Skip to main content

Advertisement

Log in

Effect of the autohydrolysis treatment on the integral revalorisation of Ziziphus lotus

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this work, the autohydrolysis of Ziziphus lotus has been used as a pretreatment that permitted the integral revalorisation of this feedstock by obtaining oligosaccharides, lignin and cellulose nanofibres. For that, firstly, the temperature of the autohydrolysis process was optimised to maximise the production of oligosaccharides, obtaining 17.8 g/L of oligosaccharides at the optimum conditions. Afterwards, the effect of the autohydrolysis pretreatment on the effectiveness of the subsequent biorefinery steps and on the characteristics of the obtained products was analysed. It was observed that the autohydrolysis pretreatment not only increased the organosolv delignification process by 42.7%, but also decreased polydispersity of the obtained lignin by 33.82%. Regarding the cellulose nanofibres, their crystallinity index increased from 74.3 to 79.2% due to the effect of the autohydrolysis treatment. Thus, the autohydrolysis pretreatment would permit the integral revalorisation of Ziziphus lotus by a biorefinery approach that could be an example of the circular economy and of a zero-waste production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

References

  1. Zorpas AA, Lasaridi K, Abeliotis K, Voukkali I, Loizia P, Fitiri L, Bikaki N (2014) Waste prevention campaign regarding waste framework directive. Fresenius Environ Bull 23:2876–2883

    Google Scholar 

  2. Maraghni M, Gorai M, Neffati M (2010) Seed germination at different temperatures and water stress levels, and seedling emergence from different depths of Ziziphus lotus. S Afr J Bot 76:453–459. https://doi.org/10.1016/j.sajb.2010.02.092

    Article  Google Scholar 

  3. Richardson JE, Chatrou LW, Mols JB, Erkens RHJ, Pirie MD (2004) Historical biogeography of two cosmopolitan families of flowering plants: Annonaceae and Rhamnaceae. Philos Trans R Soc B 359:1495–1508. https://doi.org/10.1098/rstb.2004.1537

    Article  Google Scholar 

  4. Hammi KM, Jdey A, Abdelly C, Majdoub H, Ksouri R (2015) Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Ziziphus lotus fruits using response surface methodology. Food Chem 184:80–89. https://doi.org/10.1016/j.foodchem.2015.03.047

    Article  Google Scholar 

  5. Ghazghazi H, Aouadi C, Riahi I, Maaroufi A, Hasnaoui B (2014) Fatty acids composition of Tunisian Ziziphus lotus L, (Desf.) fruits and variation in biological activities between leaf and fruit extracts. Nat Prod Res 28:1106–1110. https://doi.org/10.1080/14786419.2014.913244

    Article  Google Scholar 

  6. El Hachimi F, Alfaiz C, Bendriss A, Cherrah Y, Alaoui K (2016) Anti-inflammatory activity of the seed oil of Ziziphus lotus (L.) Desf. Pharmacognosie 15:147–154. https://doi.org/10.1007/s10298-016-1056-1

    Article  Google Scholar 

  7. Hammi KM, Hammami M, Rihouey C, Le Cerf D, Ksouri R, Majdoub H (2018) GC-EI-MS identification data of neutral sugars of polysaccharides extracted from Ziziphus lotus Fruit. Data Brief 18:680–683. https://doi.org/10.1016/j.dib.2018.01.085

    Article  Google Scholar 

  8. Renault HJ, Ghedira K, Thepenier P, Lavaud C, Zeches-Harnot M, Men-olivier L (1997) Dammarane sponins from Ziziphus lotus. Plant Chem 44:1321–1327. https://doi.org/10.1016/s0031-9422(96)00721-2

    Article  Google Scholar 

  9. Rodríguez-Seoane P, Díaz-Reinoso B, Moure A, Domínguez H (2020) Potential of Paulownia sp. For biorefinery. Ind Crops Prod 155:112739. https://doi.org/10.1016/j.indcrop.2020.112739

  10. Gullón P, Gullón B, Dávila I, Labidi J, Gonzalez-García S (2018) Comparative environmental Life Cycle Assessment of integral revalorization of vine shoots from a biorefinery perspective. Sci Total Environ 624:225–240. https://doi.org/10.1016/j.scitotenv.2017.12.036

    Article  MATH  Google Scholar 

  11. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41. https://doi.org/10.1016/j.carbpol.2017.09.064

    Article  Google Scholar 

  12. Dávila I, Gordobil O, Labidi J, Gullón P (2016) Assessment of suitability of vine shoots for hemicellulosic oligosaccharides production through aqueous processing. Bioresour Technol 211:636–644. https://doi.org/10.1016/j.biortech.2016.03.153

    Article  Google Scholar 

  13. Cocero MJ, Cabeza Á, Abad N, Adamovic T, Vaquerizo L, Martínez CM, Pazo-Ceped V (2018) Understanding biomass fractionation in subcritical & supercritical water. J Supercrit Fluid 133:550–565. https://doi.org/10.1016/j.supflu.2017.08.012

    Article  Google Scholar 

  14. Chemin M, Wirotius AL, Ham-Pichavant F, Chollet G, Da Silva D, Petit-Conil M, Cramail H, Grelier S (2015) Well-defined oligosaccharides by mild acidic hydrolysis of hemicelluloses. Eur Polym J 66:190–197. https://doi.org/10.1016/j.eurpolymj.2015.02.008

    Article  Google Scholar 

  15. Gomes ED, Rodrigues AE (2020) Recovery of vanillin from kraft lignin depolymerization with water as desorption eluent. Sep Purif Technol 239: 116551. https://doi.org/10.1016/j.seppur.2020.116551

  16. Wang H, Xie H, Du H, Wang X, Liu W, Duan Y, Zhang X, Sun L, Zhang X, Si C (2020) Highly efficient preparation of functional and thermostable cellulose nanocrystals via H2SO4 intensified acetic acid hydrolysis. Carbohydr Polym 8:16691–16700. https://doi.org/10.1016/j.carbpol.2020.116233

    Article  Google Scholar 

  17. Dávila I, Gullón P, Andrés MA, Labidi J (2017) Coproduction of lignin and glucose from vine shoots by eco-friendly strategies: toward the development of an integrated biorefinery. Bioresour Technol 244:328–337. https://doi.org/10.1016/j.biortech.2017.07.104

    Article  Google Scholar 

  18. Gullόn B, Yáñez R, Alonso JL, Párajό JC (2010) Production of oligosaccharides and sugars from rye straw: a kinetic approach. Bioresour Technol 101:6676–6684. https://doi.org/10.1016/j.biortech.2010.03.080

    Article  MATH  Google Scholar 

  19. Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J (2006) Biocoversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol Bioeng 94:852–861. https://doi.org/10.1002/bit.20905

    Article  Google Scholar 

  20. Erdocia X, Prado R, Corcuera MÁ, Labidi J (2014) Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. Ind Eng Chem 20:1103–1108. https://doi.org/10.1016/j.jiec.2013.06.048

    Article  Google Scholar 

  21. Dávila I, Remón J, Gullón P, Labidi J, Budarin V (2019) Production and characterization of lignin and cellulose fractions obtained from pretreated vine shoots by microwave assisted alkali treatment. Bioresour Technol 289:121726. https://doi.org/10.1016/j.biortech.2019.121726

    Article  Google Scholar 

  22. Del Río JC, Gutierrez A, Hernando M, Landín P, Romero AT, Martínez ÁT (2005) Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS. J Anal Appl Pyrolysis 74:110–115. https://doi.org/10.1016/j.jaap.2004.10.010

    Article  Google Scholar 

  23. Fernández-Rodríguez J, Gordobil O, Robles E, González Alriols M, Labidi J (2017) Lignin valorization from side-streams produced during agricultural waste pulping and total chlorine free bleaching. J Clean Prod 142:2609–2617. https://doi.org/10.1016/j.jclepro.2016.10.198

    Article  Google Scholar 

  24. Chen L, Wang X, Yang H, Lu Q, Li D, Yang Q, Chen H (2015) Study on pyrolysisbehaviors of non-woody lignins with TG-FTIR and PY-GC/MS. J Anal Appl Pyrolysis 113:499–507. https://doi.org/10.1016/j.jaap.2015.03.018

    Article  MATH  Google Scholar 

  25. Wise L, Murphy E, Addieco MAA (1946) Clorite holocellulose: its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. Pap Trade J 122:34–43

    Google Scholar 

  26. Bettaib F, Khiari R, Hassan LM, Belgacem N (2015) Preparation and characterization of new cellulose nanocrystals from marine biomass Posidonia oceanica. Ind Crops Prod 72:175–182. https://doi.org/10.1016/j.indcrop.2014.12.038

    Article  Google Scholar 

  27. Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pretreatment of lignocelulloses: composition, imaging and crystallinity. Bioresour Technol 200:1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022

    Article  MATH  Google Scholar 

  28. Moussaoui Y, Ferhi F, Elaloui E, Ben Salem R, Belgacem MN (2011) Utilisation of Astragalus armatus roots in papermaking. BioResources 6:4969–4978

    Article  Google Scholar 

  29. Ferhi F, Das S, Elaloui E, Moussaoui Y, Yanez JG (2014) Chemical characterisation and suitability for papermaking applications studied on four species naturally growing in Tunisia. Ind Crops Prod 61:180–185. https://doi.org/10.1016/j.indcrop.2014.07.001

    Article  Google Scholar 

  30. Mannai F, Ammar M, Yanez JG, Elaloui E, Moussaoui Y (2016) Cellulose fiber from Tunisian Barbary Fig"Opuntia Ficus-indica" for papermaking. Cellulose 23:2061–2072. https://doi.org/10.1007/s10570-016-0899-9

    Article  Google Scholar 

  31. Sixta H (2006) Introduction. In: Sixta H (ed) Handbook of Pulp. WILEY-VCH, Weinheim, pp 2–19

    Chapter  MATH  Google Scholar 

  32. Svärd A, Brannvall E, Edlund U (2015) Rapeseed straw as a renewable source of hemicelluloses: extraction, characterization and film formation. Carbohydr Polym 133:179–186. https://doi.org/10.1016/j.carbpol.2015.07.023

    Article  MATH  Google Scholar 

  33. Rico X, Gullόn B, Alonso JL, Parajό JC, Yánez R (2018) Valorization of peanut shells: manufacture of bioactive oligosaccharides. Carbohydr Polym 183:21–28. https://doi.org/10.1016/j.carbpol.2017.11.009

    Article  Google Scholar 

  34. Morales A, Hernández-Ramos F, Sillero L, Fernández-Marín R, Dávila I, Gullόn P, Erdocia X, Labidi J (2020) Multiproduct biorefinery based on almond shells: impact of the delignification stage on the manufacture of valuable products. Bioresour Technol 315:123896. https://doi.org/10.1016/j.biortech.2020.123896

    Article  Google Scholar 

  35. Belouadah Z, Atia A, Rokbi M (2015) Characterization of new natural cellulosic fiber from Lygeum Spartum L. Carbohydr Polym 134:429–437. https://doi.org/10.1016/j.carbpol.2015.08.024

    Article  Google Scholar 

  36. Gan T, Zhou Q, Su C, Xia J, Xie D, Liu Z, Cao Y (2021) Efficient isolation of organosolv lignin-carbohydrate complexes (LCC) with high antioxidative activity via introducing LiCl/DMSO dissolving. Int J BiolMacromol 181:752–761. https://doi.org/10.1016/j.ijbiomac.2021.03.167

    Article  Google Scholar 

  37. Lu Y, Joosten L, Donker J, Andriulo F, Slaghek TM, Philips-Jones MK, Gosselink RJA, Harding SE (2020) Characterisation of mass distributions of solvent-fractionated lignins using analytical ultracentrifugation and size exclusion chromatography methods. Sci Rep 1:13937. https://doi.org/10.1038/s41598-021-93424-0

    Article  Google Scholar 

  38. Ma Z, Sun Q, Ye J, Yao Q, Zhao C (2016) Study on the thermal degradation behaviours and kinetics of alkali lignin for production of phenolic-rich bio-oil using TGA-FTIR and Py-GC/MS. J Anal Appl Pyrolysis 117:116–124. https://doi.org/10.1016/j.jaap.2015.12.007

    Article  Google Scholar 

  39. Varshney S, Mishra N, Gupta MK (2021) Progress in nanocellulose and its polymer based composites: a review on processing, characterization, and applications. Polym Comp 42:3660–3686. https://doi.org/10.1002/pc.260903660

    Article  MATH  Google Scholar 

  40. Abu-Thabit NY, Judeh AA, Hakeel AS, Ul-Hamid A, Umar Y, Ahmed A (2020) Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Sci 155:730–739. https://doi.org/10.1016/j.ijbiomac.2020.03.255

    Article  Google Scholar 

  41. Khalil HPSA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

    Article  Google Scholar 

  42. Guancha-Chalapud MA, Gálvez J, Serna-Cock L, Aguilar CN (2020) Valorization of Colombian fique (Furcraea bedinghausii) for production of cellulose nanofibers and its application in hydrogels. Sci Rep 10:11637. https://doi.org/10.1038/s41598-020-68368-6

  43. Ejeta KO, Azeez TO, Banigo AT, Nkuma-Udah KI, Ajuogu E (2020) Isolation and characterization of cellulose nanofibres from three common Nigerian grasses. Mater Sci Eng, IOP Conf Series. https://doi.org/10.1088/1757-899X/805/1/012040

    Book  Google Scholar 

  44. Nie S, Zhang K, Lin X, Zhang C, Yan D, Liang H, Wang S (2018) Enzymatic pretreatment for the improvement of dispersion and film properties of cellulose nanofibrils. Carbohydr Polym 181:1136–1142. https://doi.org/10.1016/j.carbpol.2017.11.020

    Article  MATH  Google Scholar 

  45. Syafri E, Kasim A, Abral H, Asben A (2019) Cellulose nanofibers isolation and characterization from ramie using a chemical-ultrasonic treatment. J Nat Fibers 16:1145–1155. https://doi.org/10.1080/15440478.2018.1455073

    Article  Google Scholar 

  46. Xiao Y, Liu Y, Wang X, Li H (2019) Cellulose nanocrystals prepared from wheat bran: characterization and cytotoxicity assessment. Int J Biol Macromol 140:225–233. https://doi.org/10.1016/j.ijbiomac.2019.08.160

    Article  MATH  Google Scholar 

  47. Kamelina E, Divsalar A, Darroudi M, Yaghmaei P, Sadri K (2019) Production of new cellulose nanocrystals from ferula gummosa and their use in medical applications via investigation of their biodistribution. Ind Crops Prod 139: 111538. https://doi.org/10.1016/j.indcrop.2019.111538

Download references

Acknowledgements

The authors greatly acknowledge the financial support of the Ministry of Higher Education and Scientific Research of Tunisia. Dr. I. Dávila would like to thank the University of the Basque Country (UPV/EHU) for the financial support (Grant reference DOCREC19/47). The authors also want to acknowledge SGIker services from the University of the Basque Country UPV/EHU for their help with AFM, XRD and TGA analyses.

Funding

This work was supported by the Ministry of Higher Education and Scientific Research of Tunisia and the Department of Chemical and Environmental Engineering, Biorefinery Processes Research Group, University of the Basque Country, Spain.

Author information

Authors and Affiliations

Authors

Contributions

Ideation and design of the experiment were done by Sara Saad and Izaskun Dávila. Development and optimization of experimental methods were done by Sara Saad and Izaskun Dávila. Collection and interpretation of experimental data was done by Sara Saad, Izaskun Dávila, Faten Mannai and Jalel Labidi. Preparing and writing of the manuscript were done by Sara Saad, Izaskun Dávila, Younes Moussaoui and Jalel Labidi.

Corresponding author

Correspondence to Izaskun Dávila.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. Hence, no formal consent is required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Ziziphus lotus was converted into oligosaccharides, lignin and cellulose nanofibres.

• The autohydrolysis process increased the efficiency of the subsequent delignification by 42.7%.

• Nanofibres with higher crystallinity (79.2% vs 74.3%) were achieved after the hemicellulose removal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, S., Dávila, I., Mannai, F. et al. Effect of the autohydrolysis treatment on the integral revalorisation of Ziziphus lotus. Biomass Conv. Bioref. 14, 1413–1425 (2024). https://doi.org/10.1007/s13399-022-02457-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02457-6

Keywords

Navigation