Skip to main content
Log in

Photocatalytic activity of iron oxide nanoparticles synthesized by different plant extracts for the degradation of diazo dyes Evans blue and Congo red

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This work describes the use of XRD, SEM, and infrared spectroscopy in the evaluation of iron oxide nanoparticles as produced from three distinct plant extracts. The efficacy of the nanoparticles in terms of dye sorption was assessed using Congo Red (CR) and Evans Blue (EB) dyes. The research revealed that the synthesis method influences the properties of nanoparticles, which leads to different levels of effectiveness when it comes to sorption. The proposed sorption mechanism was founded on several characterization studies. Moreover, it was discovered that sorption might occur due to pores or binding groups rather than only an electrostatic connection. The results show that the nanoparticles’ sorption effectiveness is heavily pH dependent. The produced nanoparticles showed potential for application in water treatment technologies due to the synthetic technique relative ease and the possibility of a low-cost catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Abdi J, Vossoughi M, Mahmoodi NM, Alemzadeh I (2017) Synthesis of amine-modified zeolitic imidazolate framework-8, ultrasound-assisted dye removal and modeling. Ultrason Sonochem 39:550–564. https://doi.org/10.1016/j.ultsonch.2017.04.030

    Article  Google Scholar 

  2. Liu X, Li W, Chen N, Xing X, Dong C, Wang Y (2015) Ag–ZnO heterostructure nanoparticles with plasmon-enhanced catalytic degradation for Congo red under visible light. RSC Adv 5(43):34456–34465. https://doi.org/10.1039/C5RA03143E

    Article  Google Scholar 

  3. Tan IAW, Hameed BH, Ahmad AL (2007) Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem Eng J 127(1):111–119. https://doi.org/10.1016/j.cej.2006.09.010

    Article  Google Scholar 

  4. Yang D, Qiu L, Yang Y (2016) Efficient Adsorption of Methyl Orange Using a Modified Chitosan Magnetic Composite Adsorbent. J Chem Eng Data 61(11):3933–3940. https://doi.org/10.1021/acs.jced.6b00706

    Article  Google Scholar 

  5. Rath P, Priyadarshini B, Behera S, Parhi P, Panda S, Sahoo T (2019) Adsorptive removal of Congo Red dye from aqueous solution using TiO2 nanoparticles: Kinetics, thermodynamics and isothermal insights. AIP Conference Proceedings: AIP Publishing LLC, p 030115

  6. Sinha T, Ahmaruzzaman M (2015) Green synthesis of copper nanoparticles for the efficient removal (degradation) of dye from aqueous phase. Environ Sci Pollut Res 22(24):20092–20100. https://doi.org/10.1007/s11356-015-5223-y

    Article  Google Scholar 

  7. Cuong HN, Pansambal S, Ghotekar S, Oza R, Hai NTT, Viet NM et al (2022) New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. Environ Res 203:111858

    Article  Google Scholar 

  8. Kouhbanani MAJ, Beheshtkhoo N, Taghizadeh S, Amani AM, Alimardani V (2019) One-step green synthesis and characterization of iron oxide nanoparticles using aqueous leaf extract of Teucrium polium and their catalytic application in dye degradation. Adv Nat Sci Nanosci Nanotechnol 10(1):015007

    Article  Google Scholar 

  9. Hamad HN, Idrus S (2022) Recent Developments in the Application of Bio-Waste-Derived Adsorbents for the Removal of Methylene Blue from Wastewater: A Review. Polymers 14(4):783

    Article  Google Scholar 

  10. Kangralkar MV, Kangralkar VA, Manjanna J (2021) Adsorption of Cr (VI) and photodegradation of rhodamine b, rose bengal and methyl red on Cu2O nanoparticles. Environ Nanotechnol Monitor Manag 15:100417

    Article  Google Scholar 

  11. Hussain MK, Khalid NR, Tanveer M, Kebaili I, Alrobei H (2021) Fabrication of CuO/MoO3 p-n heterojunction for enhanced dyes degradation and hydrogen production from water splitting. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.11.090

    Article  Google Scholar 

  12. Ganesan K, Jothi VK, Natarajan A, Rajaram A, Ravichandran S, Ramalingam S (2020) Green synthesis of Copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arab J Chem 13(8):6802–6814

    Article  Google Scholar 

  13. Kareem M, Bello I, Shittu H, Sivaprakash P, Adedokun O, Arumugam S (2022) Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Clean Mater 3:100041

    Article  Google Scholar 

  14. Lakshmanareddy N, Rao VN, Cheralathan KK, Subramaniam EP, Shankar MV (2019) Pt/TiO2 nanotube photocatalyst–Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. J Colloid Interface Sci 538:83–98

    Article  Google Scholar 

  15. Ardakani LS, Alimardani V, Tamaddon AM, Amani AM, Taghizadeh S (2021) Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: Methyl orange dye degradation and antimicrobial properties. Heliyon 7(2):e06159

    Article  Google Scholar 

  16. Ba-Abbad MM, Takriff MS, Benamor A, Mohammad AW (2017) Size and shape controlled of α-Fe2O3 nanoparticles prepared via sol–gel technique and their photocatalytic activity. J Sol-Gel Sci Technol 81(3):880–893

    Article  Google Scholar 

  17. Beheshtkhoo N, Kouhbanani MAJ, Savardashtaki A, Amani AM, Taghizadeh S (2018) Green synthesis of iron oxide nanoparticles by aqueous leaf extract of Daphne mezereum as a novel dye removing material. Appl Phys A 124(5):1–7

    Article  Google Scholar 

  18. Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45

    Article  Google Scholar 

  19. Wang X (2011) Preparation of magnetic hydroxyapatite and their use as recyclable adsorbent for phenol in wastewater. Clean-Soil, Air, Water 39(1):13–20

    Article  Google Scholar 

  20. Jassal V, Shanker U, Gahlot S (2016) Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-aminopyridines. Mater Today Proc 3(6):1874–1882

    Article  Google Scholar 

  21. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences, and uses. Wiley-vch Weinheim

  22. Kumar R, Sen S (2013) Biogenic magnetite nanoparticles. Res J Pharm Biol Chem Sci 4(3):1037–1043

    MathSciNet  Google Scholar 

  23. Daniel-da-Silva AL, Trindade T, Goodfellow BJ, Costa BF, Correia RN, Gil AM (2007) In situ synthesis of magnetite nanoparticles in carrageenan gels. Biomacromol 8(8):2350–2357

    Article  Google Scholar 

  24. Belaiche Y, Khelef A, Laouini SE, Bouafia A, Tedjani ML, Barhoum A (2021) Green synthesis and characterization of silver/silver oxide nanoparticles using aqueous leaves extract of Artemisia herba-alba as reducing and capping agents. Rev Rom Mater 51(3):342–352

    Google Scholar 

  25. Mihoc G, Ianoş R, Păcurariu C, Lazău I (2013) Combustion synthesis of some iron oxides used as adsorbents for phenol and p-chlorophenol removal from wastewater. J Therm Anal Calorim 112(1):391–397

    Article  Google Scholar 

  26. Drbohlavova J, Hrdy R, Adam V, Kizek R, Schneeweiss O, Hubalek J (2009) Preparation and properties of various magnetic nanoparticles. Sensors 9(4):2352–2362

    Article  Google Scholar 

  27. Özcan A, Oturan MA, Oturan N, Şahin Y (2009) Removal of Acid Orange 7 from water by electrochemically generated Fenton’s reagent. J Hazard Mater 163(2):1213–1220. https://doi.org/10.1016/j.jhazmat.2008.07.088

    Article  Google Scholar 

  28. Abdullah JAA, Salah Eddine L, Abderrhmane B, Alonso-González M, Guerrero A, Romero A (2020) Green synthesis and characterization of iron oxide nanoparticles by pheonix dactylifera leaf extract and evaluation of their antioxidant activity. Sustain Chem Pharm 17:100280. https://doi.org/10.1016/j.scp.2020.100280

    Article  Google Scholar 

  29. Bouafia A, Laouini SE, Ouahrani MR (2020) A review on green synthesis of CuO nanoparticles using plant extract and evaluation of antimicrobial activity. Asian J Res Chem 13(1):65–70

    Article  Google Scholar 

  30. Abderrhmane B, Salah EL (2020) Plant-Mediated Synthesis of Iron Oxide Nanoparticles and Evaluation of the Antimicrobial Activity: A Review. Mini-Rev Org Chem 17:1–10. https://doi.org/10.2174/1570193X17999200908091139

    Article  Google Scholar 

  31. Bouafia A, Laouini SE, Khelef A, Tedjani ML, Guemari F (2020) Effect of Ferric Chloride Concentration on the Type of Magnetite (Fe3O4) Nanoparticles Biosynthesized by Aqueous Leaves Extract of Artemisia and Assessment of Their Antioxidant Activities. J Cluster Sci. https://doi.org/10.1007/s10876-020-01868-7

    Article  Google Scholar 

  32. Bouafia A, Laouini SE (2020) Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha Pulegium L.: Effect of ferric chloride concentration on the type of product. Mater Lett 265:127364. https://doi.org/10.1016/j.matlet.2020.127364

    Article  Google Scholar 

  33. Bouafia A, Laouini SE, Tedjani ML, Ali GAM, Barhoum A (2021) Green biosynthesis and physicochemical characterization of Fe3O4 nanoparticles using Punica granatum L. fruit peel extract for optoelectronic applications. Text Res J. https://doi.org/10.1177/00405175211006671

    Article  Google Scholar 

  34. Laouini SE, Bouafia A, Soldatov AV, Algarni H, Tedjani ML, Ali GAM et al (2021) Green Synthesized of Ag/Ag2O Nanoparticles Using Aqueous Leaves Extracts of Phoenix dactylifera L. and Their Azo Dye Photodegradation. Membranes 11(7). https://doi.org/10.3390/membranes11070468

  35. Laid TM, Abdelhamid K, Eddine LS, Abderrhmane B (2021) Optimizing the biosynthesis parameters of iron oxide nanoparticles using central composite design. J Mol Struct 1229:129497. https://doi.org/10.1016/j.molstruc.2020.129497

    Article  Google Scholar 

  36. Bouafia A, Laouini SE, Ahmed ASA, Soldatov AV, Algarni H, Feng Chong K et al (2021) The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. Nanomaterials 11(9):2318

    Article  Google Scholar 

  37. Pillai PS, Prajapati DI, Ameta R, Ali Y (2016) Preparation of C-TiO2 nanophotocatalyst and its used for degradation of evans blue. Sci Revs Chem Commun 6(1):12–18

    Google Scholar 

  38. Hussein N, Nabeel Z (2018) Antimicrobial effects of Mentha Pulegium extract against Staphyloccocus Aureus bacteria. Al-Mustansiriyah J Sci 29(2). https://doi.org/10.23851/mjs.v29i2.155

  39. Wright CW, Artemisia V (2002) Taylor & Francis. London and New York

  40. Laouini SE, Kelef A, Ouahrani MR (2018) Free radicals scavenging activity and phytochemical composition of astermisia (Herba-Alba) extract growth in Algeria. J Fundam Appl Sci 10(1):268–280

    Article  Google Scholar 

  41. Arul J, Sangeetha R (2015) Phytochemical screening of Punica granatum Linn. Peel extracts. J Acad Indust Res 4(5):160–162

    Google Scholar 

  42. Nakagiri N, Manghnani MH, Ming LC, Kimura S (1986) Crystal structure of magnetite under pressure. Phys Chem Miner 13(4):238–244. https://doi.org/10.1007/BF00308275

    Article  Google Scholar 

  43. Pauling L, Hendricks SB (1925) THE CRYSTAL STRUCTURES OF HEMATITE AND CORUNDUM. J Am Chem Soc 47(3):781–790. https://doi.org/10.1021/ja01680a027

    Article  Google Scholar 

  44. Sakura GB, Leung AYT (2015) Experimental study of particle collection efficiency of cylindrical inlet type cyclone separator. Int J Environ Sci Dev 6(3):160

    Article  Google Scholar 

  45. Nm Izza, Dewi SR, Setyanda A, Sukoyo A, Utoro P, Al Riza DF et al (2018) Microwave-assisted extraction of phenolic compounds from Moringa oleifera seed as anti-biofouling agents in membrane processes. MATEC Web Conf 204:03003

    Article  Google Scholar 

  46. Bello OS, Adegoke KA, Akinyunni OO (2017) Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl Water Sci 7(3):1295–1305. https://doi.org/10.1007/s13201-015-0345-4

    Article  Google Scholar 

  47. Araújo CST, Melo EI, Alves VN, Coelho NMM (2010) Moringa oleifera Lam. seeds as a natural solid adsorbent for removal of AgI in aqueous solutions. J Braz Chem Soc 21:1727–32

    Article  Google Scholar 

  48. Kanagasubbulakshmi S, Kadirvelu K (2017) Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Defence Life Sci J 2(4):422–427

    Article  Google Scholar 

  49. Shakil M, Inayat U, Khalid NR, Tanveer M, Gillani SSA, Tariq NH et al (2022) Enhanced structural, optical, and photocatalytic activities of Cd–Co doped Zn ferrites for degrading methyl orange dye under irradiation by visible light. J Phys Chem Solids 161:110419. https://doi.org/10.1016/j.jpcs.2021.110419

    Article  Google Scholar 

  50. Shakil M, Inayat U, Arshad MI, Nabi G, Khalid NR, Tariq NH et al (2020) Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites. Ceram Int 46(6):7767–7773. https://doi.org/10.1016/j.ceramint.2019.11.280

    Article  Google Scholar 

  51. Rafique M, Sohaib M, Tahir R, Tahir MB, Khalid NR, Shakil M et al (2021) Novel, facile and first time synthesis of zinc oxide nanoparticles using leaves extract of Citrus reticulata for photocatalytic and antibacterial activity. Optik 243:167495. https://doi.org/10.1016/j.ijleo.2021.167495

    Article  Google Scholar 

  52. Tanveer M, Latif A, Nabi G, Shakil M, Khalid S, Qadeer MA (nd) Carthamus oxycantha extract derived novel green synthetic strategy for CaTiO3 nano-structures displaying an enhanced photo-degradation for a mixture of dyes (MB+RHB) and anti-bacterial activity. Available at SSRN: https://ssrn.com/abstract=3999212 or https://doi.org/10.2139/ssrn.3999212

  53. Soni V, Khosla A, Singh P, Nguyen V-H, Le QV, Selvasembian R et al (2022) Current perspective in metal oxide based photocatalysts for virus disinfection: A review. J Environ Manage 308:114617. https://doi.org/10.1016/j.jenvman.2022.114617

    Article  Google Scholar 

  54. Abdulkadir I, Abdallah HMI, Jonnalagadda SB, Martincigh BS (2018) The effect of synthesis method on the structure, and magnetic and photocatalytic properties of hematite (α-Fe 2 O 3) nanoparticles. S Afr J Chem 71:68–78

    Article  Google Scholar 

  55. Sharp EL, Jarvis P, Parsons SA, Jefferson B (2006) Impact of fractional character on the coagulation of NOM. Colloids Surf, A 286(1):104–111. https://doi.org/10.1016/j.colsurfa.2006.03.009

    Article  Google Scholar 

  56. Groiss S, Selvaraj R, Varadavenkatesan T, Vinayagam R (2017) Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora. J Mol Struct 1128:572–578. https://doi.org/10.1016/j.molstruc.2016.09.031

    Article  Google Scholar 

  57. Gosens I, Post JA, de la Fonteyne LJJ, Jansen EHJM, Geus JW, Cassee FR et al (2010) Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol 7(1):37. https://doi.org/10.1186/1743-8977-7-37

    Article  Google Scholar 

  58. Karpagavinayagam P, Vedhi C (2019) Green synthesis of iron oxide nanoparticles using Avicennia marina flower extract. Vacuum 160:286–292

    Article  Google Scholar 

  59. Groiss S, Selvaraj R, Varadavenkatesan T, Ramesh V (2016) Structural characterization, antibacterial and catalytic effect of iron oxide nanoparticles synthesised using the leaf extract of Cynometra ramiflora

  60. Liao C, Li Y, Tjong SC (2020) Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. Nanomaterials 10(1):124

    Article  Google Scholar 

  61. Jayakumarai G, Gokulpriya C, Sudhapriya R, Sharmila G, Muthukumaran C (2015) Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract. Appl Nanosci 5(8):1017–1021. https://doi.org/10.1007/s13204-015-0402-1

    Article  Google Scholar 

  62. Lassoued A, Lassoued MS, Dkhil B, Ammar S, Gadri A (2018) Synthesis, structural, morphological, optical and magnetic characterization of iron oxide (α-Fe2O3) nanoparticles by precipitation method: effect of varying the nature of precursor. Physica E 97:328–334

    Article  Google Scholar 

  63. Soltan WB, Nasri S, Lassoued MS, Ammar S (2017) Structural, optical properties, impedance spectroscopy studies and electrical conductivity of SnO 2 nanoparticles prepared by polyol method. J Mater Sci: Mater Electron 28(9):6649–6656

    Google Scholar 

  64. Beranek R, Kisch H (2008) Tuning the optical and photoelectrochemical properties of surface-modified TiO 2. Photochem Photobiol Sci 7(1):40–48

    Article  Google Scholar 

  65. Ali GAM, Thalji MR, Soh WC, Algarni H, Chong KF (2020) One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application. J Solid State Electrochem 24(1):25–34. https://doi.org/10.1007/s10008-019-04449-5

    Article  Google Scholar 

  66. Naeimi A, Sharifi A, Montazerghaem L, Abhari AR, Mahmoodi Z, Bakr ZH et al (2022) Transition metals doped WO3 photocatalyst towards high efficiency decolourization of azo dye. J Mol Struct 1250:131800. https://doi.org/10.1016/j.molstruc.2021.131800

    Article  Google Scholar 

  67. Strehlow WH, Cook EL (1973) Compilation of Energy Band Gaps in Elemental and Binary Compound Semiconductors and Insulators. J Phys Chem Ref Data 2(1):163–200. https://doi.org/10.1063/1.3253115

    Article  Google Scholar 

  68. Kulkarni SA, Sawadh PS, Palei PK, Kokate KK (2014) Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram Int 40(1, Part B):1945–9. https://doi.org/10.1016/j.ceramint.2013.07.103

  69. Ali GAM, Yusoff MM, Ng YH, Lim HN, Chong KF (2015) Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study. Curr Appl Phys 15(10):1143–1147. https://doi.org/10.1016/j.cap.2015.06.022

    Article  Google Scholar 

  70. Martienssen W (1957) Über die excitonenbanden der alkalihalogenidkristalle. J Phys Chem Solids 2(4):257–267. https://doi.org/10.1016/0022-3697(57)90070-7

    Article  Google Scholar 

  71. Ethiraj AS, Uttam PKV, Chong KF, Ali GAM (2020) Photocatalytic performance of a novel semiconductor nanocatalyst: Copper doped nickel oxide for phenol degradation. Mater Chem Phys 242:122520. https://doi.org/10.1016/j.matchemphys.2019.122520.

  72. Sharifi A, Montazerghaem L, Naeimi A, Abhari AR, Vafaee M, Ali GAM et al (2019) Investigation of photocatalytic behavior of modified ZnS:Mn/MWCNTs nanocomposite for organic pollutants effective photodegradation. J Environ Manage 247:624–632. https://doi.org/10.1016/j.jenvman.2019.06.096

    Article  Google Scholar 

  73. Giahi M, Pathania D, Agarwal S, Ali GAM, Chong KF, Gupta VK (2019) Preparation of Mg-doped TiO2 nanoparticles for photocatalytic degradation of some organic pollutants. Stud Univ Babes-Bolyai, Chem 64(1):7–18

    Google Scholar 

  74. Pang YL, Law ZX, Lim S, Chan YY, Shuit SH, Chong WC et al (2021) Enhanced photocatalytic degradation of methyl orange by coconut shell–derived biochar composites under visible LED light irradiation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-12251-4

    Article  Google Scholar 

  75. Khalid NR, Arshad A, Tahir MB, Hussain MK (2021) Fabrication of p–n heterojunction Ag2O@Ce2O nanocomposites make enables to improve photocatalytic activity under visible light. Appl Nanosci 11(1):199–206. https://doi.org/10.1007/s13204-020-01571-z

    Article  Google Scholar 

  76. Khalid NR, Hussain MK, Murtaza G, Ikram M, Ahmad M, Hammad A (2019) A Novel Ag2O/Fe–TiO2 Photocatalyst for CO2 Conversion into Methane Under Visible Light. J Inorg Organomet Polym Mater 29(4):1288–1296. https://doi.org/10.1007/s10904-019-01092-5

    Article  Google Scholar 

  77. Ghorai TK (2011) Photocatalytic Degradation of 4-chlorophenol by CuMoO<sub>4</sub>-doped TiO<sub>2</sub> Nanoparticles Synthesized by Chemical Route. Open J Phys Chem 01(02):9. https://doi.org/10.4236/ojpc.2011.12005

    Article  Google Scholar 

  78. Fu L, Wu Y-n, Li F, Zhang B (2013) Synthesis of InNbO4 short nanofiber membrane as visible-light-driven photocatalyst. Mater Lett 109:225–8. https://doi.org/10.1016/j.matlet.2013.07.096

    Article  Google Scholar 

  79. Azeez F, Al-Hetlani E, Arafa M, Abdelmonem Y, Nazeer AA, Amin MO et al (2018) The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep 8(1):7104. https://doi.org/10.1038/s41598-018-25673-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.E.L., M.S., A.B., and H.H.; methodology, A.B., M.S., and M.L.T.; validation, A.B., S.E.L., M.S., and M.L.T; investigation, A.B., M.L.T, and M.S.; resources, A.B.; data curation, A.B., M.L.T., and M.M.S.; writing—original draft preparation, S.E.L., M.S., A.B., H.H, M.L.T and B.D.; writing—review and editing, A.B., M.S., M.L.T, and, and H.H.; supervision, S.E.L., M.S., and H.H.;, authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Abderrhmane Bouafia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meneceur, S., Hemmami, H., Bouafia, A. et al. Photocatalytic activity of iron oxide nanoparticles synthesized by different plant extracts for the degradation of diazo dyes Evans blue and Congo red. Biomass Conv. Bioref. 14, 5357–5372 (2024). https://doi.org/10.1007/s13399-022-02734-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02734-4

Keywords

Navigation