Skip to main content

Advertisement

Log in

Steam explosion versus hydrothermal carbonization: evaluation of applicability for pretreatment of semi-solid waste from beverage industries to facilitate on-site biogas production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Semi-solid wastes from the beverage industry, like agave bagasse or brewery spent grains, were partly turned to the liquid phase by employing hydrothermal carbonization (HTC) or steam explosion (SE). The methane release in anaerobic batch assays of those extracts reached 316–362 mL g−1 of chemical oxygen demand for the SE pretreatment and 162–173 mL g−1 COD for HTC employed as a pretreatment. However, the yield of chemical oxygen demand in the extracts depends on both the pretreatment as well as the substrate. HTC applied to agave bagasse yielded 0.281 g of COD per gram of biomass, which is more than twice the amount from SE. In contrast, SE is more than 3 times effective than HTC using brewery spent grains as substrate with a yield of 0.582 g COD g−1. The combination of both process conversion efficiencies led to an available energy recovery of up to 0.4 for SE of spent grains and up to 0.1 for HTC of agave bagasse in relation to the energy content of substrate. For the latter, the slow and incomplete bioconversion of substrates obtained by HTC must be overcome. This holistic approach to sustainable management of large quantities of agro-industrial wastes turns an on-site environmental challenge into the availability of in-house renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Awasthi MK, Sarsaiya S, Patel A, Juneja A, Singh RP, Yan B, Awasthi SK, Jain A, Liu T, Duan Y, Pandey A, Zhang Z, Taherzadeh MJ (2020) Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew Sustain Energy Rev 127:109876. https://doi.org/10.1016/j.rser.2020.109876

    Article  Google Scholar 

  2. Reshmy R, Balakumaran PA, Divakar K, Philip E, Madhavan A, Pugazhendhi A, Sindhu R (2022) Microbial valorization of lignin: prospects and challenges. Bioresour Technol 344:126240. https://doi.org/10.1016/j.biortech.2021.126240

    Article  CAS  PubMed  Google Scholar 

  3. Rachwał K, Waśko A, Gustaw K, Polak-Berecka M (2020) Utilization of brewery wastes in food industry. PeerJ 8:e9427. https://doi.org/10.7717/peerj.9427

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wahlström R, Rommi K, Willberg-Keyriläinen P, Ercili-Cura D, Holopainen-Mantila U, Hiltunen J, Kuutti L (2017) High yield protein extraction from Brewer’s spent grain with novel carboxylate salt-urea aqueous deep eutectic solvents. ChemistrySelect 2:9355–9363. https://doi.org/10.1002/slct.201701492

    Article  CAS  Google Scholar 

  5. Zhou Z, Liu D, Zhao X (2021) Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renew Sustain Energy Rev 146:111169. https://doi.org/10.1016/j.rser.2021.111169

    Article  CAS  Google Scholar 

  6. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  7. Wainaina S, Lukitawesa AMK, Taherzadeh MJ (2019) Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered 10:437–458. https://doi.org/10.1080/21655979.2019.1673937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fernández-Dacosta C, Posada JA, Kleerebezem R, Cuellar MC, Ramirez A (2015) Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresour Technol 185:368–377. https://doi.org/10.1016/j.biortech.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  9. Velebil J, Malalák J, Bradna J (2016) Mass and energetic yields of hydrochar from brewer’s spent grain. Agron Res 14:614–623

    Google Scholar 

  10. Cedeno M (1995) Tequila Production. Crit Rev Biotechnol 15:1–11. https://doi.org/10.3109/07388559509150529

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Liñán-Montes A, Parra-Arciniega SM, Garza-González MT, García-Reyes RB, Soto-Regalado E, Cerino- Córdova FJ (2014) Characterization and thermal analysis of agave bagasse and malt spent grain. J Therm Anal Calorim 115:751–758. https://doi.org/10.1007/s10973-013-3321-y

    Article  CAS  Google Scholar 

  12. van Lier JB, van der Zee FP, Frijters CT, Ersahin ME (2015) Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnology 14:681–702. https://doi.org/10.1007/s11157-015-9375-5

    Article  CAS  Google Scholar 

  13. Weber B, Stadlbauer EA (2017) Sustainable paths for managing solid and liquid waste from distilleries and breweries. J Cleaner Prod 149:38–48. https://doi.org/10.1016/j.jclepro.2017.02.054

    Article  CAS  Google Scholar 

  14. Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential 5 applications. J Cereal Sci 43:1–14. https://doi.org/10.1016/j.jcs.2005.06.001

    Article  CAS  Google Scholar 

  15. Crespo MR, González DR, Rodríguez R, Rendón LA, del Real JI, Torres JP (2013) Evaluation of agave bagasse compost as a component of substrates to produce seedlings of blue agave. Revista Mexicana de Ciencias Agrícolas 4:1161–1173

    Article  Google Scholar 

  16. Libra JA, Ro KS, Kamann C, Funke A, Berge ND, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J, Emmerich KH (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

    Article  CAS  Google Scholar 

  17. Titirici MM, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31:787–789. https://doi.org/10.1039/B616045J

    Article  CAS  Google Scholar 

  18. Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K (2007) Dehydration of D-glucose in high temperature water at pressures up to 80 MPa. J Supercritical Fluids 40:381–388. https://doi.org/10.1016/j.supflu.2006.07.027

    Article  CAS  Google Scholar 

  19. Antal MJ, Mok WSL, Richards GN (1990) Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose. Carbohydrate Res 199:91–109. https://doi.org/10.1016/0008-6215(90)84096-D

    Article  CAS  Google Scholar 

  20. Poerschmann J, Weiner B, Wedwitschka H, Baskyr I, Koehler R, Kopinke FD (2014) Characterization of biocoals and dissolved organic matter phases obtained upon hydrothermal carbonization of brewer’s spent grain. Bioresour Technol 164:162–169. https://doi.org/10.1016/j.biortech.2014.04.052

    Article  CAS  PubMed  Google Scholar 

  21. Heilmann SM, Lindsey R, Jader MJ, Sadowsky S, FJ, von Keitz MG, Valentas KJ, (2011) Hydrothermal carbonization of distiller’s grains. Biomass Bioenerg 35:2526–2533. https://doi.org/10.1016/j.biombioe.2011.02.022

    Article  CAS  Google Scholar 

  22. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26:863–871. https://doi.org/10.1590/S0100-40422003000600015

    Article  CAS  Google Scholar 

  23. Negro MJ, Manzanares P, Oliva JM, Ballesteros I, Ballesteros M (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion treatment. Biomass Bioenerg 25:301–308. https://doi.org/10.1016/S0961-9534(03)00017-5

    Article  CAS  Google Scholar 

  24. Hongzhang C, Liying L (2007) Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol 98:666–676. https://doi.org/10.1016/j.biortech.2006.02.029

    Article  CAS  PubMed  Google Scholar 

  25. Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40. https://doi.org/10.1002/bbb.49

    Article  CAS  Google Scholar 

  26. Galbe M, Zacchi G (2012) Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy 46:70–78. https://doi.org/10.1016/j.biombioe.2012.03.026

    Article  CAS  Google Scholar 

  27. Arreola-Vargas J, Flores-Larios A, González-Álvarez V, Corona-González RI, Méndez-Acosta HO (2016) Single and two-stage anaerobic digestion for hydrogen and methane production from acid and enzymatic hydrolysates of Agave tequilana bagasse. Int J Hydrogen Energy 41:897–904. https://doi.org/10.1016/j.ijhydene.2015.11.016

    Article  CAS  Google Scholar 

  28. Purwadi R, Brandberg T, Taherzadeh MJ (2007) A possible industrial solution to ferment lignocellulosic hydrolyzate to ethanol: continuous cultivation with flocculating yeast. Int J Mol Sci 8:920–932. https://doi.org/10.3390/i8090920

    Article  CAS  PubMed Central  Google Scholar 

  29. Wirth B, Mumme J (2013) Anaerobic digestion of waste water from hydrothermal carbonization of corn silage. Appl Bioenergy (discontinued) 1:1–10. https://doi.org/10.2478/apbi-2013-0001

    Article  Google Scholar 

  30. Luz CF, Cordiner S, Manni A, Mulone V, Rocco V (2018) Biochar characteristics and early applications in anaerobic digestion—a review. J Environ Chem Eng 6:2892–2909. https://doi.org/10.1016/j.jece.2018.04.015

    Article  CAS  Google Scholar 

  31. Aragón-Briceño CI, Ross AB, Camargo-Valero MA (2021) Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge. Renew Energy 167:473–483. https://doi.org/10.1016/j.renene.2020.11.103

    Article  CAS  Google Scholar 

  32. Marin-Batista JD, Villamil JA, Qaramaleki SV, Coronella CJ, Mohedano AF, de la Rubia MA (2020) Energy valorization of cow manure by hydrothermal carbonization and anaerobic digestion. Renew Energy 160:623–623. https://doi.org/10.1016/j.renene.2020.07.003

    Article  CAS  Google Scholar 

  33. van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Official Anal Chem 50:50–55. https://doi.org/10.1093/jaoac/50.1.50

    Article  Google Scholar 

  34. Stökle K, Kruse A (2019) Extraction of sugars from forced chicory roots. Biomass Conv Bioref 9:699–708. https://doi.org/10.1007/s13399-019-00374-9

    Article  CAS  Google Scholar 

  35. DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  36. Buitrón G, Schoeb ME, Moreno-Andrade I, Moreno J (2005) Evaluation of two control strategies for a sequencing batch reactor degrading high concentration peaks of 4-chlorophenol. Water Res 39:1015–1024. https://doi.org/10.1016/j.watres.2004.12.023

    Article  CAS  PubMed  Google Scholar 

  37. Weber B, Stadlbauer EA, Eichenauer S, Koch C, Albert K, Kramer M, Steffens D (2013) Nature of carbonaceous materials from biomass by hydrothermal carbonization and low temperature conversion. J Biobased Mat Bioenergy 7:367–375. https://doi.org/10.1166/jbmb.2013.1358

    Article  CAS  Google Scholar 

  38. van Haandel AC, Lettinga G (1994) Anaerobic sewage treatment: a practical guide for regions with a hot climate. J Wiley and Sons Ltd, Chichester

    Google Scholar 

  39. Bougrier C, Dognin D, Laroche C, Gonzalez V, Benali-Raclot D, Cacho-Rivero JA (2018) Anaerobic digestion of brewery spent grains: trace elements addition requirement. Bioresour Technol 247:1193–1196. https://doi.org/10.1016/j.biortech.2017.08.211

    Article  CAS  PubMed  Google Scholar 

  40. Ortiz I, Torreiro Y, Molina G, Maroño M, Sánchez JM (2019) A feasible application of circular economy: spent grain energy recovery in the beer industry. Waste Biomass Valorization 10:3809–3819. https://doi.org/10.1007/s12649-019-00677-y

    Article  Google Scholar 

  41. Cholico-González D, Lara NO, Sánchez-Miranda AS, Morales-Estrella R, Escudero-García R, León-Patiño C (2021) Efficient metallization of magnetite concentrate by reduction with agave bagasse as a source of reducing agents. Int J Miner Metall Mater 28:603–611. https://doi.org/10.1007/s12613-020-2079-z

    Article  CAS  Google Scholar 

  42. Figueira CE, Moreira PF, Guidici R (2015) Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris. Bioresour Technol 198:717–724. https://doi.org/10.1016/j.biortech.2015.09.059

    Article  CAS  PubMed  Google Scholar 

  43. Santillán-Urquiza E, Arteaga-Cardona F, Hernandez-Herman E, Pacheco-García PF, González-Rodríguez R, Coffer JL, Mendoza-Alvarez ME, Vélez-Ruiz JF, Méndez-Rojas MA (2015) Inulin as a novel biocompatible coating: evaluation of surface affinities toward CaHPO4, α-Fe2O3, ZnO, CaHPO4@ZnO and α-Fe2O3@ZnO nanoparticles. J Colloid Interface Sci 460:339–348. https://doi.org/10.1016/j.jcis.2015.08.057

    Article  ADS  CAS  PubMed  Google Scholar 

  44. de Diego-Díaz B, Durán A, Álvarez-García MR, Fernández-Rodríguez J (2019) New trends in physicochemical characterization of solid lignocellulosic waste in anaerobic digestion. Fuel 245:240–246. https://doi.org/10.1016/j.fuel.2019.02.051

    Article  CAS  Google Scholar 

  45. Chum HL, Johnson DK, Black SK, Overend RP (1990) Pretreatment-catalyst effects and the combined severity parameter. Appl Biochem Biotechnol 24:1–14. https://doi.org/10.1007/BF02920229

    Article  Google Scholar 

  46. Ruiz HA, Galbe M, Garrote G, Ramirez-Gutierrez DM, Ximenes E, Sun SN, Lachos-Perez D, Rodríguez-Jasso RM, Sun RC, Yang B, Ladisch MR (2021) Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept. Bioresour Technol 342:125961. https://doi.org/10.1016/j.biortech.2021.125961

    Article  CAS  PubMed  Google Scholar 

  47. Wu Q, Yu S, Hao N, Wells T, Meng X, Li M, Pu Y, Liu S, Ragauskas AJ (2017) Characterization of products from hydrothermal carbonization of pine. Bioresour Technol 244:78–83. https://doi.org/10.1016/j.biortech.2017.07.138

    Article  CAS  PubMed  Google Scholar 

  48. Kreuger E, Nges IA, Björnsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44. https://doi.org/10.1186/1754-6834-4-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Teixeira Franco R, Coarit H, Bayard R, Buffière P (2019) An improved procedure to assess the organic biodegradability and the biomethane potential of organic wastes for anaerobic digestion. Waste Manag Res 37:746–754. https://doi.org/10.1177/0734242X19851201

    Article  CAS  PubMed  Google Scholar 

  50. Duran-Cruz V, Hernández S, Ortíz I (2021) Evaluation of steam explosion pretreatment and enzymatic hydrolysis conditions for agave bagasse in biomethane production. Bioenerg Res 14:1328–1337. https://doi.org/10.1007/s12155-021-10245-9

    Article  CAS  Google Scholar 

  51. Kruse A, Dadoux F, Grandl R, Wüst D (2012) Hydrothermal carbonization: 2. Kinetics of draff conversion. Chem Ing Tech 84:509–513. https://doi.org/10.1002/cite.201100168

    Article  CAS  Google Scholar 

  52. Balasundaram G, Banu R, Varjani S, Kazmi AA, Tyagi VK (2022) Recalcitrant compounds formation, their toxicity, and mitigation: key issues in biomass pretreatment and anaerobic digestion. Chemosphere 291:132930. https://doi.org/10.1016/j.chemosphere.2021.132930

    Article  CAS  PubMed  Google Scholar 

  53. Monlau F, Sambusiti C, Barakat A, Quéméneur M, Trably E, Steyer JP, Carrère H (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. https://doi.org/10.1016/j.biotechadv.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  54. Caroca E, Serrano A, Borja R, Jiménez A, Carvajal A, Braga AF, Fermoso FG (2021) Influence of phenols and furans released during thermal pretreatment of olive mill solid waste on its anaerobic digestion. Waste Manag 120:202–208. https://doi.org/10.1016/j.wasman.2020.11.027

    Article  CAS  PubMed  Google Scholar 

  55. Martín C, Wu G, Wang Z, Stagge S, Jönsson LJ (2018) Formation of microbial inhibitors in steam-explosion pretreatment of softwood impregnated with sulfuric acid and sulfur dioxide. Bioresour Technol 262:242–250. https://doi.org/10.1016/j.biortech.2018.04.074

    Article  CAS  PubMed  Google Scholar 

  56. Cao Z, Hülsemann B, Wüst D, Ill L, Oechsner H, Kruse A (2020) Valorization of maize silage digestate from two-stage anaerobic digestion by hydrothermal carbonization. Energy Conv Manag 222:113218. https://doi.org/10.1016/j.enconman.2020.113218

    Article  CAS  Google Scholar 

  57. Lu Z, Hegemann W (1998) Anaerobic toxicity and biodegradation of formaldehyde in batch cultures. Wat Res 32:209–215. https://doi.org/10.1016/S0043-1354(97)00181-4

    Article  CAS  Google Scholar 

  58. Oliveira SVWB, Moraes EM, Adorno MAT, Varesche MBA, Foresti E, Zaiat M (2004) Formaldehyde degradation in an anaerobic packed-bed bioreactor. Wat Res 38:1685–1694. https://doi.org/10.1016/j.watres.2004.01.01

    Article  CAS  Google Scholar 

  59. Wikandari R, Sanjaya AP, Millati R, Karimi K, Taherzadeh M J (2019) Fermentation inhibitors in ethanol and biogas processes and strategies to counteract their effects. In: Pandey A, Larroche C, Dussap CG, Gnansounou E, Khanal SK, Ricke S Eds. Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels. Academic Press pp. 461–499. https://doi.org/10.1016/B978-0-12-816856-1.00020-8

  60. Titirici MM, Antonietti M, Baccile N (2008) Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses. Green Chem 10:1204–1212. https://doi.org/10.1039/B807009A

    Article  CAS  Google Scholar 

  61. Ischia G, Fiori L, Gao L, Goldfarb JL (2021) Valorizing municipal solid waste via integrating hydrothermal carbonization and downstream extraction for biofuel production. J Cleaner Prod 289:125781. https://doi.org/10.1016/j.jclepro.2021.125781

    Article  CAS  Google Scholar 

  62. Bär RM, Voigt T (2019) Analysis and prediction methods for energy efficiency and media demand in the beverage industry. Food Eng Rev 11:200–217. https://doi.org/10.1007/s12393-019-09195-y

    Article  Google Scholar 

  63. Funke A, Ziegler F (2011) Heat of reaction measurements for hydrothermal carbonization of biomass. Bioresour Technol 102:7595–7598. https://doi.org/10.1016/j.biortech.2011.05.016

    Article  CAS  PubMed  Google Scholar 

  64. Heller M (2017) Food product environmental footprint literature summary: Beer. State of Oregon, Department of Environmental Quality. https://www.oregon.gov/deq/FilterDocs/PEF-FoodTransportation-FullReport. Accessed 22 June 2021

  65. Martínez JM, Baltierra-Trejo E, Taboada-Gonázlez P, Aguilar-Virgen Q, Marquez-Benavides L (2020) Life cycle environmental impacts and energy demand of craft mezcal in Mexico. Sustainability 12:8242. https://doi.org/10.3390/su12198242

    Article  CAS  Google Scholar 

  66. CRT – Consejo Regulador del Tequila 2021. Sustainability strategy for the agave-tequila chain (Actions, Results & Perspectives). https://www.origin-gi.com/images/stories/PDFs/English/Event/20_april_2021-origin_spirits_and_sustainability/Tequila-Sprits_GIs_sustainability_20-04-2021.pdf. Accessed 22 june 2021

  67. Weber B, Sandoval-Moctezuma AC, Estrada-Maya A, Martínez-Cienfuegos IG, Durán-García MD (2020) Agave bagasse response to steam explosion and anaerobic treatment. Biomass Convers Biorefin 10:1279–1289. https://doi.org/10.1007/s13399-020-00619-y

    Article  CAS  Google Scholar 

  68. Tellez-Echeverri I, Weber B. (2020) Comparativa de la producción de biogás de diversos sustratos en pruebas de lote y en un digestor de operación continua. XIV Latin American Workshop and Symposium on Anaerobic Digestion 11–13 of November 2020

  69. Mendez-Acosta HO, Gonzalez-Alvarez V (2014) Methane production from tequila vinasses. In. Torres L, Bandala ER (eds) Energy and environment nowadays. Ed. Nova Publishers, New York, pp 165–188

  70. Esslinger HM, Narziss L (2003) Beer. Ullmann’s Encyclopedia of industrial chemistry, vol 4, 6th edn. Wiley-VCH, Weinheim, pp 657–699

    Google Scholar 

  71. López-López A, Davila-Vazquez G, León-Becerril E, Villegas-García E, GallardoValdez J (2010) Tequila Viansses: generation and full scale treatment processes. Rev Environ Sci Biotechnol 9:109–116. https://doi.org/10.1007/s11157-010-9204-9

    Article  CAS  Google Scholar 

Download references

Funding

This research was conducted with the support of Fondo Sectorial CONACyT-Sener, Cemie-Bio Project: 247006 “Biocombustibles Gaseosos.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Weber.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 585 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, B., Ayala-Mercado, I.D. & Stadlbauer, E.A. Steam explosion versus hydrothermal carbonization: evaluation of applicability for pretreatment of semi-solid waste from beverage industries to facilitate on-site biogas production. Biomass Conv. Bioref. 14, 7659–7671 (2024). https://doi.org/10.1007/s13399-022-02983-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02983-3

Keywords

Navigation