Skip to main content

Advertisement

Log in

Development and application of a detailed kinetic model to evaluate the torrefaction process of rice-based biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Torrefaction techniques are often used to improve the properties of biomass fuels. This study developed a new detailed lumped model to investigate the reaction mechanism of rice husk (RH) and rice straw (RS) degradation during the torrefaction process. The validity of this model was confirmed by comparing it with the experimental result. The van Krevelen diagram and CHO index are obtained by the simulation. A new parameter (loss of O/loss of energy) was also defined to account for the energy efficiency of the torrefaction system. The calculation of the Chemkin model showed that 260 °C is relatively an optimum torrefaction temperature for rice husks, while for straw is 270 °C. Compared to rice husk, rice straw has a higher energy yield and more loss of oxygen after torrefaction. The simulation can provide information on the whole range of temperature, which makes up the experimental defects such as time consumption and high cost. Combining the van Krevelen diagram, CHO index and the new parameter (loss of O/loss of energy) could provide useful information that deepens the understanding of the biomass torrefaction process and the inherent connection between the different indexes. It is believed that the research result can provide some valuable insights and guidance for understanding and optimizing the torrefaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(\mathrm{LHV }(\mathrm{kJ}/\mathrm{g})\) :

Lower heating value

\(\mathrm{HHV }(\mathrm{kJ}/\mathrm{g})\) :

Higher heating value

\({m}_{S}\) :

Mass of solid components

m l :

Mass of liquid components

m g :

Mass of gas components

m H :

Mass of H component

m O :

Mass of O component

\({m}_{\mathrm{S}}\) :

Mass of S component

\({m}_{\mathrm{Cl}}\) :

Mass of Cl component

SY:

solid waste

GY:

gas yield

LY:

liquid yield

CHO index:

the oxidation state of C in organic products during pyrolysis

van Krevelen diagram:

C/O and C/H ratio diagram

References 

  1. Yusoff S (2006) Renewable energy from palm oil—innovation on effective utilization of waste. J clean prod 14(1):87–93. https://doi.org/10.1016/j.jclepro.2004.07.005

    Article  Google Scholar 

  2. Bilgen S et al (2008) Global warming and renewable energy sources for sustainable development: a case study in Turkey. Renew sust energ rev 12(2):372–396. https://doi.org/10.1016/j.rser.2006.07.016

    Article  Google Scholar 

  3. Panwar N, Kaushik S, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew sust energ rev 15(3):1513–1524. https://doi.org/10.1016/j.rser.2010.11.037

    Article  Google Scholar 

  4. Lopez G et al (2022) Hydrogen generation from biomass by pyrolysis. Nat Rev Dis Primers 2(1):1–13. https://doi.org/10.1038/s43586-022-00097-8

    Article  CAS  Google Scholar 

  5. Zhang S et al (2022) Hydrogen production from autothermal CO2 gasification of cellulose in a fixed-bed reactor: influence of thermal compensation from CaO carbonation. Int J Hydrog Energyhttps://doi.org/10.1016/j.ijhydene.2022.02.018

  6. Zhang S et al (2022) Effect of auto thermal biomass gasification on the sintering of simulated ashes. Prog Energy Combust Sci 9:100054. https://doi.org/10.1016/j.jaecs.2021.100054

    Article  Google Scholar 

  7. Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad 115(25):6506–6511. https://doi.org/10.1073/pnas.1711842115

    Article  ADS  CAS  Google Scholar 

  8. Niu Y et al (2019) Biomass torrefaction: properties, applications, challenges, and economy. Renew Sustain Energy Rev 115:109395. https://doi.org/10.1016/j.rser.2019.109395

    Article  CAS  Google Scholar 

  9. Talero G, Rincón S, Gómez A (2019) Biomass torrefaction in a standard retort: a study on oil palm solid residues. Fuel 244:366–378. https://doi.org/10.1016/j.fuel.2019.02.008

    Article  CAS  Google Scholar 

  10. Wang Z, Lim CJ, Grace JR (2019) (2019) Biomass torrefaction in a slot-rectangular spouted bed reactor. Particuology 42:154–162. https://doi.org/10.1016/j.partic.2018.02.002

    Article  CAS  Google Scholar 

  11. Chen D et al (2018) Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manag 169:228–237. https://doi.org/10.1016/j.enconman.2018.05.063

    Article  CAS  Google Scholar 

  12. Kanwal S et al (2019) Effect of torrefaction conditions on the physicochemical characterization of agricultural waste (sugarcane bagasse). Waste Manag 88:280–290. https://doi.org/10.1016/j.wasman.2019.03.053

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Sukiran MA et al (2017) A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers Manag 149:101–120. https://doi.org/10.1016/j.enconman.2017.07.011

    Article  CAS  Google Scholar 

  14. Pinto F et al (2017) Improvement of gasification performance of Eucalyptus globulus stumps with torrefaction and densification pre-treatments. Fuel 206:289–299. https://doi.org/10.1016/j.fuel.2017.06.008

    Article  CAS  Google Scholar 

  15. Becker A, Scherer V (2018) A comparison of the torrefaction behavior of wood, miscanthus and palm kernel shells: measurements on single particles with geometries of technical relevance. Fuel 224:507–520. https://doi.org/10.1016/j.fuel.2018.01.095

    Article  CAS  Google Scholar 

  16. Álvarez A et al (2018) Non-oxidative torrefaction of biomass to enhance its fuel properties. Energy 158:1–8. https://doi.org/10.1016/j.energy.2018.06.009

    Article  CAS  Google Scholar 

  17. Toscano G et al (2015) Torrefaction of tomato industry residues. Fuel 143:89–97. https://doi.org/10.1016/j.fuel.2014.11.039

    Article  CAS  Google Scholar 

  18. Zhang C et al (2018) Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl Energy 220:598–604. https://doi.org/10.1016/j.apenergy.2018.03.129

    Article  ADS  CAS  Google Scholar 

  19. Park J et al (2013) Transformation of lignocellulosic biomass during torrefaction. J Anal Appl Pyrol 100:199–206. https://doi.org/10.1016/j.jaap.2012.12.024

    Article  CAS  Google Scholar 

  20. Zheng A et al (2015) Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy Fuels 29(12):8027–8034. https://doi.org/10.1021/acs.energyfuels.5b01765

    Article  CAS  Google Scholar 

  21. Hameed S et al (2019) A review on biomass pyrolysis models: kinetic, network and mechanistic models. Biomass Bioenerg 123:104–122. https://doi.org/10.1016/j.biombioe.2019.02.008

    Article  CAS  Google Scholar 

  22. Ragauskas AJ Materials for biofuels. Vol. 4. 2014: World Scientific.

  23. Cao X et al (2014) Comparative study of the pyrolysis of lignocellulose and its major components: characterization and overall distribution of their biochars and volatiles. Bioresour Technol 155:21–27. https://doi.org/10.1016/j.biortech.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  24. Kim YM et al (2016) Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata. Bioresour Technol 219:371–377. https://doi.org/10.1016/j.biortech.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  25. Wang S et al (2015) Pyrolysis behaviors of four lignin polymers isolated from the same pine wood. Bioresour Technol 182:120–127. https://doi.org/10.1016/j.biortech.2015.01.127

    Article  CAS  PubMed  Google Scholar 

  26. Das PK, Das BP and Dash P (2020) Potentials of postharvest rice crop residues as a source of biofuel, in Refining Biomass Residues for Sustainable Energy and Bioproducts, Elsevier 275-301https://doi.org/10.1016/B978-0-12-818996-2.00013-2

  27. Wang G et al (2020) A review of recent advances in biomass pyrolysis. Energy Fuels 34(12):15557–15578. https://doi.org/10.1021/acs.energyfuels.0c03107

    Article  CAS  Google Scholar 

  28. Moghtaderi B (2006) The state-of-the-art in pyrolysis modelling of lignocellulosic solid fuels. Fire Mater 30(1):1–34. https://doi.org/10.1002/fam.891

    Article  CAS  Google Scholar 

  29. Babu B (2008) Biomass pyrolysis: a state-of-the-art review. Biofuel Bioprod Bior 2:393–414

    Article  CAS  Google Scholar 

  30. Larfeldt J, Leckner B, Melaaen MC (2000) Modelling and measurements of the pyrolysis of large wood particles. Fuel 79(13):1637–1643. https://doi.org/10.1016/S0016-2361(00)00007-7

    Article  CAS  Google Scholar 

  31. Prakash N, Karunanithi T (2008) Kinetic modeling in biomass pyrolysis—a review. J appl sci res 4(12):1627–1636. https://doi.org/10.1016/S0165-2370(96)00971-0

    Article  CAS  Google Scholar 

  32. Patwardhan PR et al (2011) Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour Technol 102(8):5265–5269. https://doi.org/10.1016/j.biortech.2011.02.018

    Article  CAS  PubMed  Google Scholar 

  33. Ranzi E et al (2008) Chemical kinetics of biomass pyrolysis. Energy Fuels 22(6):4292–4300. https://doi.org/10.1021/ef800551t

    Article  CAS  Google Scholar 

  34. Dhahak A et al (2019) (2019) Development of a detailed kinetic model for the combustion of biomass. Fuel 242:756–774. https://doi.org/10.1016/j.fuel.2019.01.093

    Article  CAS  Google Scholar 

  35. Anca-Couce A et al (2014) Kinetic scheme to predict product composition of biomass torrefaction. Chem Eng 37https://doi.org/10.3303/CET1437008

  36. Deneyer A et al (2015) Alkane production from biomass: chemo-, bio-and integrated catalytic approaches. Curr Opin Chem Biol 29:40–48. https://doi.org/10.1016/j.cbpa.2015.08.010

    Article  CAS  PubMed  Google Scholar 

  37. Kee RJ, Miller JA, and Jefferson TH (1980) CHEMKIN: a general-purpose, problem-independent, transportable, FORTRAN chemical kinetics code package. 1980, Sandia Labs.

  38. Shin E-J, Nimlos MR, Evans RJ (2001) Kinetic analysis of the gas-phase pyrolysis of carbohydrates. Fuel 80(12):1697–1709. https://doi.org/10.1016/S0016-2361(01)00056-4

    Article  CAS  Google Scholar 

  39. Saito K, Kakumoto T, Murakami I (1984) Thermal unimolecular decomposition of glyoxal. J Phys Chem 88(6):1182–1187. https://doi.org/10.1021/j150650a033

    Article  CAS  Google Scholar 

  40. Nguyen MT et al (1995) Theoretical study of the thermal decomposition of acetic acid: decarboxylation versus dehydration. J Phys Chem 99(31):11883–11888. https://doi.org/10.1021/j100031a015

    Article  CAS  Google Scholar 

  41. Maffei LP et al (2020) Theoretical study of sensitive reactions in phenol decomposition. React Chem Eng 5(3):452–472. https://doi.org/10.1039/C9RE00418A

    Article  Google Scholar 

  42. Faravelli T et al (2010) Detailed kinetic modeling of the thermal degradation of lignins. Biomass Bioenergy 34(3):290–301. https://doi.org/10.1016/j.biombioe.2009.10.018

    Article  CAS  Google Scholar 

  43. Li G et al (2020) A study of the mechanisms of guaiacol pyrolysis based on free radicals detection technology. Catalysts 10(3):295. https://doi.org/10.3390/catal10030295

    Article  CAS  Google Scholar 

  44. Tian B et al (2021) A comprehensive evaluation on pyrolysis behavior, kinetics, and primary volatile formation pathways of rice husk for application to catalytic valorization. Fuel Process Technol 214:106715. https://doi.org/10.1016/j.fuproc.2020.106715

    Article  CAS  Google Scholar 

  45. Nowakowska M et al (2018) Kinetic study of the pyrolysis and oxidation of guaiacol. J Phys Chem A 122(39):7894–7909. https://doi.org/10.1021/acs.jpca.8b06301

    Article  CAS  PubMed  Google Scholar 

  46. Channiwala S, Parikh P (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8):1051–1063. https://doi.org/10.1016/S0016-2361(01)00131-4

    Article  CAS  Google Scholar 

  47. Poudel J, Karki S, Oh SC (2018) Valorization of waste wood as a solid fuel by torrefaction. Energies 11(7):1641. https://doi.org/10.3390/en11071641

    Article  CAS  Google Scholar 

  48. Mann BF et al (2015) Indexing permafrost soil organic matter degradation using high-resolution mass spectrometry. PLoS ONE 10(6):e0130557. https://doi.org/10.1371/journal.pone.0130557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Financial support was provided by LiaoNing Revitalization Talents Program (grant number: XLYC2007179).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhao Ji or Aimin Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A new detailed lumped kinetic model for the torrefaction process is proposed.

• The simulation results could clarify the torrefaction mechanism.

• The correlation of three different indexes could find the best performing temperatures.

• The simulation proposes a new factor to evaluate the torrefaction efficiency.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 39.9 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Chen, C., Ji, G. et al. Development and application of a detailed kinetic model to evaluate the torrefaction process of rice-based biomass. Biomass Conv. Bioref. 14, 8215–8228 (2024). https://doi.org/10.1007/s13399-022-02900-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02900-8

Keywords

Navigation