Skip to main content
Log in

Experimental analysis on drilling of super duplex stainless steel 2507 (SDSS 2507) using cryogenic LCO2 and MQL process

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Environmental-friendly liquid carbon dioxide (LCO2) and biodegradable coconut oil–based minimum quantity lubrication (MQL) technique play a significant role in green machining compared to conventionally polluting cutting fluids. In this work, analysis of the drilling performance was made for super duplex stainless steel (SDSS) which finds use in numerous industrial applications in marine, petrochemical, and oil industries. Input parameters chosen were the cutting velocity of 60 m/min, feed rate of 0.03, 0.05, 0.07 mm/rev, and varying environmental conditions such as LCO2, MQL, and flood coolant. Comparison between output parameters and analysis was made in all the environmental conditions based on cutting temperature (T), surface topography, surface roughness (Ra), tool wear, and chip morphology. The application of LCO2-based drilling process resulted in the dwindling of the cutting temperature (T), improved surface finish, and better chip breakability in comparison to other drilling conditions. Using a scanning electron microscope (SEM), the LCO2 condition displays the least amount of flank and crater wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nilsson JO (1992) Overview Super duplex stainless steels. Materi Sci Technol 8:685–700. https://doi.org/10.1179/mst.1992.8.8.685

    Article  Google Scholar 

  2. Olsson J, Snis M (2007) Duplex – a new generation of stainless steels for desalination plants. Desalination 205:104–113. https://doi.org/10.1016/j.desal.2006.02.051

    Article  Google Scholar 

  3. Anon ED (2009) Practical guidelines for the fabrication of duplex stainless steel, 2nd edn. International Molybdenum Association, London

    Google Scholar 

  4. Tonshoff HK, Spintig W, Konig W, Neises A (1994) Machining of holes developments in drilling technology. Ann CIRP 43(2):551–561. https://doi.org/10.1016/S0007-8506(07)60501-0

    Article  Google Scholar 

  5. Nomani J, Pramanik A, Hilditch T, Littlefair G (2013) Machinability study of first feneration duplex (2205), second generation duplex (2507) and austenite stainless steel during drilling process. Wear 304:20–28. https://doi.org/10.1016/j.wear.2013.04.008

    Article  Google Scholar 

  6. Nomani J, Pramanik A, Hilditch T, Littlefair G (2015) Chip formation mechanism and machinability of wrought duplex stainless steel alloys. Int J Adv Manuf Technol 80(5–8):1127–1135. https://doi.org/10.1007/s00170-015-7113-3

    Article  Google Scholar 

  7. Cassin C, Boothroyd G (1965) Lubrication action of cutting fluids. J Mech Eng Sci 7(1):67–81. https://doi.org/10.1243/JMES_JOUR_1965_007_012_02

    Article  Google Scholar 

  8. Singh Jasjeevan, Gill Simranpreet Singh, Dogra Manu, Singh Rupinder (2021) A review on cutting fluids used in machining processes. Eng. Res. Express 3:012002

    Article  Google Scholar 

  9. Shokrani A, Dhokia V, Newman ST (2012) Environmentally conscious machining of difficult-to-machine materials. Int J Mac Tool Manu 57:83–101. https://doi.org/10.1016/j.ijmachtools.2012.02.002

    Article  Google Scholar 

  10. Pereira O, Rodríguez A, Fernández-Abia AI, Barreiro J, López de Lacalle LN (2016) Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. J. Cleaner Produ. 139:440–449

    Article  Google Scholar 

  11. Grguras D, Sterle L, Krajnik P, Pusavec F (2019) A novel cryogenic machining concept based on a lubricated liquid carbon dioxide. Int. J. Mac. Tool. Manu. 145:103456. https://doi.org/10.1016/j.ijmachtools.2019.103456

    Article  Google Scholar 

  12. Fernández D, Sandá A, Bengoetxea I (2019) Cryogenic milling: study of the effect of CO2 cooling on tool wear when machining Inconel 718, Grade EA1N Steel and Gamma TiAl. Lubricants. 7:1–10. https://doi.org/10.3390/lubricants7010010

    Article  Google Scholar 

  13. Nor Hamran NN, Ghani JA, Ramli R, CheHaron CH (2020) A review on recent development of minimum quantity lubrication for sustainable machining. J. Cleaner Produ. 268:122165. https://doi.org/10.1016/j.jclepro.2020.122165

    Article  Google Scholar 

  14. Krolczyk GM, Maruda RW, Krolczyk JB, Wojciechowski S, Mia M, Nieslony P, Budzik G (2019) Ecological trends in machining as a key factor in sustainable production a review. J Cleaner Produ 218:601–615. https://doi.org/10.1016/j.jclepro.2019.02.017

    Article  Google Scholar 

  15. Hadad Mohammadjafar, Sadeghi Banafsheh (2013) Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J. Cleaner. Produ. 54:332–343. https://doi.org/10.1016/j.jclepro.2013.05.011

    Article  Google Scholar 

  16. Rajaguru J, Arunachalam N (2020) A comprehensive investigation on the effect of flood and MQL coolant on the machinability and stress corrosion cracking of super duplex stainless steel. J Mater Proc Tech 276:1–14. https://doi.org/10.1016/j.jmatprotec.2019.116417

    Article  Google Scholar 

  17. Anthony Xavior, M.; Adithan, M. Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J. Mater. Proc. Tech. 2009, 2 0 9, 900–909. Doi:https://doi.org/10.1016/j.jmatprotec.2008.02.068.

  18. Jayadas NH, Prabhakaran Nair K (2006) Coconut oil as base oil for industrial lubricants evaluation and modification of thermal, oxidative and low temperature properties. Tribol. Int. 39:873–878. https://doi.org/10.1016/j.triboint.2005.06.006

    Article  Google Scholar 

  19. Zeilmann RP, Weingaertner WL (2006) Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant. J Mater Proc Tech. 179:124–127. https://doi.org/10.1016/j.jmatprotec.2006.03.077

    Article  Google Scholar 

  20. Kanagaraju T, RajendraBoopathy S, Gowthaman B (2020) Effect of cryogenic and wet coolant performance on drilling of super duplex stainless steel (2507). Material Express. 10(1):81–93. https://doi.org/10.1166/mex.2020.1613

    Article  Google Scholar 

  21. Jindal Anil (2012) Analysis of tool wear rate in drilling operation using scanning electron microscope (SEM). J. Mine. Mater. Charac. Eng. 11(01):43–54. https://doi.org/10.4236/jmmce.2012.111004

    Article  Google Scholar 

  22. Boothroyd G, Knight WA (2006) Fundamentals of metal cutting and machine tools, 3rd edn. CRC Press Taylor and Francis Group

    Google Scholar 

  23. Dhar NR, Kamruzzaman M, Ahmed M (2006) Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 Steel. J Mater Proc Tech. 172:299–304. https://doi.org/10.1016/j.jmatprotec.2005.09.022

    Article  Google Scholar 

  24. Dhar NR, Paul S, Chattopadhyay AB (2002) The influence of cryogenic cooling on tool wear, dimensional accuracy and surface finish in turning AISI 1040 and E4340C steels. Wear. 249:932–942. https://doi.org/10.1016/S0043-1648(01)00825-0

    Article  Google Scholar 

  25. Kalyan Kumar KVBS, Choudhury SK (2008) Investigation of tool wear and cutting force in cryogenic machining using design of experiments. J. Mater. Proc. Tech. 203:95–101. https://doi.org/10.1016/j.jmatprotec.2007.10.036

    Article  Google Scholar 

  26. Huang Shuiquan, Lv Tao, Wang Minghuan, Xuefeng Xu (2018) Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication–EMQL turning process. Int. J. Precision. Eng. Manuf. Green. Tech. 5(2):317–326. https://doi.org/10.1007/s40684-018-0034-5

    Article  Google Scholar 

  27. Rapeti Padmini, Pasam Vamsi Krishna, Gurram Krishna Mohana Rao, Revuru Rukmini Srikant (2018) Performance evaluation of vegetable oil based nano cutting fluids in machining using grey relational analysis-a step towards sustainable manufacturing. J. Cleaner. Produ. 172:2862–2875. https://doi.org/10.1016/j.jclepro.2017.11.127

    Article  Google Scholar 

  28. Bhushan B (2000) Surface roughness analysis and measurement techniques. Modern TribologyHandbook. CRC Press , Vol (1), 49–119. ISBN. 9780429126727.

  29. Yıldırım CV, Kıvak T, Sarıkaya M, Sirin S (2020) Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 underMQL, cryogenic cooling and CryoMQL. J. Mater. Res. Technol. 9(2):2079–2092. https://doi.org/10.1016/j.jmrt.2019.12.069

    Article  Google Scholar 

  30. Prashant Jadhav S, ChinmayaMohanty P, Kumar Tapano, Hotta; Manoj Gupta, (2020) An optimal approach for improving the machinability of Nimonic C-263 superalloy during cryogenic assisted turning. J. Manuf. Processes. 58:693–705. https://doi.org/10.1016/j.jmapro.2020.08.017

    Article  Google Scholar 

  31. Arul K, Senthil Kumar VS (2020) Magnetorhelogical based minimum quantity lubrication (MR-MQL) with additive n-CuO. Mater Manuf Processes 35(4):405–414

    Article  Google Scholar 

  32. Kulandaivel A, Kumar S (2020) Effect of magneto rheological minimum quantity lubrication on machinability, wettability and tribological behavior in turning of Monel K500 alloy. Mach Sci Technol 24(5):810–836. https://doi.org/10.1080/10910344.2020.1765179

    Article  Google Scholar 

  33. Krolczyk GM, Nieslony P, Legutko S (2014) Determination of tool life and research wear during duplex stainless steel turning. Archives Civil Mech Eng 15(2):347–354. https://doi.org/10.1016/j.acme.2014.05.001

    Article  Google Scholar 

  34. Senthil Kumar A, Raja Durai A, Sornakumar T (2003) Machinability of hardened steel using alumina based ceramic cutting tools. Int J Ref Metals Hard Materials 21:109–117. https://doi.org/10.1016/S0263-4368(03)00004-0

    Article  Google Scholar 

  35. Sultan, A. Z.; Safian Sharif.; Denni Kurniawan. Chip formation when drilling AISI 316l stainless steel using carbide twist drill. Procedia Manuf 2: 224–229. doi: https://doi.org/10.1016/j.promfg.2015.07.039.

  36. Ke Feng, Ni Jun, Stephenson DA (2005) Continuous chip formation in drilling. Int. J. Mac. Tool. Manu. 45:1652–1658. https://doi.org/10.1016/j.ijmachtools.2005.03.011

    Article  Google Scholar 

  37. Arul K, Senthil Kumar VS (2020) Effects of nano additives in bio cutting fluid for turning of monel K500 alloy. Journal of the Balkan Tribological Association 26(3):589–600

    Google Scholar 

  38. Manoharan M, Kulandaivel A, Arunagiri A, Refaai MRA, Yishak S, Buddharsamy G (2021) Statistical modelling to study the implications of coated tools for machining AA 2014 using Grey Taguchi-based. Response Surface Methodology Advances in Materials Science and Engineering 6843276. https://doi.org/10.1155/2021/6843276.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Arul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanagaraju, T., Babu, L.G., Madhavan, V.M. et al. Experimental analysis on drilling of super duplex stainless steel 2507 (SDSS 2507) using cryogenic LCO2 and MQL process. Biomass Conv. Bioref. 14, 3987–3998 (2024). https://doi.org/10.1007/s13399-022-02536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02536-8

Keywords

Navigation