivabut C, Ratanawilai T, Hiziroglu S (2018) Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber. Constr Build Mater 162:450–458. https://doi.org/10.1016/j.conbuildmat.2017.12.048

    Article  Google Scholar 

  28. Boopalan M, Niranjanaa M, Umapathy MJ (2013) Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos B Eng 51:54–57. https://doi.org/10.1016/j.compositesb.2013.02.033

    Article  Google Scholar 

  29. Alamri H, Low IM (2012) Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polym Testing 31:620–628. https://doi.org/10.1016/j.polymertesting.2012.04.002

    Article  Google Scholar 

  30. Hasan KMF, Horváth PG, Alpár T (2020) Potential natural fiber polymeric nanobiocomposites: a review. Polymers 12:51–76. https://doi.org/10.3390/POLYM12051072

  31. Awais H, Nawab Y, Amjad A et al (2020) Fabrication and characterization of lightweight engineered polypropylene composites using silica particles and flax woven comingled structure. Lecture Notes in Mechanical Engineering. Springer, Singapore, pp 403–410. https://doi.org/10.1007/978-981-15-4756-0_34

  32. Patel VK, Dhanola A (2016) Influence of CaCO3, Al2O3, and TiO2 microfillers on physico-mechanical properties of Luffa cylindrica/polyester composites. Eng Sci Technol Int J 19:676–683. https://doi.org/10.1016/j.jestch.2015.10.005

    Article  Google Scholar 

  33. Swain PTR, Biswas S (2017) Influence of fiber surface treatments on physico-mechanical behaviour of jute/epoxy composites impregnated with aluminium oxide filler. J Compos Mater 51:3909–3922

    Article  Google Scholar 

  34. Samad A, Lau KY, Khan IA et al (2018) Structure and breakdown property relationship of polyethylene nanocomposites containing laboratory-synthesized alumina, magnesia and magnesium aluminate nanofillers. J Phys Chem Solids 120:140–146. https://doi.org/10.1016/j.jpcs.2018.04.036

    Article  Google Scholar 

  35. Abenojar J, Tutor J, Ballesteros Y et al (2017) Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites. Compos B Eng 120:42–53. https://doi.org/10.1016/j.compositesb.2017.03.047

    Article  Google Scholar 

  36. Prasad V, Joseph MA, Sekar K (2018) Investigation of mechanical, thermal and water absorption properties of flax fibre reinforced epoxy composite with nano TiO2 addition. Compos A Appl Sci Manuf 115:360–370. https://doi.org/10.1016/j.compositesa.2018.09.031

    Article  Google Scholar 

  37. Sumesh KR, Saikrishnan G, Pandiyan P et al (2021) The influence of different parameters in tribological characteristics of pineapple/sisal/TiO2 filler incorporation. J Ind Text. https://doi.org/10.1177/15280837211022614

    Article  Google Scholar 

  38. Hulugappa B, Achutha MV, Suresha B (2016) Effect of fillers on mechanical properties and fracture toughness of glass fabric reinforced epoxy composites. J Minerals Mater Charact Eng 04:1–14. https://doi.org/10.4236/jmmce.2016.41001

    Article  Google Scholar 

  39. Shalwan A, Yousif BF (2014) Influence of date palm fibre and graphite filler on mechanical and wear characteristics of epoxy composites. Mater Des 59:264–273. https://doi.org/10.1016/j.matdes.2014.02.066

    Article  Google Scholar 

  40. Ganapathy T, Sathiskumar R, Sanjay MR et al (2021) Effect of graphene powder on banyan aerial root fibers reinforced epoxy composites. J Nat Fibers 18:1029–1036. https://doi.org/10.1080/15440478.2019.1675219

    Article  Google Scholar 

  41. Zabihi O, Ahmadi M, Nikafshar S et al (2018) A technical review on epoxy-clay nanocomposites: Structure, properties, and their applications in fiber reinforced composites. Compos B Eng 135:1–24. https://doi.org/10.1016/j.compositesb.2017.09.066

    Article  Google Scholar 

  42. Asim M, Saba N, Jawaid M, Nasir M (2018) Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. In: Sustainable Composites for Aerospace Applications. Elsevier Ltd, pp 253–268. https://doi.org/10.1016/B978-0-08-102131-6.00012-8

  43. Bhattacharya M (2016) Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9:262–296

    Article  Google Scholar 

  44. Tanaka Y, Kimura T, Hikino K et al (2012) Gateway vectors for plant genetic engineering: overview of plant vectors, application for bimolecular fluorescence complementation (BiFC) and multigene construction. Genet Eng - Basics, New Appl Responsibilities 2:64. https://doi.org/10.5772/32009

    Article  Google Scholar 

  45. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Article  Google Scholar 

  46. Hosseini SB, Hedjazi S, Jamalirad L, Sukhtesaraie A (2014) Effect of nano-SiO2 on physical and mechanical properties of fiber reinforced composites (FRCs). J Indian Acad Wood Sci 11:116–121. https://doi.org/10.1007/s13196-014-0126-y

    Article  Google Scholar 

  47. Amjad A, Anjang Ab Rahman A, Awais H et al (2021) A review investigating the influence of nanofiller addition on the mechanical, thermal and water absorption properties of cellulosic fibre reinforced polymer composite. J Ind Text 0:152808372110575. https://doi.org/10.1177/15280837211057580

    Article  Google Scholar 

  48. Samariha A, Hemmasi AH, Ghasemi I et al (2015) Effect of nanoclay contents on properties, of bagasse flour/reprocessed high density polyethylene/nanoclay composites. Maderas: Ciencia y Tecnol 17:637–646. https://doi.org/10.4067/S0718-221X2015005000056

    Article  Google Scholar 

  49. Li Y, Chen C, Xu J et al (2015) Improved mechanical properties of carbon nanotubes-coated flax fiber reinforced composites. J Mater Sci 50:1117–1128. https://doi.org/10.1007/s10853-014-8668-3

    Article  Google Scholar 

  50. Cai M, Takagi H, Nakagaito AN et al (2016) Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos A Appl Sci Manuf 90:589–597. https://doi.org/10.1016/j.compositesa.2016.08.025

    Article  Google Scholar 

  51. Yan L, Chouw N, Huang L, Kasal B (2016) Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr Build Mater 112:168–182. https://doi.org/10.1016/j.conbuildmat.2016.02.182

    Article  Google Scholar 

  52. Naveen E, Venkatachalam NM (2015) Alkalichemical treatment on the surface of natural fibre. Int J Innov Res Sci Eng Technol 4:172–178

  53. Dilfi KFA, Balan A, Bin H et al (2018) Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber-reinforced epoxy composites. Polym Compos 39:E2519–E2528. https://doi.org/10.1002/pc.24817

    Article  Google Scholar 

  54. Ashok KG, Kalaichelvan K, Damodaran A (2022) Effect of nano fillers on mechanical properties of luffa fiber epoxy composites. Journal of Natural Fibers 19:1472–1489. https://doi.org/10.1080/15440478.2020.1779898

    Article  Google Scholar 

  55. Saba PMT, Abdan K, Ibrahim NA (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr Build Mater 123:15–26. https://doi.org/10.1016/j.conbuildmat.2016.06.131

    Article  Google Scholar 

  56. Prasob PA, Sasikumar M (2018) Static and dynamic behavior of jute/epoxy composites with ZnO and TiO2 fillers at different temperature conditions. Polym Testing 69:52–62. https://doi.org/10.1016/j.polymertesting.2018.04.040

    Article  Google Scholar 

  57. Chaharmahali M, Hamzeh Y, Ebrahimi G et al (2014) Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polym Bull 71:337–349. https://doi.org/10.1007/s00289-013-1064-3

    Article  Google Scholar 

  58. Singh JIP, Singh S, Dhawan V (2020) Effect of alkali treatment on mechanical properties of jute fiber-reinforced partially biodegradable green composites using epoxy resin matrix. Polym Polym Compos 28:388–397. https://doi.org/10.1177/0967391119880046

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Pakistani Higher Education Commission (HEC) HRDI-UESTPs scholarship and the Malaysian Government, Universiti Sains Malaysia FRGS Grant (1/2018/TK09/USM/02/4), for their assistance and financial support in conducting this study.

Funding

This research was carried out with the support of the Fundamental Research Grant Scheme (FRGS) 1/2018/TK09/USM/02/4 under the Malaysian Government, Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

Adnan Amjad—conceptualization, methodology, investigation, formal analysis, and writing (original draft). Habib Awais—investigation. M. Shukur Zainol Abidin—investigation and writing (review and editing), visualization. A. Aslina—visualization, supervision, writing (review and editing).

Corresponding author

Correspondence to Aslina Anjang Ab Rahman.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amjad, A., Awais, H., Abidin, M.S.Z. et al. Effect of Al2O3 and MgO nanofiller on the mechanical behaviour of alkaline-treated jute fibre–reinforced epoxy bio-nanocomposite. Biomass Conv. Bioref. 14, 9749–9762 (2024). https://doi.org/10.1007/s13399-022-03032-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-03032-9

Keywords

Navigation