Skip to main content
Log in

The overlooked potential of raspberry canes: from waste to an efficient low-cost biosorbent for Cr(VI) ions

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Screening of various potential biosorbents originated from locally available lignocellulosic biomass has led to the investigation of so far uninvestigated raspberry cane for removal of Cr(VI) ions from aqueous solutions. To estimate its adsorption properties, its structure and textural properties were investigated, as well as kinetic and equilibrium studies. Results showed that adsorption occurs fast manifesting the high removal efficiency over a wide range of chromium concentrations with a maximum over 95%, at an initial concentration of about 50 mg/l. The pseudo-second-order model appeared to be the best for fitting kinetic data, while experimental isotherms were the best described by the Langmuir model. The adsorption mechanism is mainly governed by electrostatic attraction of the positively charged surface and the negatively charged chromium species at pH 2, coupled by the reduction of Cr(VI) ions to cationic Cr(III) that occurs concurrently with the oxidation of the RC lignin. The Cr(III) ions are retained through different mechanisms such as surface complexation, ion exchange, and cation-π interactions. The results of this research open up new possibilities for the usage and management of solid waste from raspberry cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhou Q, Yang N, Li Y, Ren B, Ding X, Bian H, Yao X (2020) Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Global Ecol Conserv 22:e00925. https://doi.org/10.1016/j.gecco.2020.e00925

    Article  Google Scholar 

  2. Kumar V, Parihar RD, Sharma A, Bakshi P, Singh Sidhu GP, Bali AS, Karaouzas I, Bhardwaj R, Thukral AK, Gyasi-Agyei Y, Rodrigo-Comino J (2019) Global evaluation of heavy metal content in surface water bodies: a meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 236:124364. https://doi.org/10.1016/j.chemosphere.2019.124364

    Article  Google Scholar 

  3. Flores-Trujillo AKI, Mussali-Galante P, de Hoces MC, Blázquez-García G, Saldarriaga-Noreña HA, Rodríguez-Solís A, Tovar-Sánchez E, Sánchez-Salinas E, Ortiz-Hernández L (2021) Biosorption of heavy metals on Opuntia fuliginosa and Agave angustifolia fibers for their elimination from water. Int J Environ Sci Technol 18:441–454. https://doi.org/10.1007/s13762-020-02832-8

    Article  Google Scholar 

  4. de Freitas GR, da Silva MGC, Vieira MGA (2019) Biosorption technology for removal of toxic metals: a review of commercial biosorbents and patents. Environ Sci Pollut Res 26:19097–19118. https://doi.org/10.1007/s11356-019-05330-8

    Article  Google Scholar 

  5. Ivanovska A, Veljović S, Dojčinović B, Tadić N, Mihajlovski K, Natić M, Kostić M (2021) A strategy to revalue a wood waste for simultaneous cadmium removal and wastewater disinfection. Adsorption Sci Technol. Article ID: 3552300. https://doi.org/10.1155/2021/3552300

  6. Loiacono S, Crini G, Chanet G, Raschetti M, Placet V, Morin-Crini N (2018) J Chem Technol Biotechnol 96:2596–2601. https://doi.org/10.1002/jctb.5612

    Article  Google Scholar 

  7. Redha AA (2020) Removal of heavy metals from aqueous media by biosorption. Arab J Basic Appl Sci 27(1):183–193. https://doi.org/10.1080/25765299.2020.1756177

    Article  Google Scholar 

  8. Blagojev N, Kukić D, Vasić V, Šćiban M, Prodanović J, Bera O (2019) A new approach for modelling and optimization of Cu(II) biosorption from aqueous solutions using sugar beet shreds in a fixed-bed column. J Hazard Mat 363:366–375. https://doi.org/10.1016/j.jhazmat.2018.09.068

    Article  Google Scholar 

  9. Šćiban M, Vulić T, Kukić D, Prodanović J, Klašnja M (2016) Characterization of raw and treated sugar beet shreds for copper ions adsorption. Des Water Treat 57:14590–14597. https://doi.org/10.1080/19443994.2015.1067167

    Article  Google Scholar 

  10. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    Article  Google Scholar 

  11. Huang Q, Hu D, Chen M, Bao C, Jin X (2019) Sequential removal of aniline and heavy metal ions by jute fiber biosorbents: a practical design of modifying adsorbent with reactive adsorbate. J Mol Liq 285:288–298. https://doi.org/10.1016/j.molliq.2019.04.115

    Article  Google Scholar 

  12. Ivanovska A, Dojcinovic B, Maletic S, Pavun L, Asanovic K, Kostic M (2020) Waste jute fabric as a biosorbent for heavy metal ions from aqueous solution. Fibers Polym 21(9):1992–2020. https://doi.org/10.1007/s12221-020-9639-8

    Article  Google Scholar 

  13. Ivanovska A, Pavun L, Dojčinović B, Kostić M (2021) Kinetic and isotherm studies for nickel ions’ biosorption by jute fabrics. J Serbian Chem Soc 86(9):885–897. https://doi.org/10.2298/JSC210209030I

    Article  Google Scholar 

  14. Kostić M, Pejic B, Vukčević M (2018) Waste hemp (Cannabis sativa) fibers as a biosorbent and a precursor for biocarbon sorbents: influence of their chemical composition on Pb(II) removal in T. Stefanović Ed, Chemistry of lignocellulosic: current trends, 1st ed., CRC Press, Boca Raton, pp.3–21. https://doi.org/10.1201/b20936

  15. Georgieva VG, Tavlieva MP, Genieva SD, Vlaev LT (2015) Adsorption kinetics of Cr(VI) ions from aqueous solutions onto black rice husk ash. J Mol Liq 208:219–226. https://doi.org/10.1016/j.molliq.2015.04.047

    Article  Google Scholar 

  16. Khera RA, Iqbal M, Jabeen S, Abbas M, Nazir A, Nisar J, Ghaffar A, Shar GA, Tahir MA (2019) Adsorption efficiency of pitpapra biomass under single and binary metal systems. Surf Interfaces 14:138–145. https://doi.org/10.1016/j.surfin.2018.12.004

    Article  Google Scholar 

  17. Schwantes D, Goncalves C Jr, De Varennes A, Braccini AL (2018) Modified grape stem as a renewable adsorbent for cadmium removal. Water Sci Technol 78(11):2308–2320. https://doi.org/10.2166/wst.2018.511

    Article  Google Scholar 

  18. Nikolova M, Prokopov T, Ivanova T, Popova V, Taneva D, Dimov M, Mazova N (2020) Applying cape gooseberry residues for removal of Cr (VI) from aqueous solution. J Chem Technol Metall 55(6):2076–2084

    Google Scholar 

  19. Boosaeidi N, Pourkhabbaz A, Jahan M (2017) Biosorption of hexavalent chromium by the agricultural wastes of the cotton and barberry plants. Adv Environ Technol 3:159–167. https://doi.org/10.22104/AET.2017.579

    Article  Google Scholar 

  20. Sredojević Z, Kljajić N, Popović N (2013) Investing in raspberry production as an opportunity of sustainable development of rural areas in western Serbia. Econ Insights – Trends and Chall. II (LXV) No. 1/2013, 63 – 72

  21. Paraušić V, Simeunović I (2016) Market analysis of Serbia’s raspberry sector and cluster development initiatives. Econ Agric 63:1417–1431. https://doi.org/10.5937/ekoPolj1604417P

    Article  Google Scholar 

  22. Chromium in drinking-water, background document for development of WHO guidelines for drinking-water quality (WHO/SDE/WSH/03.04/04)

  23. Garner W (1967) Textile laboratory manual, volume 5: fibers. Heywood Books, London

  24. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  Google Scholar 

  25. Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989

    Article  Google Scholar 

  26. Smičiklas ID, Milonjić SK, Pfendt P, Raičević S (2000) The point of zero charge and sorption of cadmium (II) and strontium (II) ions on synthetic hydroxyapatite. Sep Purif Technol 18:185–194. https://doi.org/10.1016/S1383-5866(99)00066-0

    Article  Google Scholar 

  27. Ride DR (2006) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  28. Abdolali A, Guo WS, Ngo HH, Chen SS, Nguyen NC, Tung KL (2014) Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: a critical review. Bioresour Technol 160:57–66. https://doi.org/10.1016/j.biortech.2013.12.037

    Article  Google Scholar 

  29. Prozil SO, Evtuguin DV, Lopes LPC (2021) Chemical composition of grape stalks of Vitis vinifera L. from red grape pomaces. Ind Crop Prod 35:178–184. https://doi.org/10.1016/j.indcrop.2011.06.035

    Article  Google Scholar 

  30. Morin-Crini N, Loiacono S, Placet V, Torri G, Bradu C, Kostić M, Cosentino C, Chanet G, Martel B, Lichtfouse E, Crini G (2018) Hemp-based materials for metal removal. In: Green adsorbents for pollutant removal. Springer Nature Switzerland 1:34. https://doi.org/10.1007/978-3-319-92162-4_1

  31. Miranda I, Gominho J, Mirra I, Pereira H (2012) Chemical characterization of barks from Picea abies and Pinus sylvestris after fractioning into different particle sizes. Ind Crop Prod 36:395–400. https://doi.org/10.1016/j.indcrop.2011.10.035

    Article  Google Scholar 

  32. Gupta BS, Jelle BP, Gao T (2015) Wood facade materials aging analysis by FTIR spectroscopy. Proc Inst Civ Eng-Constr Mat 168:219–231. https://doi.org/10.1680/coma.13.00021

    Article  Google Scholar 

  33. Ivanovska A, Asanović K, Jankoska M, Mihajlovski K, Pavun L, Kostić M (2020) Multifunctional jute fabrics obtained by different chemical modifications. Cellulose 27:8485–8502. https://doi.org/10.1007/s10570-020-03360-x

    Article  Google Scholar 

  34. Li M, Wang L-J, Li D, Cheng Y-L, Adhikari B (2014) Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp. Carbohydr Polym 102:136–143. https://doi.org/10.1016/j.carbpol.2013.11.021

    Article  Google Scholar 

  35. Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43(1):13–25. https://doi.org/10.1016/j.vibspec.2006.06.001

    Article  Google Scholar 

  36. Shen Y-S, Wang S-L, Huang S-T, Tzou Y-M, Huang J-H (2010) Biosorption of Cr(VI) by coconut coir: spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. J Hazard Mat 179(1–3):160–165. https://doi.org/10.1016/j.jhazmat.2010.02.073

    Article  Google Scholar 

  37. Wahab MA, Jellali S, Jedidi N (2010) Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour Technol 101(14):5070–5075. https://doi.org/10.1016/j.biortech.2010.01.121

    Article  Google Scholar 

  38. Wu Y, Zhou J, Huang Q, Yang F, Wang Y, Liang X, Li J (2020) Study on the colorimetry properties of transparent wood prepared from six wood species. ACS Omega 5(4):1782–1788. https://doi.org/10.1021/acsomega.9b02498

    Article  Google Scholar 

  39. Xu A-R, Chen L, Guo X, Xiao Z, Liu R (2018) Biodegradable lignocellulosic porous materials: fabrication, characterization and its application in water processing. Int J Biol Macromol 115:846–852. https://doi.org/10.1016/j.ijbiomac.2018.04.133

    Article  Google Scholar 

  40. Özgenç Ö, Durmaz S, Boyacı I, Ekşi H (2016) Determination of chemical changes in heat-treated wood using ATR-FTIR and FT Raman spectrometry. Spectrochim Acta A Mol Biomol Spectrosc 171:395–400. https://doi.org/10.1016/j.saa.2016.08.026

    Article  Google Scholar 

  41. Stavrinou A, Aggelopoulos CA, Tsakiroglou CD (2018) Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: adsorption kinetics and equilibrium isotherms as a tool. J Environ Chem Eng 6(6):6958–6970. https://doi.org/10.1016/j.jece.2018.10.063

    Article  Google Scholar 

  42. Haroon H, Gardazi SMH, Tayyab Butt A, Pervez A, Qaisar M, Bilal M (2017) Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium, kinetics, and thermodynamic studies. Polish J Chem Technol 19(2):6–15. https://doi.org/10.1515/pjct-2017-0021

    Article  Google Scholar 

  43. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  44. Ayawei N, Ebelegi AN, Wankasi D (2017) Modelling and interpretation of adsorption isotherms. J Chem. Article ID 3039817,1-11. https://doi.org/10.1155/2017/3039817

  45. Abd Elhafez SE, Hamad HA, Zaatout AA, Malash GF (2017) Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Environ Sci Pollut Res 24:1397–1415. https://doi.org/10.1007/s11356-016-7891-7

    Article  Google Scholar 

  46. Fiol N, Villaescusa I (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environ Chem Lett 7:79–84. https://doi.org/10.1007/s10311-008-0139-0

    Article  Google Scholar 

  47. Cabatingan LK, Agapay RC, Rakels JLL, Ottens M, van der Wielen LAM (2001) Potential of biosorption for the recovery of chromate in industrial wastewaters. Ind Eng Chem Res 40:2302–2309. https://doi.org/10.1021/ie0008575

    Article  Google Scholar 

  48. Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 5th Ed., John Wiley & Sons

  49. Zhao X, Zheng J, You S, Du L, Liu C, Chen K, Liu Y, Ma L (2021) Selective adsorption of CR (VI) onto amine-modified passion fruit peel biosorbent. Processes 9(5):790. https://doi.org/10.3390/pr9050790

    Article  Google Scholar 

  50. Islam AMd, Angove MJ, Morton DW (2019) Recent innovative research on chromium (VI) adsorption mechanism. Environ Nanotechnol Monit Manag 12:100267. https://doi.org/10.1016/j.enmm.2019.100267

    Article  Google Scholar 

  51. Li L, Duan H, Wang X, Luo C (2014) Adsorption property of Cr (VI) on magnetic mesoporous titanium dioxide graphene oxide core–shell microspheres. New J Chem 38:6008–6016. https://doi.org/10.1039/C4NJ00782D

    Article  Google Scholar 

  52. Mondal NK, Basu S (2019) Potentiality of waste human hair towards removal of chromium (VI) from solution: kinetic and equilibrium studies. Appl Water Sci 9:49. https://doi.org/10.1007/s13201-019-0929-5

    Article  Google Scholar 

  53. Nadeem U (2014) Adsorptive removal of Pb (II) and Cr (VI) ions on natrolite. Eur Chem Bull 3:495–501

    Google Scholar 

  54. Owalude SO, Tella AC (2016) Removal of hexavalent chromium from aqueous solutions by adsorption on modified groundnut hull. Beni-suef Univ J Basic Appl Sci 5:377–388. https://doi.org/10.1016/j.bjbas.2016.11.005

    Article  Google Scholar 

  55. Parlayici Ş, Pehlivan E (2019) Comparative study of Cr (VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic. J Anal Sci Technol 10:15. https://doi.org/10.1186/s40543-019-0175-3

    Article  Google Scholar 

  56. Suksabye P, Thiravetyan P, Nakbanpote W, Chayabutra S (2007) Chromium removal from electroplating wastewater by coir pith. J Hazard Mat 141(3):637–644. https://doi.org/10.1016/j.jhazmat.2006.07.018

    Article  Google Scholar 

  57. Miretzky P, Cirelli AF (2010) Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mat 180(1–3):1–19. https://doi.org/10.1016/j.jhazmat.2010.04.060

    Article  Google Scholar 

  58. Dupont L, Guillon E (2003) Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ Sci Technol 37(18):4235–4241. https://doi.org/10.1021/es0342345

    Article  Google Scholar 

  59. Ivanovska A, Lađarević J, Pavun L, Dojčinović B, Cvijetić I, Mijin D, Kostić M (2021) Obtaining jute fabrics with enhanced sorption properties and “closing the loop” of their lifecycle. Ind Crop Prod 171 Article number: 113913. https://doi.org/10.1016/j.indcrop.2021.113913

  60. Nada AAMA, Kamel S, El-Sakhawy M (2000) Thermal behaviour and infrared spectroscopy of cellulose carbamates. Polym Degrad Stabil 70:347–355. https://doi.org/10.1016/S0141-3910(00)00119-1

    Article  Google Scholar 

  61. Kramar A, Ivanovska A, Kostić M (2021) Regenerated cellulose fiber functionalization by two-step oxidation using sodium periodate and sodium chlorite — impact on the structure and sorption properties. Fibers Polym 22(8):2177–2186. https://doi.org/10.1007/s12221-021-0996-8

    Article  Google Scholar 

  62. Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254(23–24):2959–2972. https://doi.org/10.1016/j.ccr.2010.06.005

    Article  Google Scholar 

  63. Vo AT, Nguyen VP, Ouakouak A, Nieva A, Doma BT Jr, Tran HN, Chao H-P (2019) Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: adsorption-coupled reduction mechanism water 11:1164. https://doi.org/10.3390/w11061164

  64. Amar MB, Walha K, Salvadó V (2021) Valorisation of pine cone as an efficient biosorbent for the removal of Pb(II), Cd(II), Cu(II), and Cr(VI). Adsorption Sci Technol. Article ID 6678530. https://doi.org/10.1155/2021/6678530

Download references

Acknowledgements

The results presented in this work are part of the projects 451-03-68/2022-14/200134, 451-03-68/2022-14/200287, and 451-03-68/2022-14/200135, financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Kukić.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukić, D., Ivanovska, A., Vasić, V. et al. The overlooked potential of raspberry canes: from waste to an efficient low-cost biosorbent for Cr(VI) ions. Biomass Conv. Bioref. 14, 4605–4619 (2024). https://doi.org/10.1007/s13399-022-02502-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02502-4

Keywords

Navigation