Skip to main content
Log in

Properties of sorghum (Sorghum bicolor) biomass particleboard at different maleic acid content and particle size as potential materials for table tennis blade

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Natural adhesives made from non-fossil resources are expected to grow significantly in the future. This study analyzes the effects of maleic acid (MA) content and particle size class on the physical and mechanical characteristics of sorghum (Sorghum bicolor) biomass particleboard (SBMA-particleboard) as potential materials for table tennis blade. MA content was varied in the range of 5 to 20 wt%, while SBMA-particleboard were manufactured using various particles size class and target densities of 300 mm × 300 mm × 0.6 cm and 600 kg/m3, respectively. The result showed that the physical and mechanical properties of SBMA-particleboard improved with increasing MA content of 15 wt%. Furthermore, the MA content of 15 wt% effectively manufactured SBMA-particleboard, while the powder particle class provided higher dimensional stability and internal bond due to the more extensive contact area. Fourier transform infrared spectroscopy analysis showed the presence of ester linkages, indicating a reaction between the carboxyl groups of MA and the hydroxyl of the sorghum biomass to provide good physical and mechanical properties for SBMA-particleboard as potential materials for table tennis blade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Pan Z, Cathcart A, Wang D (2006) Properties of particleboard bond with rice bran and polymeric methylene diphenyl diisocyanate adhesives. Ind Crops Prod 23:40–45. https://doi.org/10.1016/j.indcrop.2005.03.004

    Article  MATH  Google Scholar 

  2. Arifin AMT, Hassan MF, Ismail AE et al (2017) Investigation on suitability of natural fibre as replacement material for table tennis blade investigation on suitability of natural fibre as replacement material for table tennis blade. IOP Conf Series: Journal of Physics: Conf Series 914:012015. https://doi.org/10.1088/1742-6596/914/1/012015

    Article  Google Scholar 

  3. Amin MHM, Arifin AMT, Hassan MF, Li H et al (2017) An evaluation of mechanical properties on kenaf natural fiber / polyester composite structures as table tennis blade an evaluation of mechanical properties on kenaf natural fiber / polyester composite structures as table tennis blade. IOP Conf Series: Journal of Physics: Conf Series 914(2017):012015. https://doi.org/10.1088/1742-6596/914/1/012015

  4. Hashim R, Saari N, Sulaiman O et al (2010) Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk. Mater Des 31:4251–4257. https://doi.org/10.1016/j.matdes.2010.04.012

    Article  MATH  Google Scholar 

  5. Osarenmwinda JO, Nwachukwu JC (2007) Effect of particle size on some properties of rice husk particleboard. Adv Mater Res 18–19:43–48. https://doi.org/10.4028/www.scientific.net/amr.18-19.43. Accessed 7 Feb 2022

  6. Oliveira SL, Mendes RF, Mendes LM, Freire TP (2016) Particleboard panels made from sugarcane bagasse: Characterization for use in the furniture industry. Mater Res 19:914–922. https://doi.org/10.1590/1980-5373-MR-2015-0211

    Article  MATH  Google Scholar 

  7. Soleimani M, Tabil XL, Grewal R, Tabil LG (2017) Carbohydrates as binders in biomass densification for biochemical and thermochemical processes. Fuel 193:134–141. https://doi.org/10.1016/j.fuel.2016.12.053

    Article  Google Scholar 

  8. Santoso M, Widyorini R, Prayitno TA, Sulistyo J (2017) Bonding performance of maltodextrin and citric acid for particleboard made from nipa fronds. J Korean Wood Sci Technol 45:432–443. https://doi.org/10.5658/WOOD.2017.45.4.432

    Article  Google Scholar 

  9. Widyorini R, Umemura K, Septiano A et al (2018) Manufacture and properties of citric acid-bonded composite board made from salacca frond: effects of maltodextrin addition, pressing temperature, and pressing method. BioResources 13:8662–8676

    Article  Google Scholar 

  10. Juliana AH, Paridah MT, Rahim S et al (2012) Properties of particleboard made from kenaf (Hibiscus cannabinus L.) as function of particle geometry. Mater Des 34:406–411. https://doi.org/10.1016/j.matdes.2011.08.019

    Article  Google Scholar 

  11. Kusumah SS, Massijaya SY, Prasetyo KW, et al (2020) Surface modification of eco-friendly particleboard made from sorghum bagasse and citric acid sucrose adhesive. IOP Conf Ser Mater Sci Eng 935:012054. https://doi.org/10.1088/1757-899X/935/1/012054

  12. [FAS] Foreign Agricultural Service (2020) World agricultural production. United States Dep Agric 1–34. Accessed 3 November 2021

  13. Pabendon MB, Sarungallo R, Mas’ud S (2012) Prospect of the using of stem juice, bagasse, and grain of sweet sorghum as raw material for bioethanol production. Penelit Pertan Tanam Pangan 31:180–187. https://doi.org/10.21082/jpptp.v31n3.2012.p/25p

    Article  Google Scholar 

  14. Iswanto AH (2014) Effect of resin type, pressing temperature and time on particleboard properties made from sorghum bagasse. Agric For Fish 3:62. https://doi.org/10.11648/j.aff.20140302.12

    Article  MATH  Google Scholar 

  15. Khazaeian A, Ashori A, Dizaj MY (2015) Suitability of sorghum stalk fibers for production of particleboard. Carbohydr Polym 120:15–21. https://doi.org/10.1016/j.carbpol.2014.12.001

    Article  Google Scholar 

  16. Chaturvedi R, Pappu A (2016) Performance of formaldehyde resins and cement bonded particleboards and understanding its properties for further advancement. Int J Waste Resour 6:1–8. https://doi.org/10.4172/2252-5211.1000215

    Article  Google Scholar 

  17. Zhang J, Song F, Tao J, et al (2018) Research progress on formaldehyde emission of wood-based panel. Int J Polym Sci 2018: 9349721. https://doi.org/10.1155/2018/9349721

  18. Ferdosian F, Pan Z, Gao G, Zhao B (2017) Bio-based adhesives and evaluation for wood composites application. Polymers (Basel) 9 (70): 1-29. https://doi.org/10.3390/polym9020070

  19. Salem MZM, Böhm M (2013) Understanding of formaldehyde emissions from solid wood: An overview. BioResources 8:4775–4790. https://doi.org/10.15376/biores.8.3.4775-4790

  20. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2012) Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum 100:9–562

    Google Scholar 

  21. Réh R, Igaz R, Krišt’ák L, et al (2019) Functionality of beech bark in adhesive mixtures used in plywood and its effect on the stability associated with material systems. Materials (Basel) 12: 1298. https://doi.org/10.3390/ma12081298

  22. Mao A, Hassan EB, Kim MG (2013) Investigation of low mole ratio UF and UMF resins aimed at lowering the formaldehyde emission potential of wood composite boards. BioResources 8:2453–2469. https://doi.org/10.15376/biores.8.2.2453-2469

    Article  Google Scholar 

  23. Barry A, Corneau D (2006) Effectiveness of barriers to minimize VOC emissions including formaldehyde. For Prod J 56:38–42

    Google Scholar 

  24. Lubis MAR, Park BD (2020) Enhancing the performance of low molar ratio urea–formaldehyde resin adhesives via in-situ modification with intercalated nanoclay. J Adhes 00:1–20. https://doi.org/10.1080/00218464.2020.1753515

    Article  Google Scholar 

  25. Yadav SM, Lubis MAR, Wibowo ES, Park BD (2020) Effects of nanoclay modification with transition metal ion on the performance of urea–formaldehyde resin adhesives. Polym Bull. https://doi.org/10.1007/s00289-020-03214-3

    Article  Google Scholar 

  26. He Z (2017) Bio-based Wood Adhesives. In Bio-based Wood Adhesives. https://doi.org/10.1201/9781315369242

    Article  MATH  Google Scholar 

  27. Ghaffar SH, Fan M (2014) Lignin in straw and its applications as an adhesive. Int J Adhes Adhes 48:92–101. https://doi.org/10.1016/j.ijadhadh.2013.09.001

    Article  MATH  Google Scholar 

  28. Mati-Baouche N, Elchinger PH, De Baynast H et al (2014) Chitosan as an adhesive. Eur Polym J 60:198–213. https://doi.org/10.1016/j.eurpolymj.2014.09.008

    Article  Google Scholar 

  29. Norstrom E, Fogelstrom L, Nordqvist P et al (2015) Xylan - A green binder for wood adhesives. Eur Polym J 67:483–493. https://doi.org/10.1016/j.eurpolymj.2015.02.021

    Article  Google Scholar 

  30. Umemura K, Kawai S (2015) Development of wood-based materials bonded with citric acid. For Prod J 65:38–42. https://doi.org/10.13073/FPJ-D-14-00036

    Article  MATH  Google Scholar 

  31. Yi Z, Wang W, Zhang W, Li J (2016) Preparation of tannin-formaldehyde-furfural resin with pretreatment of depolymerization of condensed tannin and ring opening of furfural. J Adhes Sci Technol 30:947–959. https://doi.org/10.1080/01694243.2015.1132576

    Article  Google Scholar 

  32. Zhang H, Liu P, Musa SM et al (2019) Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustain Chem Eng 7:10452–10459. https://doi.org/10.1021/acssuschemeng.9b00801

    Article  Google Scholar 

  33. Kusumah SS, Miyafuji H, Yoshioka K, Kanayama K et al (2016) Utilization of sweet sorghum biomass and citric acid for manufacturing of particleboard I: Effects of pre-drying treatment and citric acid content on the board properties. Ind Crops Prod 84:34–42. https://doi.org/10.1016/j.indcrop.2016.01.042

    Article  Google Scholar 

  34. Widyorini R, Umemura K, Soraya DK et al (2019) Effect of citric acid content and extractives treatment on the manufacturing process and properties of citric acid-bonded Salacca frond particleboard. BioResources 14:4171–4180. https://doi.org/10.15376/biores.14.2.4171-4180

    Article  Google Scholar 

  35. Lee SH, Tahir P, Lum WC et al (2020) A review on citric acid as green modifying agent and binder for wood. Polymers 12:1692. https://doi.org/10.3390/polym12081692

    Article  MATH  Google Scholar 

  36. Umemura K, Ueda T, Kawai S (2012) Characterization of wood-based molding bonded with citric acid. J Wood Sci 58:38–45. https://doi.org/10.1007/s10086-011-1214-x

    Article  MATH  Google Scholar 

  37. Sutiawan J, Hadi YS, Nawawi DS et al (2021) The properties of particleboard composites made from three sorghum (Sorghum bicolor) accessions using maleic acid adhesive. Chemosphere 290:133163. https://doi.org/10.1016/j.chemosphere.2021.133163

    Article  Google Scholar 

  38. Kusumah SS, Umemura K, Guswenrivo I et al (2017) Utilization of sweet sorghum bagasse and citric acid for manufacturing of particleboard II: influences of pressing temperature and time on particleboard properties. J Wood Sci 63:161–172. https://doi.org/10.1007/s10086-016-1605-0

    Article  Google Scholar 

  39. Kövilein A, Kubisch C, Cai L, Ochsenreither K (2020) Malic acid production from renewables: a review. J Chem Technol Biotechnol 95:513–526. https://doi.org/10.1002/jctb.6269

    Article  Google Scholar 

  40. Sutiawan J, Hermawan D, Kusumah SS et al (2003) Utilization of cassava maltodextrin for eco-friendly adhesive in the manufacturing of sorghum bagasse particleboard. Jurnal Sylva Lestari 8:144–154

    Article  Google Scholar 

  41. Arabi M, Faezipour M, Layeghi M, Enayati AA (2011) Interaction analysis between slenderness ratio and resin content on mechanical properties of particleboard. J For Res 22:461–464. https://doi.org/10.1007/s11676-011-0188-2

    Article  Google Scholar 

  42. Wahyuni Y, Miyamoto T, Hartati H et al (2019) Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Ind Crops Prod 142:111840. https://doi.org/10.1016/j.indcrop.2019.111840

    Article  Google Scholar 

  43. Parubak BS (2009) The development of oriented strand board with high quality from bamboo. IPB University, Thesis

    Google Scholar 

  44. Sutiawan J, Mardhatillah S, Hermawan D, Syamani FA (2018) Characteristics of particleboard made from mixed waste sengon and sorghum bagasse bonded with citric acid adhesive. J Penelit Has Hutan 38:139–150

    Article  Google Scholar 

  45. JIS (2003) JIS A 5908 2003: Japanese industrial standard for particleboard. Japanese Industrial Standard. Tokyo, Japan

  46. ASTM (1999) D 1037: Standard test methods for evaluating properties of wood-base fiber and particle. American Society for Testing and Materials

  47. Sutiawan J, Hermawan D, Massijaya MY et al (2021) Influence of different hot-pressing conditions on the performance of eco-friendly jabon plywood bonded with citric acid adhesive. Wood Mater Sci Eng 0:1–10. https://doi.org/10.1080/17480272.2021.1884898

    Article  Google Scholar 

  48. Liao R, Xu J, Umemura K (2016) Low density sugarcane bagasse particleboard bonded and additive content. BioResources 11:2174–2185

    Article  MATH  Google Scholar 

  49. Widyorini R, Umemura K, Putra DR, Prayitno TA et al (2015) Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. Eur J Wood Wood Prod 74:57–65. https://doi.org/10.1007/s00107-015-0967-0

    Article  Google Scholar 

  50. Farrokhpayam SR, Valadbeygi T, Sanei E (2016) Thin particleboard quality:     effect of particle size on the properties of the panel. J Indian Acad Wood Sci. https://doi.org/10.1007/s13196-016-0163-9

  51. Nemli G, Ozturk I, Aydin I (2005) Some of the parameters influencing surface roughness of particleboard. Build Environ 40:1337–1340. https://doi.org/10.1016/j.buildenv.2004.12.008

    Article  MATH  Google Scholar 

  52. Hiziroglu S, Jarusombuti S, Fueangvivat V (2004) Surface characteristics of wood composites manufactured in Thailand. Build Environ 39:1359–1364. https://doi.org/10.1016/j.buildenv.2004.02.004

    Article  Google Scholar 

  53. Ma Z, Wang J, Li C et al (2019) New sight on the lignin torrefaction pretreatment: relevance between the evolution of chemical structure and the properties of torrefied gaseous, liquid, and solid products. Bioresour Technol 288:121528. https://doi.org/10.1016/j.biortech.2019.121528

    Article  Google Scholar 

  54. Ismayati M, Nakagawa-Izumi A, Kamaluddin NN, Ohi H (2016) Toxicity and feeding deterrent effect of 2-methylanthraquinone from thewood extractives of Tectona grandis on the subterranean termites Coptotermes formosanus and Reticulitermes speratus. Insects 7:63. https://doi.org/10.3390/insects7040063

  55. Ghalibaf M, Doddapaneni TRKC, Alén R (2019) Pyrolytic behavior of lignocellulosic-based polysaccharides. J Therm Anal Calorim 137:121–131. https://doi.org/10.1007/s10973-018-7919-y

    Article  Google Scholar 

  56. Bossa B, Theulé P, Duvernay F et al (2008) Carbamic acid and carbamate formation in NH3:CO2 ices - UV irradiation versus thermal processes. Astron Astrophys 492:719–724. https://doi.org/10.1051/0004-6361:200810536

    Article  Google Scholar 

  57. Saud AS, Maniam GP, Ab. Rahim MH (2021) Introduction of eco-friendly adhesives: source, types, chemistry and characterization. In: Jawaid M, Khan T, Nasir M, Asim M (ed) Eco-friendly adhesives for wood and natural fiber composites. Springer, Malaysia.

  58. Ormondroyd GA (2015) Adhesives for wood composites. Elsevier Ltd.

  59. Cheng X, He X, Xie J et al (2016) Effect of the particle geometry and adhesive mass percentage on the physical and mechanical properties of particleboard made from peanut hull. BioResources 11:7271–7281. https://doi.org/10.15376/biores.11.3.7271-7281

Download references

Acknowledgements

The authors are thankful to the PMDSU program IPB University from the Ministry of Research and Higher Education (KEMENRISTEKDIKTI), the National Research and Innovation Agency (BRIN), and the Republic of Indonesia for supporting this work.

Funding

This research was funded by The Ministry of Education, Culture, Research, and Technology (KEMENRISTEKDIKTI) through the PMDSU scheme with the letter No 1/E1/KP. PTNBH/2021.

Author information

Authors and Affiliations

Authors

Contributions

Jajang Sutiawan: methodology, data curation, writing-original draft. Dede Hermawan: conceptualization, supervision. Yusuf Sudo Hadi: conceptualization, supervision. Deded Sarip Nawawi: conceptualization, supervision. Imam Busrya Abdillah: validation. Sukma Surya Kusumah: conceptualization, methodology, supervision, validation. Riska Surya Ningrum: methodology. Putri Amanda: methodology. Maya Ismayati: methodology.

Corresponding author

Correspondence to Dede Hermawan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutiawan, J., Hermawan, D., Hadi, Y.S. et al. Properties of sorghum (Sorghum bicolor) biomass particleboard at different maleic acid content and particle size as potential materials for table tennis blade. Biomass Conv. Bioref. 14, 1607–1619 (2024). https://doi.org/10.1007/s13399-022-02525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02525-x

Keywords

Navigation