Skip to main content
Log in

Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: antimicrobial, antioxidant, and anticancer activities

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, watermelon peel waste was used for biosynthesis of titanium dioxide quantum dots (TiO2Qds) through green and ecofriendly method for the first time. The biosynthesized TiO2Qds were fully characterized using UV–visible, FTIR, XRD, SEM, EDX, mapping, TEM, and TGA. The characterization of TiO2Qds revealed that the synthesized TiO2Qds is a polycrystalline crystal structure with an average particle size of 7 nm. The antimicrobial results revealed that TiO2Qds exhibited promising antimicrobial activity against Bacillus subtilis, Escherichia coli, Cryptococcus neoformans, Candida albicans, Aspergillus niger, and A. fumigatus where minimum inhibitory concentrations (MICs) were 15.62, 62.5, 7.81, 7.81, 31.25, and 1.95 µg/mL, respectively. Moreover, TiO2Qds have a strong antioxidant activity where IC50 was 31 µg/mL using DPPH method. Furthermore, TiO2Qds have potential anticancer activity against MCF7 cancerous cell line where IC50 was 114 µg/mL, and inhibition percentages at 1000 and 500 µg/mL were 99 and 93%, respectively. In conclusion, the biosynthesized TiO2Qds using watermelon peel waste have antimicrobial, antioxidant, and anticancer activities with high biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mourdikoudis S, Liz-Marzán LM (2013) Oleylamine in nanoparticle synthesis. Chem Mater 25(9):1465–1476

    Article  CAS  Google Scholar 

  2. Abdelaziz AM, Dacrory S, Hashem AH, Attia MS, Hasanin M, Fouda HM et al (2021) Protective role of zinc oxide nanoparticles based hydrogel against wilt disease of pepper plant. Biocatal Agric Biotechnol 35:102083. https://doi.org/10.1016/j.bcab.2021.102083

    Article  CAS  Google Scholar 

  3. Abu-Elghait M, Hasanin M, Hashem AH, Salem SS (2021) Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. Int J Biol Macromol 175:294–303. https://doi.org/10.1016/j.ijbiomac.2021.02.040

    Article  CAS  PubMed  Google Scholar 

  4. Hasanin M, Al Abboud MA, Alawlaqi MM, Abdelghany TM, Hashem AH (2021) Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: antimicrobial, antioxidant, and anticancer activities. Biol Trace Elem Res. https://doi.org/10.1007/s12011-021-02812-0

    Article  PubMed  Google Scholar 

  5. Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley

    Book  Google Scholar 

  6. Lateef A, Darwesh O, Matter I (2021) Microbial nanobiotechnology: the melting pot of microbiology, microbial technology and nanotechnology. Microbial Nanobiotechnology. Springer. p 1–19

  7. Papazoglou ES, Parthasarathy A (2007) Bionanotechnology. Synth Lect Biomed Eng 2(1):1–139

    Article  Google Scholar 

  8. Primožič M, Knez Ž, Leitgeb M (2021) (Bio) Nanotechnology in food science—food packaging. Nanomaterials 11(2):292

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abdelraof M, Ibrahim S, Selim M, Hasanin M (2020) Immobilization of L-methionine γ-lyase on different cellulosic materials and its potential application in green-selective synthesis of volatile sulfur compounds. J Environ Chem Eng 8(4):103870

    Article  CAS  Google Scholar 

  10. Elsayed H, Hasanin M, Rehan M (2021) Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs). J Mol Struct 1234:130130

    Article  CAS  Google Scholar 

  11. Hasanin M, Al Abboud MA, Alawlaqi MM, Abdelghany TM, Hashem AH (2022) Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: antimicrobial, antioxidant, and anticancer activities. Biol Trace Elem Res 200(5):2099–2112

    Article  CAS  PubMed  Google Scholar 

  12. Abdelaziz AM, Salem SS, Khalil AMA, El-Wakil DA, Fouda HM, Hashem AH (2022) Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. Biometals. https://doi.org/10.1007/s10534-022-00391-8

  13. Salem SS, Ali OM, Reyad AM, Abd-Elsalam KA, Hashem AH (2022) Pseudomonas indica-mediated silver nanoparticles: antifungal and antioxidant biogenic tool for suppressing mucormycosis fungi. J Fungi 8(2):126

    Article  CAS  Google Scholar 

  14. Hasanin M, Elbahnasawy MA, Shehabeldine AM, Hashem AH (2021) Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. Biometals 34(6):1313–1328. https://doi.org/10.1007/s10534-021-00344-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. El-Naggar ME, Hasanin M, Hashem AH (2022) Eco-friendly synthesis of superhydrophobic antimicrobial film based on cellulose acetate/polycaprolactone loaded with the green biosynthesized copper nanoparticles for food packaging application. J Polym Environ 30(5):1820–1832. https://doi.org/10.1007/s10924-021-02318-9

    Article  CAS  Google Scholar 

  16. Hasanin M, Hashem AH, Lashin I, Hassan SAM (2021) In vitro improvement and rooting of banana plantlets using antifungal nanocomposite based on myco-synthesized copper oxide nanoparticles and starch. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01784-4

    Article  Google Scholar 

  17. Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH (2021) Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: characterization and anticandidal activity. J Drug Deliv Sci Technol 62:102401. https://doi.org/10.1016/j.jddst.2021.102401

    Article  CAS  Google Scholar 

  18. Hashem AH, Abdelaziz AM, Askar AA, Fouda HM, Khalil AMA, Abd-Elsalam KA et al (2021) Bacillus megaterium-mediated synthesis of selenium nanoparticles and their antifungal activity against Rhizoctonia solani in faba bean plants. J Fungi 7(3):195

    Article  CAS  Google Scholar 

  19. Lateef A, Ojo SA, Elegbede JA (2016) The emerging roles of arthropods and their metabolites in the green synthesis of metallic nanoparticles. Nanotechnol Rev 5(6):601–622

    Article  CAS  Google Scholar 

  20. Akinola P, Lateef A, Asafa T, Beukes L, Hakeem A, Irshad H (2020) Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 6(8):e04610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hasanin M, Hassan SA, Hashem AH (2021) Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial, and antioxidant activity. Biomass Convers Biorefin 1–14. https://doi.org/10.1007/s13399-021-01873-4

  22. Azeez L, Lateef A, Adetoro RO, Adeleke AE (2021) Responses of Moringa oleifera to alteration in soil properties induced by calcium nanoparticles (CaNPs) on mineral absorption, physiological indices and photosynthetic indicators. Beni-Suef Univ J Basic Appl Sci 10(1):1–15

    Article  CAS  Google Scholar 

  23. Suleiman WB, Helal EE (2022) Chemical constituents and potential pleiotropic activities of Foeniculum vulgare (Fennel) ethanolic extract; in vitro approach. Egypt J Chem 65(7):Article 782

  24. Suleiman WB (2020) In vitro estimation of superfluid critical extracts of some plants for their antimicrobial potential, phytochemistry, and GC–MS analyses. Ann Clin Microbiol Antimicrob 19(1):1–12

    Article  MathSciNet  Google Scholar 

  25. Suleiman WB, El Bous M, Ibrahim M, El Baz H (2019) In vitro evaluation of Syzygium aromaticum L. ethanol extract as biocontrol agent against postharvest tomato and potato diseases. Egypt J Bot. 59(1):81–94

    Google Scholar 

  26. Ruangtong J, Jiraroj T, T-Thienprasert NP (2020) Green synthesized ZnO nanosheets from banana peel extract possess anti-bacterial activity and anti-cancer activity. Mater Today Commun 24:101224

  27. Vidovix TB, Quesada HB, Bergamasco R, Vieira MF, Vieira AMS (2021) Adsorption of Safranin-O dye by copper oxide nanoparticles synthesized from Punica granatum leaf extract. Environ Technol 1–17. https://doi.org/10.1080/09593330.2021.1914180

  28. Chums-ard W, Fawcett D, Fung CC, Poinern GEJ (2019) Biogenic synthesis of gold nanoparticles from waste watermelon and their antibacterial activity against Escherichia coli and Staphylococcus epidermidis. Int J Res Med Sci 7(7):2499–2505

    Article  Google Scholar 

  29. Abd Elkodous M, El-Husseiny HM, El-Sayyad GS, Hashem AH, Doghish AS, Elfadil D et al (2021) Recent advances in waste-recycled nanomaterials for biomedical applications: waste-to-wealth. Nanotechnol Rev 10(1):1662–1739

    Article  Google Scholar 

  30. Hashem AH, Salem SS (2022) Green and ecofriendly biosynthesis of selenium nanoparticles using Urtica dioica (stinging nettle) leaf extract: Antimicrobial and anticancer activity. Biotechnology Journal 17(2):2100432

  31. Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnol Rev 5(6):567–587

    Article  CAS  Google Scholar 

  32. Rodríguez-Félix F, López-Cota AG, Moreno-Vásquez MJ, Graciano-Verdugo AZ, Quintero-Reyes IE, Del-Toro-Sánchez CL et al (2021) Sustainable-green synthesis of silver nanoparticles using safflower (Carthamus tinctorius L.) waste extract and its antibacterial activity. Heliyon. 7(4):e06923

    Article  PubMed  PubMed Central  Google Scholar 

  33. Del-Toro-Sánchez CL, Rodríguez-Félix F, Cinco-Moroyoqui FJ, Juárez J, Ruiz-Cruz S, Wong-Corral FJ et al (2021) Recovery of phytochemical from three safflower (Carthamus tinctorius L.) by-products: Antioxidant properties, protective effect of human erythrocytes and profile by UPLC-DAD-MS. J Food Process Preserv 45(9):e15765

    Article  Google Scholar 

  34. Prasannamedha G, Kumar PS, Shankar V (2022) Facile route for synthesis of Fe0/Fe3C/γ-Fe2O3 carbon composite using hydrothermal carbonization of sugarcane bagasse and its use as effective adsorbent for sulfamethoxazole removal. Chemosphere 289:133214

    Article  CAS  PubMed  Google Scholar 

  35. Dane F, Liu J (2007) Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 54(6):1255–1265

    Article  CAS  Google Scholar 

  36. Ho L-H, Che DN (2016) Effect of watermelon rind powder on physicochemical, textural, and sensory properties of wet yellow noodles. CyTA-J Food 14(3):465–472

    CAS  Google Scholar 

  37. Prasad C, Gangadhara S, Venkateswarlu P (2016) Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl Nanosci 6(6):797–802. https://doi.org/10.1007/s13204-015-0485-8

    Article  ADS  CAS  Google Scholar 

  38. Ndikau M, Noah NM, Andala DM, Masika E (2017) Green synthesis and characterization of silver nanoparticles using<i> Citrullus lanatus</i> fruit rind extract. Int J Anal Chem 2017:8108504. https://doi.org/10.1155/2017/8108504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Patra JK, Das G, Baek K-H (2016) Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy. J Photochem Photobiol, B 161:200–210. https://doi.org/10.1016/j.jphotobiol.2016.05.021

    Article  CAS  PubMed  Google Scholar 

  40. Patra JK, Baek K-H (2015) Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int J Nanomedicine 10:7253–7264. https://doi.org/10.2147/IJN.S95483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lakshmipathy R, Palakshi Reddy B, Sarada NC, Chidambaram K, Khadeer PS (2015) Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci 5(2):223–228. https://doi.org/10.1007/s13204-014-0309-2

    Article  ADS  CAS  Google Scholar 

  42. Emam HE, Ahmed HB (2021) Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int J Biol Macromol 170:688–700. https://doi.org/10.1016/j.ijbiomac.2020.12.151

    Article  CAS  PubMed  Google Scholar 

  43. Gnanasekaran L, Hemamalini R, Ravichandran K (2015) Synthesis and characterization of TiO2 quantum dots for photocatalytic application. J Saudi Chem Soc 19(5):589–594. https://doi.org/10.1016/j.jscs.2015.05.002

    Article  Google Scholar 

  44. Guijarro N, Lana-Villarreal T, Shen Q, Toyoda T, Gómez R (2010) Sensitization of Titanium Dioxide Photoanodes with Cadmium Selenide Quantum Dots Prepared by SILAR: Photoelectrochemical and Carrier Dynamics Studies. J Phys Chem C 114(50):21928–21937. https://doi.org/10.1021/jp105890x

    Article  CAS  Google Scholar 

  45. Blackburn JL, Selmarten DC, Nozik AJ (2003) Electron transfer dynamics in quantum dot/titanium dioxide composites formed by in situ chemical bath deposition. J Phys Chem B 107(51):14154–14157. https://doi.org/10.1021/jp0366771

    Article  CAS  Google Scholar 

  46. Wang X, Ling D, Wang Y, Long H, Sun Y, Shi Y et al (2014) N-doped graphene quantum dots-functionalized titanium dioxide nanofibers and their highly efficient photocurrent response. J Mater Res 29(13):1408–1416. https://doi.org/10.1557/jmr.2014.152

    Article  ADS  CAS  Google Scholar 

  47. Hasanin M, Abdelhameed RM, Dacrory S, Abou-Yousef H, Kamel S (2021) Photocatalytic degradation of pesticide intermediate using green eco-friendly amino functionalized cellulose nanocomposites. Mater Sci Eng, B 270:115231

    Article  CAS  Google Scholar 

  48. Abdel-Razek A, El-Sheikh H, Suleiman W, Taha TH, Mohamed M (2020) Bioelimination of phenanthrene using degrading bacteria isolated from petroleum soil: safe approach. Desalin Water Treat 181:131–140

    Article  CAS  Google Scholar 

  49. Standards NCfCL (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts. National Committee for Clinical Laboratory Standards Wayne, PA

  50. Soliman MO, Suleiman WB, Roushdy MM, Elbatrawy EN, Gad AM (2022) Characterization of some bacterial strains isolated from the Egyptian Eastern and Northern coastlines with antimicrobial activity of Bacillus zhangzhouensis OMER4. Acta Oceanol Sin 41(3):86–93

    Article  CAS  Google Scholar 

  51. Shawky M, Suleiman WB, Farrag AA (2021) Antibacterial resistance pattern in clinical and non-clinical bacteria by phenotypic and genotypic assessment. J Pure Appl Microbiol 15(4):2270–2279

    Article  CAS  Google Scholar 

  52. El-Sayed NS, Hashem AH, Kamel S (2022) Preparation and characterization of Gum Arabic Schiff’s bases based on 9-aminoacridine with in vitro evaluation of their antimicrobial and antitumor potentiality. Carbohyd Polym 277:118823. https://doi.org/10.1016/j.carbpol.2021.118823

    Article  CAS  Google Scholar 

  53. Shehabeldine AM, Hashem AH, Wassel AR, Hasanin M (2022) Antimicrobial and antiviral activities of durable cotton fabrics treated with nanocomposite based on zinc oxide nanoparticles, acyclovir, nanochitosan, and clove oil. Appl Biochem Biotechnol 194(2):783–800. https://doi.org/10.1007/s12010-021-03649-y

    Article  CAS  PubMed  Google Scholar 

  54. Hashem AH, Hasanin M, Kamel S, Dacrory S (2022) A new approach for antimicrobial and antiviral activities of biocompatible nanocomposite based on cellulose, amino acid and graphene oxide. Colloids Surf, B 209:112172. https://doi.org/10.1016/j.colsurfb.2021.112172

    Article  CAS  Google Scholar 

  55. Hasanin M, Hashem AH, El-Rashedy AA, Kamel S (2021) Synthesis of novel heterocyclic compounds based on dialdehyde cellulose: characterization, antimicrobial, antitumor activity, molecular dynamics simulation and target identification. Cellulose 28(13):8355–8374. https://doi.org/10.1007/s10570-021-04063-7

    Article  CAS  Google Scholar 

  56. Gad AM, Suleiman WB, Beltagy EA, El-Sheikh H, Ibrahim HA (2021) Antimicrobial and antifouling activities of the cellulase produced by marine fungal strain; Geotrichum candidum MN638741.1. Egypt J Aquat Biol Fish 25(6):49–60. https://doi.org/10.21608/ejabf.2021.210301

    Article  Google Scholar 

  57. Gad AM, Suleiman WB, Beltagy EA, El-Sheikh H, Ibrahim HA (2021) Characterization and screening of marine-derived fungi along the coastline of Alexandria, Mediterranean Sea, Egypt. Egypt J Aquat Biol Fish 25(5):215–239

    Article  Google Scholar 

  58. Valgas C, Souza SMD, Smânia E, Smânia A (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380

    Article  Google Scholar 

  59. Hashem AH, Khalil AMA, Reyad AM, Salem SS (2021) Biomedical applications of mycosynthesized selenium nanoparticles using Penicillium expansum ATTC 36200. Biol Trace Elem Res 199(10):3998–4008‏

  60. Hashem AH, Shehabeldine AM, Abdelaziz AM, Amin BH, Sharaf MH (2022) Antifungal activity of endophytic Aspergillus terreus extract against some fungi causing mucormycosis: ultrastructural study. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-022-03876-x

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sharaf MH, Abdelaziz AM, Kalaba MH, Radwan AA, Hashem AH (2022) Antimicrobial, antioxidant, cytotoxic activities and phytochemical analysis of fungal endophytes isolated from Ocimum basilicum. Appl Biochem Biotechnol 194(3):1271–1289. https://doi.org/10.1007/s12010-021-03702-w

    Article  CAS  PubMed  Google Scholar 

  62. Dacrory S, Hashem AH, Hasanin M (2021) Synthesis of cellulose based amino acid functionalized nano-biocomplex: characterization, antifungal activity, molecular docking and hemocompatibility. Environ Nanotechnol Monit Manag 15:100453

    CAS  Google Scholar 

  63. Yıldırım A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49(8):4083–4089‏

  64. Hashem AH, Al Abboud MA, Alawlaqi MM, Abdelghany TM, Hasanin M (2022) Synthesis of nanocapsules based on biosynthesized nickel nanoparticles and potato starch: antimicrobial, antioxidant, and anticancer activity. Starch-Stärke 74(1–2):2100165

    Article  CAS  Google Scholar 

  65. Van de Loosdrecht A, Beelen R, Ossenkoppele G, Broekhoven M, Langenhuijsen M (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods. 174(1–2):311–20

    Article  PubMed  Google Scholar 

  66. Khalil AMA, Abdelaziz AM, Khaleil MM, Hashem AH (2021) Fungal endophytes from leaves of Avicennia marina growing in semi-arid environment as a promising source for bioactive compounds. J Agric Food Chem 72(3):263–274

    CAS  Google Scholar 

  67. Dacrory S, Hashem AH, Kamel S (2022) Antimicrobial and antiviral activities with molecular docking study of chitosan/carrageenan@ clove oil beads. Biotechnol J 17(2):2100298

    Article  CAS  Google Scholar 

  68. Deng Q, Zhang W, Lan T, Xie J, Xie W, Liu Z et al (2018) Anatase TiO2 quantum dots with a narrow band gap of 2.85 eV based on surface hydroxyl groups exhibiting significant photodegradation property. Eur J Inorg Chem 2018(13):1506–10. https://doi.org/10.1002/ejic.201800097

    Article  CAS  Google Scholar 

  69. Wu ZG, Ren ZM, Li L, Lv L, Chen Z (2020) Hydrothermal synthesis of TiO2 quantum dots with mixed titanium precursors. Sep Purif Technol 251:117328. https://doi.org/10.1016/j.seppur.2020.117328

    Article  CAS  Google Scholar 

  70. Emam M, Soliman MM, Eisa WH, Hasanin M (2022) Solid and liquid green Ag nanoparticles based on banana peel extract as an eco-friendly remedy for ringworm in pets. Surface and Interface Analysis 54(6):607–618

    Article  CAS  Google Scholar 

  71. Mobeen Amanulla A, Sundaram R (2019) Green synthesis of TiO2 nanoparticles using orange peel extract for antibacterial, cytotoxicity and humidity sensor applications. Mater Today: Proc 8:323–331. https://doi.org/10.1016/j.matpr.2019.02.118

    Article  CAS  Google Scholar 

  72. Yürüm A, Karakaş G (2017) Synthesis of Na-, Fe-, and Co-promoted TiO $ _ {2} $/multiwalled carbon nanotube composites and their use as a photocatalyst. Turk J Chem 41(3):440–454

  73. Kamel A, Suleiman WB, Elfeky A, El-Sherbiny GM, Elhaw M (2022) Characterization of bee venom and its synergistic effect combating antibiotic resistance of Pseudomonas aeruginosa. Egypt J Chem 65(5):Article 658

  74. El-Naggar HA, Bashar MA, Rady I, El-Wetidy MS, Suleiman WB, Al-Otibi FO et al (2022) Two red sea sponge extracts (Negombata magnifica and Callyspongia siphonella) induced anticancer and antimicrobial activity. Appl Sci 12(3):1400

    Article  CAS  Google Scholar 

  75. Ajmal N, Saraswat K, Bakht MA, Riadi Y, Ahsan MJ, Noushad M (2019) Cost-effective and eco-friendly synthesis of titanium dioxide (TiO2) nanoparticles using fruit’s peel agro-waste extracts: characterization, in vitro antibacterial, antioxidant activities. Green Chem Lett Rev 12(3):244–254

    Article  CAS  Google Scholar 

  76. Ahmad W, Jaiswal KK, Soni S (2020) Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorg Nano-Metal Chem 50(10):1032–1038

    Article  CAS  Google Scholar 

  77. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220. https://doi.org/10.1016/j.micpath.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  78. Sundrarajan M, Bama K, Bhavani M, Jegatheeswaran S, Ambika S, Sangili A, Nithya P, Sumathi R (2017) Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method. J Photochem Photobiol B: Biol. 171:117–24. https://doi.org/10.1016/j.jphotobiol.2017.05.003

    Article  CAS  Google Scholar 

  79. Pavlović VP, Vujančević JD, Mašković P, Ćirković J, Papan JM, Kosanović D et al (2019) Structure and enhanced antimicrobial activity of mechanically activated nano TiO2. J Am Ceram Soc 102(12):7735–7745

    Article  Google Scholar 

  80. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A (2018) Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog 123:505–526

    Article  CAS  PubMed  Google Scholar 

  81. Gogniat G, Dukan S (2007) TiO2 photocatalysis causes DNA damage via Fenton reaction-generated hydroxyl radicals during the recovery period. Appl Environ Microbiol 73(23):7740–7743

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  83. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  84. Santhoshkumar T, Rahuman AA, Jayaseelan C, Rajakumar G, Marimuthu S, Kirthi AV et al (2014) Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac J Trop Med 7(12):968–976

    Article  CAS  PubMed  Google Scholar 

  85. Alavi M, Karimi N (2018) Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif Cells, Nanomed, Biotechnol 46(8):2066–2081

    CAS  PubMed  Google Scholar 

  86. Ioset J-R, Brun R, Wenzler T, Kaiser M, Yardley V (2009) Drug screening for kinetoplastids diseases. A Training Manual for Screening in Neglected Diseases

  87. Narayanan M, Vigneshwari P, Natarajan D, Kandasamy S, Alsehli M, Elfasakhany A et al (2021) Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environ Res 200:111335. https://doi.org/10.1016/j.envres.2021.111335

    Article  CAS  PubMed  Google Scholar 

  88. Wang Y, Cui H, Zhou J, Li F, Wang J, Chen M et al (2015) Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ Sci Pollut Res 22(7):5519–5530. https://doi.org/10.1007/s11356-014-3717-7

    Article  CAS  Google Scholar 

  89. Karthik K, Shashank M, Revathi V, Tatarchuk T (2018) Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol Cryst Liq Cryst 673(1):70–80. https://doi.org/10.1080/15421406.2019.1578495

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This study was technically supported by the National Research Centre and Al-Azhar University as well as the Taif University Researchers Supporting Project (TURSP-2020/81) at Taif University in Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Omar M. Ali: Data curation, conceptualization, writing, review and editing. Mohamed S. Hasanin: Visualization; methodology; formal analysis; conceptualization; validation; investigation; writing, review, editing and supervising. Waleed B. Suleiman: Data curation, writing, review and editing. Eman El-Husseiny Helal: Data curation, funding, writing, review and editing. Amr H. Hashem: Visualization, methodology, formal analysis, conceptualization, validation, investigation, writing, review and editing.

Corresponding authors

Correspondence to Mohamed S. Hasanin or Amr H. Hashem.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, O.M., Hasanin, M.S., Suleiman, W.B. et al. Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: antimicrobial, antioxidant, and anticancer activities. Biomass Conv. Bioref. 14, 6987–6998 (2024). https://doi.org/10.1007/s13399-022-02772-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02772-y

Keywords

Navigation