Skip to main content
Log in

Performance evaluation of Zn-Fe adsorbent for H2S adsorption during biogas purification

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The trend of research using mixed metal oxide as a selective adsorbent for H2S gas is increasing. Inline with that, this paper evaluated the performance of Zn-Fe/Al2O3 adsorbent in adsorbing H2S as one of the steps in biogas purification process. The Zn-Fe/Al2O3 was successfully synthesized by microwave-assisted wet impregnation technique. The results showed that some operation parameters such as biogas space velocity, H2S inlet concentration, and biogas humidity had obvious influence on the performance of the gas adsorber. At low gas hourly space velocity (GHSV) of 1750 h−1, low H2S inlet concentrations (100 ppm), and no moisture in biogas, the highest breakthrough capacity was achieved with 3.23 mg H2S per gram adsorbent. Fresh and spent adsorbents were characterized by SEM–EDX to investigate the impact of H2S adsorption on the physical properties of the adsorbent. According to the good performance in removing H2S under ambient conditions, the Zn-Fe/Al2O3 is expected to be a promising adsorbent for H2S adsorption in biogas purification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, DAR, upon reasonable request.

References

  1. Cristiano DM, de Mohedano RA, Nadaleti WC, de Castilhos Junior AB, Lourenço VA, Gonçalves DFH et al (2020) H2S adsorption on nanostructured iron oxide at room temperature for biogas purification: application of renewable energy. Renew Energy 154:151–160. https://doi.org/10.1016/j.renene.2020.02.054

    Article  CAS  Google Scholar 

  2. Abdullah AH, Mat R, Somderam S, Abd Aziz AS, Mohamed A (2018) Hydrogen sulfide adsorption by zinc oxide-impregnated zeolite (synthesized from Malaysian kaolin) for biogas desulfurization. J Ind Eng Chem 65:334–342. https://doi.org/10.1016/j.jiec.2018.05.003

    Article  CAS  Google Scholar 

  3. Peluso A, Gargiulo N, Aprea P, Pepe F, Caputo D (2019) Nanoporous materials as H2S adsorbents for biogas purification: a review. Sep Purif Rev 48:78–89. https://doi.org/10.1080/15422119.2018.1476978

    Article  CAS  Google Scholar 

  4. Bove R, Lunghi P (2006) Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers Manag 47:1391–1401. https://doi.org/10.1016/j.enconman.2005.08.017

    Article  CAS  Google Scholar 

  5. Yang C, Yang S, Fan HL, Wang J, Wang H, Shangguan J, Huo C (2020) A sustainable design of ZnO-based adsorbent for robust H2S uptake and secondary utilization as hydrogenation catalyst. Chem Eng J 382:Article number 122892. https://doi.org/10.1016/j.cej.2019.122892

  6. Cardozo JIH, Cifuentes SI (2010) H2S and CO2 filtration of biogas used in internal combustion engines for power generation. IMECE2009: Proc ASME Int Mech Eng Congress Expo 8:21–6. https://doi.org/10.1115/IMECE2009-12068

    Article  CAS  Google Scholar 

  7. Rasi S, Läntelä J, Rintala J (2011) Trace compounds affecting biogas energy utilisation – a review. Energy Convers Manag 52:3369–3375. https://doi.org/10.1016/j.enconman.2011.07.005

    Article  CAS  Google Scholar 

  8. Mureddu M, Ferino I, Rombi E, Cutrufello MG, Deiana P, Ardu A et al (2012) ZnO/SBA-15 composites for mid-temperature removal of H2S: synthesis, performance and regeneration studies. Fuel 102:691–700. https://doi.org/10.1016/j.fuel.2012.05.013

    Article  CAS  Google Scholar 

  9. Liu CG, Zhang R, Wei S, Wang J, Liu Y, Li M, Liu R (2015) Selective removal of H2S from biogas using a regenerable hybrid TiO2/zeolite composite. Fuel 157:183–190. https://doi.org/10.1016/j.fuel.2015.05.003

    Article  CAS  Google Scholar 

  10. Maghsoudi H, Soltanieh M (2014) Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. J Membr Sci 470:159–165. https://doi.org/10.1016/j.memsci.2014.07.025

    Article  CAS  Google Scholar 

  11. Jiang X, Tay JH (2011) Removal mechanisms of H2S using exhausted carbon in biofiltration. J Hazard Mater 185:1543–1549. https://doi.org/10.1016/j.jhazmat.2010.10.085

    Article  CAS  PubMed  Google Scholar 

  12. Álvarez-Cruz R, Sánchez-Flores BE, Torres-González J, Antaño-López R, Castañeda F (2012) Insights in the development of a new method to treat H2S and CO2 from sour gas by alkali. Fuel 100:173–176. https://doi.org/10.1016/j.fuel.2012.05.009

    Article  CAS  Google Scholar 

  13. Monteleone G, De Francesco M, Galli S, Marchetti M, Naticchioni V (2011) Deep H2S removal from biogas for molten carbonate fuel cell (MCFC) systems. Chem Eng J 173:407–414. https://doi.org/10.1016/j.cej.2011.07.078

    Article  CAS  Google Scholar 

  14. Kwaśny J, Balcerzak W (2016) Sorbents used for biogas desulfurization in the adsorption process. Pol J Environ Stud 25:37–43. https://doi.org/10.15244/pjoes/60259

    Article  CAS  Google Scholar 

  15. Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50:13589–13613. https://doi.org/10.1021/ie201477c

    Article  CAS  Google Scholar 

  16. Samokhvalov A, Tatarchuk BJ (2011) Characterization of active sites, determination of mechanisms of H2S, COS and CS2 sorption and regeneration of ZnO low-temperature sorbents: past, current and perspectives. Phys Chem Chem Phys 13:3197–3209. https://doi.org/10.1039/c0cp01227k

    Article  CAS  PubMed  Google Scholar 

  17. Liu GQ, Huang ZH, Kang FY (2012) Preparation of ZnO/SiO2 gel composites and their performance of H2S removal at room temperature. J Hazard Mater 215:166–172. https://doi.org/10.1016/j.jhazmat.2012.02.050

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Bak CU, Lim CJ, Kim YD, Kim WS (2019) Multi-stage adsorptive purification process for improving desulfurization performance of biogas. Sep Purif Technol 227:Article number 115702. https://doi.org/10.1016/j.seppur.2019.115702

  19. Feng Y, Wang JC, Hu YF, Lu JJ, Zhang M, Mi J (2020) Microwave heating motivated performance promotion and kinetic study of iron oxide sorbent for coal gas desulfurization. Fuel 267:Article number 117215. https://doi.org/10.1016/j.fuel.2020.117215

  20. Lin YH, Chen YC, Chu H (2015) The mechanism of coal gas desulfurization by iron oxide sorbents. Chemosphere 121:62–67. https://doi.org/10.1016/j.chemosphere.2014.11.010

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Pansare SS, Allison JD (2020) An investigation of the effect of ultra-low concentrations of sulfur on a Co/γ-Al2O3 Fischer-Tropsch synthesis catalyst. Appl Cata A: Gen 387:224–230. https://doi.org/10.1016/j.apcata.2010.08.031

    Article  CAS  Google Scholar 

  22. Rahim DA, Fang W, Zhu GJ, Wibowo H, Hantoko D, Hu Q, et al (2021) Microwave-assisted synthesis of Zn-Fe adsorbent supported on alumina: effect of Zn to Fe ratio on syngas desulfurization performance. Chem Eng Process: Process Intensif 168:Article number 108565. https://doi.org/10.1016/j.cep.2021.108565

  23. Yazdanbakhsh F, Bläsing M, Sawada JA, Rezaei S, Müller M, Baumann S et al (2014) Copper exchanged nanotitanate for high temperature H2S adsorption. Ind Eng Chem Res 53:11734–11739. https://doi.org/10.1021/ie501029u

    Article  CAS  Google Scholar 

  24. Huang ZB, Liu BS, Tang XY, Wang XH, Amin R (2016) Performance of rare earth oxide doped Mn-based sorbent on various silica supports for hot coal gas desulfurization. Fuel 177:217–225. https://doi.org/10.1016/j.fuel.2016.03.009

    Article  CAS  Google Scholar 

  25. Hussain M, Abbas N, Fino D, Russo N (2012) Novel mesoporous silica supported ZnO adsorbents for the desulphurization of biogas at low temperatures. Chem Eng J 188:222–232. https://doi.org/10.1016/j.cej.2012.02.034

    Article  CAS  Google Scholar 

  26. Gangurde LS, Sturm GSJ, Devadiga TJ, Stankiewicz AI, Stefanidis GD (2017) Complexity and challenges in noncontact high temperature measurements in microwave-assisted catalytic reactors. Ind Eng Chem Res 56:13379–13391. https://doi.org/10.1021/acs.iecr.7b02091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang ZB, Liu BS, Wang F, Amin R (2015) Performance of Zn–Fe–Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process. Appl Surf Sci 353:1–10. https://doi.org/10.1016/j.apsusc.2015.06.058

    Article  ADS  CAS  Google Scholar 

  28. Yuan WX, Bandosz TJ (2007) Removal of hydrogen sulfide from biogas on sludge-derived adsorbents. Fuel 86:2736–2746. https://doi.org/10.1016/j.fuel.2007.03.012

    Article  CAS  Google Scholar 

  29. Fontsere Obis M, Germain P, Troesch O, Spillemaecker M, Benbelkacem H (2017) Valorization of MSWI bottom ash for biogas desulfurization: influence of biogas water content. Waste Manag 60:388–396. https://doi.org/10.1016/j.wasman.2016.06.013

    Article  CAS  PubMed  Google Scholar 

  30. Xia H, Liu BS, Li Q, Huang ZB, Cheung AS-C (2017) High capacity Mn-Fe-Mo/FSM-16 sorbents in hot coal gas desulfurization and mechanism of elemental sulfur formation. Appl Catal B: Environ 200:552–565. https://doi.org/10.1016/j.apcatb.2016.07.053

    Article  CAS  Google Scholar 

  31. Sisani E, Cinti G, Discepoli G, Penchini D, Desideri U, Marmottini F (2014) Adsorptive removal of H2S in biogas conditions for high temperature fuel cell systems. Int J Hydrog Energy 39:21753–21766. https://doi.org/10.1016/j.ijhydene.2014.07.173

    Article  CAS  Google Scholar 

  32. Truong LVA, Abatzoglou N (2005) A H2S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector. Biomass Bioenergy 29:142–151. https://doi.org/10.1016/j.biombioe.2005.03.001

    Article  CAS  Google Scholar 

  33. Huang CC, Chen CH, Chu SM (2006) Effect of moisture on H2S adsorption by copper impregnated activated carbon. J Hazard Mater 136:866–873. https://doi.org/10.1016/j.jhazmat.2006.01.025

    Article  CAS  PubMed  Google Scholar 

  34. Hernández SP, Chiappero M, Russo N, Fino D (2011) A novel ZnO-based adsorbent for biogas purification in H2 production systems. Chem Eng J 176:272–279. https://doi.org/10.1016/j.cej.2011.06.085

    Article  CAS  Google Scholar 

  35. Sitthikhankaew R, Predapitakkun S, Kiattikomol R, Pumhiran S, Assabumrungrat S, Laosiripojana N (2011) Comparative study of hydrogen sulfide adsorption by using alkaline impregnated activated carbons for hot fuel gas purification. Energy Procedia 9:15–24. https://doi.org/10.1016/j.egypro.2011.09.003

    Article  CAS  Google Scholar 

  36. Gutiérrez Ortiz FJ, Aguilera PG, Ollero P (2014) Biogas desulfurization by adsorption on thermally treated sewage-sludge. Sep Purif Technol 123:200–213. https://doi.org/10.1016/j.seppur.2013.12.025

    Article  CAS  Google Scholar 

  37. Fan HL, Shangguan J, Liang LT, Li CH, Lin JY (2013) A comparative study of the effect of clay binders on iron oxide sorbent in the high-temperature removal of hydrogen sulfide. Process Saf Environ Prot 91:235–243. https://doi.org/10.1016/j.psep.2012.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation, China (51976196 and 52150410422), and the International Cooperation Project of Zhejiang Province (2019C04026).

Funding

This study was funded by the National Natural Science Foundation, China (51976196 and 52150410422), and the International Cooperation Project of Zhejiang Province (2019C04026).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Wei Fang and Dicka Ar Rahim; methodology: Wei Fang, Hongyu Feng, and Yan Zhang; formal analysis and investigation: Wei Fang and Yan Zhang; writing-original draft preparation: Wei Fang and Dicka Ar Rahim; writing-review and editing: Haryo Wibowo and Ekkachai Kanchanatip; funding acquisition: Yan Mi; resources: Yan Mi and Haryo Wibowo; supervision: Yan Mi and Ekkachai Kanchanatip.

Corresponding author

Correspondence to Dicka Ar Rahim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, M., Fang, W., Feng, H. et al. Performance evaluation of Zn-Fe adsorbent for H2S adsorption during biogas purification. Biomass Conv. Bioref. 14, 8321–8331 (2024). https://doi.org/10.1007/s13399-022-02959-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02959-3

Keywords

Navigation