Skip to main content
Log in

Constructing a novel carbon material for efficient separation of uranium(VI) from solution

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The purpose of this study was to develop a carbon material with excellent adsorption performance of uranium, which could effectively reduce the risk of damage to the water environment caused by pig manure (PM) and uranium-containing wastewater. Three kinds of biochars (PMBC-300, PMBC-500, and PMBC-700) were successfully constructed with pig manure as the precursor at different carbonization temperature (300, 500, and 700 °C) for removing uranium from the solution. Meanwhile, various adsorption isotherm and kinetics models were applied to deeply discuss the adsorption performances and mechanism of pig manure-derived biochar for uranium. The results showed that the surface charge and active sites of PMBC were the important parameters to affect the removal of uranium. The adsorption capacity of PMBC-500 reached 376.5 mg/g (m/V = 0.1 g/L, pH = 4, and T = 298 K) due to the abundant active sites (phosphate, carbonate, and oxygen-containing groups), which was much higher than that of other reported carbon materials. Therefore, it could be considered that the conversion of PM into PMBC was a feasible method, which would effectively remove uranium from the solution and reduce the pollution of PM to the environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Shakoor A, Shakoor S, Rehman A, Ashraf F, Abdullah M, Shahzad SM, Farooq TH, Ashraf M, Manzoor MA, Altaf MM, Altaf MA (2021) Effect of animal manure, crop type, climate zone, and soil attributes on greenhouse gas emissions from agricultural soils—a global meta-analysis. J Clean Prod 278:124019

    Article  CAS  Google Scholar 

  2. Wzorek M, Junga R, Yilmaz E, Niemiec P (2021) Combustion behavior and mechanical properties of pellets derived from blends of animal manure and lignocellulosic biomass. J Environ Manage 290:112487

    Article  CAS  PubMed  Google Scholar 

  3. Zhou X, Wang J, Lu C, Liao Q, Gudda FO, Ling W (2021) Antibiotics in animal manure and manure-based fertilizers: occurrence and ecological risk assessment. Chemosphere 255:127006

    Article  Google Scholar 

  4. Liu W, Ling N, Guo J, Ruan Y, Wang M, Shen Q, Guo S (2021) Dynamics of the antibiotic resistome in agricultural soils amended with different sources of animal manures over three consecutive years. J Hazard Mater 401:123399

    Article  CAS  PubMed  Google Scholar 

  5. Guo Z, Zhang J, Fan J, Yang X, Yi Y, Han X, Wang D, Zhu P, Peng X (2019) Does animal manure application improve soil aggregation? Insights from nine long-term fertilization experiments. Sci Total Environ 660:1029–1037

    Article  CAS  PubMed  Google Scholar 

  6. Han L, Zhang E, Yang Y, Sun K, Fang L (2020) Highly efficient U(VI) removal by chemically modified hydrochar and pyrochar derived from animal manure. J Clean Prod 264:121542

    Article  CAS  Google Scholar 

  7. Ma G, Ndegwa P, Harrison JH, Chen Y (2020) Methane yields during anaerobic co-digestion of animal manure with other feedstocks: a meta-analysis. Sci Total Environ 728:138224

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Yang L, Zhang M, Liu Y, Zhao J, He L, Zhang Q, Ying G (2019) Persistence of androgens, progestogens, and glucocorticoids during commercial animal manure composting process. Sci Total Environ 665:91–99

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Wang L, Lei M (2019) Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature. Biores Technol 273:25–33

    Article  CAS  Google Scholar 

  10. de Oliveira ACL, Milagres RS, de Junior WAO, dos Renato NS (2020) Evaluation of Brazilian potential for generating electricity through animal manure and sewage. Biomass Bioenergy 139:105654

    Article  Google Scholar 

  11. Pan J, Ma J, Zhai L, Liu H (2019) Enhanced methane production and syntrophic connection between microorganisms during semi-continuous anaerobic digestion of chicken manure by adding biochar. J Clean Prod 240:118178

    Article  CAS  Google Scholar 

  12. Zheng J, Liu J, Han S, Wang Y, Wei Y (2020) N2O emission factors of full-scale animal manure windrow composting in cold and warm seasons. Biores Technol 316:123905

    Article  CAS  Google Scholar 

  13. Wang K, Peng N, Niu X, Lu G, Sun J, Yu X, Du C, Gu J, Zhou H, Sun J (2021) Effects of aging on surface properties and endogenous copper and zinc leachability of swine manure biochar and its composite with alkali-fused fly ash. Waste Manage 126:400–410

    Article  Google Scholar 

  14. Yue Y, Liu Y, Wang J, Vukanti R, Ge Y (2021) Enrichment of potential degrading bacteria accelerates removal of tetracyclines and their epimers from cow manure biochar amended soil. Chemosphere 278:130358

    Article  CAS  PubMed  Google Scholar 

  15. Feng L, Li X, Chen X, Huang Y, Peng K, Huang Y, Yan Y, Chen Y (2020) Pig manure-derived nitrogen-doped mesoporous carbon for adsorption and catalytic oxidation of tetracycline. Sci Total Environ 708:135071

    Article  CAS  PubMed  Google Scholar 

  16. Jin J, Li S, Peng X, Liu W, Zhang C, Yang Y, Han L, Du Z, Sun K, Wang X (2018) HNO3 modified biochars for uranium (VI) removal from aqueous solution. Biores Technol 256:247–253

    Article  CAS  Google Scholar 

  17. Zhang P, Li Y, Cao Y, Han L (2019) Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures. Biores Technol 285:121348

    Article  CAS  Google Scholar 

  18. Suresh S, Kante K, Fini EH, Bandosz TJ (2019) Combination of alkalinity and porosity enhances formaldehyde adsorption on pig manure -derived composite adsorbents. Microporous Mesoporous Mater 286:155–162

    Article  CAS  Google Scholar 

  19. Qi X, Gou J, Chen X, Xiao S, Ali I, Shang R, Wang D, Wu Y, Han M, Luo X (2021) Application of mixed bacteria-loaded biochar to enhance uranium and cadmium immobilization in a co-contaminated soil. J Hazard Mater 401:123823

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Y, Xiao J, Hu R, Wang T, Shao X, Chen G, Chen Y, Tian X (2020) Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium. J Mol Liq 303:112659

    Article  CAS  Google Scholar 

  21. Arif M, Ali K, Jan MT, Shah Z, Jones DL, Quilliam RS (2016) Integration of biochar with animal manure and nitrogen for improving maize yields and soil properties in calcareous semi-arid agroecosystems. Field Crop Res 195:28–35

    Article  Google Scholar 

  22. Yang S, Chen Z, Wen Q (2021) Impacts of biochar on anaerobic digestion of swine manure: methanogenesis and antibiotic resistance genes dissemination. Biores Technol 324:124679

    Article  CAS  Google Scholar 

  23. Zhu W, Du W, Shen X, Zhang H, Ding Y (2017) Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost. Environ Pollut 227:89–97

    Article  CAS  PubMed  Google Scholar 

  24. Novais SV, Zenero MDO, Tronto J, Conz RF, Cerri CEP (2018) Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption. J Environ Manage 214:36–44

    Article  CAS  PubMed  Google Scholar 

  25. Meng J, Wang L, Zhong L, Liu X, Brookes PC, Xu J, Chen H (2017) Contrasting effects of composting and pyrolysis on bioavailability and speciation of Cu and Zn in pig manure. Chemosphere 180:93–99

    Article  CAS  PubMed  Google Scholar 

  26. Vrieze JD, Colica G, Pintucci C, Sarli J, Pedizzi C, Willeghems G, Bral A, Varga S, Prat D, Peng L, Spiller M, Buysse J, Colsen J, Benito O, Carballa M, Vlaeminck SE (2019) Resource recovery from pig manure via an integrated approach: a technical and economic assessment for full-scale applications. Biores Technol 272:582–593

    Article  Google Scholar 

  27. Yuan D, Zhang S, Xiang Z, He Y, Wang Y, Liu Y, Zhao X, Zhou X, Zhang Q (2019) Highly efficient removal of thorium in strong HNO3 media using a novel polymer adsorbent bearing phosphonic acid ligand: a combined experimental and density functional theory study. ACS Appl Mater Interfaces 11:24512–24522

    Article  CAS  PubMed  Google Scholar 

  28. Yuan D, Zhang S, Xiang Z, Liu Y, Wang Y, Zhou X, He Y, Huang W, Zhang Q (2018) Highly efficient removal of uranium from aqueous solution using a magnetic adsorbent bearing phosphine oxide ligand: a combined experimental and density functional theory study. ACS Sustain Chem Eng 6:9619–9627

    Article  CAS  Google Scholar 

  29. Anastopoulos I, Milojković JV, Tsigkou K, Zafiri C, Lopičić ZR, Kornaros M, Pashalidis I (2021) A nappies management by-product for the treatment of uranium-contaminated waters. J Hazard Mater 404:124147

    Article  CAS  PubMed  Google Scholar 

  30. Jung KW, Jeong TU, Kang HJ, Ahn KH (2016) Characteristics of biochar derived from marine macroalgae and fabrication of granular biochar by entrapment in calcium-alginate beads for phosphate removal from aqueous solution. Biores Technol 211:108–116

    Article  CAS  Google Scholar 

  31. Fernando MS, de Silva RM, de Silva KMN (2015) Synthesis, characterization, and application of nano hydroxyapatite and nanocomposite of hydroxyapatite with granular activated carbon for the removal of Pb2+ from aqueous solutions. Appl Surf Sci 351:95–103

    Article  CAS  Google Scholar 

  32. Jung KW, Lee SY, Choi JW, Lee YJ (2019) A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem Eng J 369:529–541

    Article  CAS  Google Scholar 

  33. Wang T, Zheng X, Wang X, Lu X, Shen Y (2017) Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions. J Environ Radioact 167:92–99

    Article  CAS  PubMed  Google Scholar 

  34. Luo X, Zhang J, Tao J, Wang X, Zhao S, Chen Z, Liu S, Li J, Li S (2021) Solar-powered “pump” for uranium recovery from seawater. Chem Eng J 416:129486

    Article  CAS  Google Scholar 

  35. Manobala T, Shukla SK, Rao TS, Kumar MD (2021) Kinetic modelling of the uranium biosorption by deinococcus radiodurans biofilm. Chemosphere 269:128722

    Article  CAS  PubMed  Google Scholar 

  36. Li C, Zhang C, Gao G, Gholizadeh M, Zhang S, Xu L, Zhang L, Li Q, Hu X (2020) Interaction of the volatiles from co-pyrolysis of pig manure with cellulose/glucose and their effects on char properties. J Environ Chem Eng 8:104583

    Article  CAS  Google Scholar 

  37. Li B, Dinkler K, Zhao N, Sobhi M, Merkle W, Liu S, Dong R, Oechsner H, Guo J (2020) Influence of anaerobic digestion on the labile phosphorus in pig, chicken, and dairy manure. Sci Total Environ 737:140234

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Zhou Y, Su C, Tong N, Han Z, Liu F (2019) Effects of Mg3(PO4)2 addition on the crystal structure, mechanical and thermophysical properties of CaZr4P6O24 ceramics. J Alloy Compd 806:302–309

    Article  CAS  Google Scholar 

  39. Baker MR, Coutelot FM, Seaman JC (2019) Phosphate amendments for chemical immobilization of uranium in contaminated soil. Environ Int 129:565–572

    Article  CAS  PubMed  Google Scholar 

  40. Kong L, Ruan Y, Zheng Q, Su M, Diao Z, Chen D, Hou L, Chang X, Shih K (2020) Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. J Hazard Mater 382:120784

    Article  CAS  PubMed  Google Scholar 

  41. Beyazit N, Çakran HS, Cabir A, Akışcan Y, Demetgül C (2020) Synthesis, characterization and antioxidant activity of chitosan Schiff base derivatives bearing (−)-gossypol. Carbohyd Polym 240:116333

    Article  CAS  Google Scholar 

  42. Zhou L, Wu L, Qin P, Li B (2021) Synthesis and properties of long chain polyesters from biobased 1,5-pentanediol and aliphatic α, ω-diacids with 10–16 carbon atoms. Polym Degrad Stab 187:109546

    Article  CAS  Google Scholar 

  43. Zhang Z, Wang C, Huang G, Liu H, Yang S, Zhang A (2018) Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR. J Hazard Mater 357:73–80

    Article  CAS  PubMed  Google Scholar 

  44. Ahmad M, Yang K, Li L, Fan Y, Shah T, Zhang Q, Zhang B (2020) Modified tubular carbon nanofibers for adsorption of uranium(VI) from water. ACS Appl Nano Mater 3:6394–6405

    Article  CAS  Google Scholar 

  45. Chen Z, Chen W, Jia D, Liu Y, Zhang A, Wen T, Liu J, Ai Y, Song W, Wang X (2018) N, P, and S codoped graphene-like carbon nanosheets for ultrafast uranium (VI) capture with high capacity. Adv Sci 5:1800235

    Article  Google Scholar 

  46. Lyu P, Wang G, Cao Y, Wang B, Deng N (2021) Phosphorus-modified biochar cross-linked Mg–Al layered double-hydroxide composite for immobilizing uranium in mining contaminated soil. Chemosphere 276:130116

    Article  PubMed  Google Scholar 

  47. Cong LTN, Lien DT, Mai CTN, Linh NV, Lich NQ, Ha HP, Quyen DV, Tang DYY, Show PL (2021) Advanced materials for immobilization of purple phototrophic bacteria in bioremediation of oil-polluted wastewater. Chemosphere 278:130464

    Article  Google Scholar 

  48. Molinuevo-Salces B, González-Fernández C, Gómez X, García-González MC, Morán A (2012) Vegetable processing wastes addition to improve swine manure anaerobic digestion: evaluation in terms of methane yield and SEM characterization. Appl Energy 91:36–42

    Article  CAS  Google Scholar 

  49. Li A, Deng H, Jiang Y, Ye C, Yu B, Zhou X, Ma A (2020) Super-efficient removal of heavy metals from wastewater by Mg-loaded biochars: adsorption characteristics and removal mechanisms. Langmuir 36:9160–9174

    Article  CAS  PubMed  Google Scholar 

  50. Yuan D, Wang Y, Qian Y, Liu Y, Feng G, Huang B, Zhao X (2017) Highly selective adsorption of uranium in strong HNO3 media achieved on a phosphonic acid functionalized nanoporous polymer. J Mater Chem A 5:22735–22742

    Article  CAS  Google Scholar 

  51. Daňo M, Viglašová E, Galamboš M, Štamberg K, Kujan J (2020) Surface complexation models of pertechnetate on biochar/montmorillonite composite—batch and dynamic sorption study. Materials 13:3108

    Article  PubMed  PubMed Central  Google Scholar 

  52. Daňo M, Viglašová E, Štamberg K, Galamboš M, Galanda D (2021) Pertechnetate/perrhenate surface complexation on bamboo engineered biochar. Materials 14:486

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jang MH, Kim MS, Han M, Kwak D (2022) Experimental application of a zero-point charge based on pH as a simple indicator of microplastic particle aggregation. Chemosphere 299:134388

    Article  CAS  PubMed  Google Scholar 

  54. Imam EA, El-Tantawy El-Sayed I, Mahfouz MG, Tolba AA, Akashi T, Galhoum AA, Guibal E (2018) Synthesis of α-aminophosphonate functionalized chitosan sorbents: effect of methyl vs phenyl group on uranium sorption. Chem Eng J 352:1022–1034

    Article  CAS  Google Scholar 

  55. Rakić V, Rac V, Krmar M, Otman O, Auroux A (2015) The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J Hazard Mater 282:141–149

    Article  PubMed  Google Scholar 

  56. Wang X, Zhang S, Li J, Xu J, Wang X (2014) Fabrication of Fe/Fe3C@porous carbon sheets from biomass and their application for simultaneous reduction and adsorption of uranium(VI) from solution. Inorg Chem Front 1:641–648

    Article  CAS  Google Scholar 

  57. Wen T, Wang X, Wang J, Chen Z, Li J, Hu J, Hayat T, Alsaedi A, Grambow B, Wang X (2016) A strategically designed porous magnetic N-doped Fe/Fe3C@C matrix and its highly efficient uranium(VI) remediation. Inorg Chem Front 3:1227–1235

    Article  CAS  Google Scholar 

  58. Husnain SM, Kim HJ, Um W, Chang YY, Chang YS (2017) Superparamagnetic adsorbent based on phosphonate grafted mesoporous carbon for uranium removal. Ind Eng Chem Res 56:9821–9830

    Article  CAS  Google Scholar 

  59. Mahmoud ME, Osman MM, Hafez OF, Hegazi AH, Elmelegy E (2010) Removal and preconcentration of lead (II) and other heavy metals fromwater by alumina adsorbents developed by surface-adsorbed-dithizone. Desalination 251:123–130

    Article  CAS  Google Scholar 

  60. Ding L, Tan W, Xie S, Mumford K, Lv J, Wang H, Fang Q, Zhang X, Wu X, Li M (2018) Uranium adsorption and subsequent re-oxidation under aerobic conditions by Leifsonia sp. - coated biochar as green trapping agent. Environ Pollut 242:778–787

    Article  CAS  PubMed  Google Scholar 

  61. Hu R, Xiao J, Wang T, Chen G, Chen L, Tian X (2020) Engineering of phosphate-functionalized biochars with highly developed surface area and porosity for efficient and selective extraction of uranium. Chem Eng J 379:122388

    Article  CAS  Google Scholar 

  62. Rodrigues AE, Silva CM (2016) What’s wrong with Lagergreen pseudo first order model for adsorption kinetics? Chem Eng J 306:1138–1142

    Article  CAS  Google Scholar 

  63. Tuzen M, Sarı A, Saleh TA (2020) Synthesis, characterization and evaluation of carbon nanofiber modified-polymer for ultra-removal of thorium ions from aquatic media. Chem Eng Res Des 163:76–84

    Article  CAS  Google Scholar 

  64. Sarı A, Saleh TA, Tuzen M (2021) Development and characterization of polymer-modified vermiculite composite as novel highly-efficient adsorbent for water treatment. Surf Interfaces 27:101504

    Article  Google Scholar 

  65. Li X, Pan H, Yu M, Wakeel M, Luo J, Alharbi NS, Liao J, Liu J (2018) Macroscopic and molecular investigations of immobilization mechanism of uranium on biochar: EXAFS spectroscopy and static batch. J Mol Liq 269:64–71

    Article  CAS  Google Scholar 

  66. Viglašová E, Galamboš M, Diviš D, Danková Z, Daňo M, Krivosudský L, Lengauer CL, Matik M, Briančin J, Soja G (2020) Engineered biochar as a tool for nitrogen pollutants removal: preparation, characterization and sorption study. Desalin Water Treat 191:318–331

    Article  Google Scholar 

  67. Tuzen M, Saleh TA, Sarı A (2020) Naeemullah. Interfacial polymerization of trimesoyl chloride with melamine and palygorskite for efficient uranium ions ultra-removal. Chem Eng Res Des 159:353–361

    Article  CAS  Google Scholar 

  68. Bağda E, Tuzen M, Sarı A (2017) Equilibrium, thermodynamic and kinetic investigations for biosorption of uranium with green algae (Cladophora hutchinsiae). J Environ Radioact 175–176:7–14

    Article  PubMed  Google Scholar 

  69. Ma J, Wang C, Zhao Q, Ren J, Chen Z, Wang J (2020) Interaction of U(VI) with α-MnO2@layered double hydroxides by combined batch experiments and spectroscopy studies. Inorg Chem Front 7:487–497

    Article  CAS  Google Scholar 

  70. Ma J, Zhao Q, Wei D, Liu H, Wang X, Chen Z, Wang J (2019) Simple construction of core-shell MnO2@TiO2 with highly enhanced U(VI) adsorption performance and evaluated adsorption mechanism. Inorg Chem Front 6:1011–1021

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the School of National Defence Science and Technology, Southwest University of Science and Technology.

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21902130 and 21976147), Sichuan Science and Technology Program (No. 2020YFS0345, 2020YFG0467, 2020JDRC0099, 2020ZDZX0012 and 2020JDJQ0009), the Presidential Funding of CAEP (YZJJLX2019007), the Career Development Funding of CAEP (2402001), Research Fund of SWUST for PhD (No.17zx7135, 18zx7149 and 19zx7129), and the Sichuan’s Training Program of Innovation and Entrepreneurship for Undergraduate (No. S202110619061 and S202110619086).

Author information

Authors and Affiliations

Authors

Contributions

Jun Liao: methodology, investigation, writing—original draft; Xiaoshan He: methodology, data curation, investigation; Yong Zhang: resources, writing—reviewing and editing, supervision; Lin Zhang: data curation, investigation; Zhibing He: conceptualization, writing—reviewing and editing.

Corresponding authors

Correspondence to Yong Zhang or Zhibing He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. Pig manure (PM) was converted into biochar via a simple treatment.

2. The pollution of nutrients in PM to water system was reduced.

3. PMBC-500 was used for uranium removal with high adsorption affinity.

4. The adsorption capacity of uranium on the PMBC-500 was 376.5 mg/g.

5. The uranium removal mechanism of PMBC-500 was researched.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2812 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., He, X., Zhang, Y. et al. Constructing a novel carbon material for efficient separation of uranium(VI) from solution. Biomass Conv. Bioref. 14, 8433–8445 (2024). https://doi.org/10.1007/s13399-022-02856-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02856-9

Keywords

Navigation