Skip to main content
Log in

Enhanced viscosity reduction efficacy of cassava root mash by Aspergillus aculeatinus mutant enzyme cocktail

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Alcoholic fermentation at high solid substrate content has been developed to enhance ethanol productivity. However, the high viscosity of fermenting mash caused several problems, including ineffective hydrolysis and low fermentation productivity, in the manufacturing process. Addition of cellulase and pectinase during mash preparation can decrease the mash viscosity. In this study, Aspergillus aculeatinus mutant strain specially developed for reducing the viscosity of cassava root mash was obtained by using the sequential mutagenesis approach. The selected mutant strain, namely SF-034, produced approximately 64.2% and 62.7% higher cellulase and pectinase under shake flask cultivation. The hyphae of the SF-034 strain have more frequent branching compared to that of the wild-type, suggesting a favorable feature for enzyme secretion at a high level. Upscaling the enzyme production in a bioreactor showed the highest cellulase and pectinase activities of 583.3 U/mL and 492.3 U/mL, respectively. The mutant crude enzyme showed a superior level of viscosity reduction efficiency (98.5%) on the treatment of cassava root mash at very high-gravity (VHG) condition. The A. aculeatinus mutant strain developed in this study has a great potential for on-site production of viscosity reduction enzymes that can be exploited for efficient VHG ethanol fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kularathne IW, Gunathilake C, Yatipanthalawa BS, Kalpage CS, Rathneweera AC, Rajapakse S (2019) Production of green energy – ethanol dehydration using rice straw, rice husk and castor oil. Biomass Conv Bioref. https://doi.org/10.1007/s13399-019-00560-9

    Article  Google Scholar 

  2. Vohre M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584. https://doi.org/10.1016/j.jece.2013.10.013

    Article  Google Scholar 

  3. Puligundla P, Smogrovicova D, Mok C, Obulam VSR (2019) A review of recent advances in high gravity ethanol fermentation. Renew Energy 133:1366–1379. https://doi.org/10.1016/j.renene.2018.06.062

    Article  Google Scholar 

  4. Thomas KC, Hynes SH, Jones AM, Ingledew WM (1993) Production of fuel alcohol from wheat by VHG technology. Appl Biochem Biotechnol 43:211–226

    Article  Google Scholar 

  5. Puligundla P, Smogrovicova D, Obulam VSR, Ko S (2011) Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol 38:1133–1144. https://doi.org/10.1007/s10295-011-0999-3

    Article  Google Scholar 

  6. Poonsrisawat A, Wanlapatit S, Wansuksri R, Piyachomkwan K, Paemanee A, Gamonpilas C et al (2016) Synergistic effects of cell wall degrading enzymes on rheology of cassava root mash. Process Biochem 51:2104–2111. https://doi.org/10.1016/j.procbio.2016.09.010

    Article  Google Scholar 

  7. Siriwong T, Laimeheriwa B, Aini UN, Cahyanto MN, Reungsang A, Salakkam A (2019) Cold hydrolysis of cassava pulp and its use in simultaneous saccharification and fermentation (SSF) process for ethanol fermentation. J Biotechnol 292:57–63. https://doi.org/10.1016/j.jbiotec.2019.01.003

    Article  Google Scholar 

  8. Poonsrisawat A, Wanlapatit S, Paemanee A, Eurwilaichitr L, Piyachomkwan K, Champredaa V (2014) Viscosity reduction of cassava for very high gravity ethanol fermentation using cell wall degrading enzymes from Aspergillus aculeatus. Process Biochem 49:1950–1957. https://doi.org/10.1016/j.procbio.2014.07.016

    Article  Google Scholar 

  9. Nguyen CN, Le TM, Chu-Ky S (2014) Pilot scale simultaneous saccharification and fermentation at very high gravity of cassava flour for ethanol production. Ind Crops Prod 56:160–165. https://doi.org/10.1016/j.indcrop.2014.02.004

    Article  Google Scholar 

  10. Liu Y, Xu J, Zhang Y, Yuan Z, Xie J (2015) Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes. J Biotechnol 211:5–9. https://doi.org/10.1016/j.jbiotec.2015.06.422

    Article  Google Scholar 

  11. Poonsrisawat A, Paemanee A, Wanlapatit S, Piyachomkwan K, Eurwilaichitr L, Champreda V (2017) Simultaneous saccharification and viscosity reduction of cassava pulp using a multi-component starch- and cell-wall degrading enzyme for bioethanol production. 3 Biotech 7:290. https://doi.org/10.1007/s13205-017-0924-1

    Article  Google Scholar 

  12. Ellilä S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M et al (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10:30. https://doi.org/10.1186/s13068-017-0717-0

    Article  Google Scholar 

  13. Amin F, Bhatti HN, Bilal M (2019) Recent advances in the production strategies of microbial pectinases—a review. Int J Biol Macromol 122:1017–1026. https://doi.org/10.1016/j.ijbiomac.2018.09.048

    Article  Google Scholar 

  14. Heerd D, TariC F-L (2014) Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae. Appl Microbiol Biotechnol 98:7471–7481. https://doi.org/10.1007/s00253-014-5657-z

  15. Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54:287–301. https://doi.org/10.1007/s002530000403

    Article  Google Scholar 

  16. Lim J, Choi YH, Hurk BS, Lee I (2019) Strain improvement of Aspergillus sojae for increased l-leucine aminopeptidase and protease production. Food Sci Biotechnol 28:121–128. https://doi.org/10.1007/s10068-018-0427-9

    Article  Google Scholar 

  17. Basotra N, Kaur B, Raheja Y, Agrawal D, Sharma G, Chadha BS (2021) Developing and evaluating lignocellulolytic hyper producing deregulated strains of Mycothermus thermophilus for hydrolysis of lignocellulosics. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01539-1

    Article  Google Scholar 

  18. Syafriana V, Nuswantara S, Mangunwardoyo W, Lisdiyanti P (2014) Enhancement of B-glucosidase activity in Penicillium sp. by random mutation with ultraviolet and ethyl methyl sulfonate. Ann Bogor 18:27–33

    Google Scholar 

  19. Suri P, Dwivedi D, Rathour RK, Rana N, Sharma V, Bhatia RK et al (2021) Enhanced C-5 sugar production from pine needle waste biomass using Bacillus sp. XPB-11 mutant and its biotransformation to bioethanol. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01277-4

  20. Kamalambigeswari R, Alagar S, Sivvaswamy N (2018) Strain improvement through mutation to enhance pectinase yield from Aspergillus niger and molecular characterization of polygalactouronase gene. J Pharm Sci Res 10:989–994

    Google Scholar 

  21. Nisar K, Abdullah R, Kaleem A, Iqtedar M, Saleem F (2020) Hyper production of carboxy methyl cellulase by Thermomyces dupontii utilizing physica and chemical mutagenesis. Rev Mex Ing Quim 19:617–62. https://doi.org/10.24275/rmiq/Bio8235

  22. Noonim P, Mahakarnchanakul W, Varga J, Frisvad JC, Samson RA (2008) Two novel species of Aspergillus section Nigri from Thai coffee beans. Int J Syst Evol Microbiol 58:1727–1734. https://doi.org/10.1099/ijs.0.65694-0

    Article  Google Scholar 

  23. Lemaire A, Garzon CD, Perrin A, Habrylo O, Trezel P, Bassard S et al (2020) Three novel rhamnogalacturonan I- pectins degrading enzymes from Aspergillus aculeatinus: Biochemical characterization and application potential. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116752

    Article  Google Scholar 

  24. Garzon CD, Habrylo O, Lemaire A, Guillaume A, Carre Y, Millet C et al (2021) Characterization of a novel strain of Aspergillus aculeatinus: From rhamnogalacturonan type I pectin degradation to improvement of fruit juice filtration. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2021.117943

    Article  Google Scholar 

  25. Narra M, Dixit G, Divecha J, Madamwar D, Shah AR (2012) Production of cellulases by solid state fermentation with Aspergillus terreus and enzymatic hydrolysis of mild alkali-treated rice straw. Bioresour Technol 121:355–361. https://doi.org/10.1016/j.biortech.2012.05.140

    Article  Google Scholar 

  26. Mandel M, Weber J (1969) The production of cellulases. Adv Chem 95:391–414. https://doi.org/10.1021/ba-1969-0095.ch023

    Article  Google Scholar 

  27. Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Lett 13:25–58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x

    Article  Google Scholar 

  28. Mukesh Kumar DJ, Saranya GM, Suresh K, Andal Priyadharshini D, Rajakumar R, Kalaichelvan PT (2012) Production and optimization of pectinase from Bacillus sp. MFW7 using cassava waste. Asian J Plant Sci Res 2:369–375

    Google Scholar 

  29. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  Google Scholar 

  30. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  32. Schneider WDH, Goncalves TA, Uchima CA, Reis LD, Fontana RC, Squina FM et al (2018) Comparison of the production of enzymes to cell wall hydrolysis using different carbon sources by Penicillium echinulatumstrains and its hydrolysis potential for lignocelullosic biomass. Process Biochem 66:162–170. https://doi.org/10.1016/j.procbio.2017.11.004

    Article  Google Scholar 

  33. Adsul MG, Bastawde KB, Varma AJ, Gokhale DV (2007) Strain improvement of Penicillium janthinellum NCIM 1171 for increased cellulase production. Bioresour Technol 98:1467–1473. https://doi.org/10.1016/j.biortech.2006.02.036

    Article  Google Scholar 

  34. Aleem B, Rashid MH, Zeb N, Saqib A, Ihsan A, Iqbal M et al (2018) Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production. BMC Microbiol 18:200. https://doi.org/10.1186/s12866-018-1345-y

    Article  Google Scholar 

  35. Wosten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023. https://doi.org/10.1099/00221287-137-8-2017

    Article  Google Scholar 

  36. Muller C, Mclntyre M, Hansen K, Nielsen J (2002) Metabolic engineering of the morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68:1827–1836. https://doi.org/10.1128/AEM.68.4.1827-1836.2002

    Article  Google Scholar 

  37. Fiedler MRM, Barthel L, Kubisch C, Nai C, Meyer V (2018) Construction of an improved Aspergillus niger platform for enhanced glucoamylase secretion. Microb Cell Fact 17:95. https://doi.org/10.1186/s12934-018-0941-8

    Article  Google Scholar 

  38. Ega SL, Drendel G, Petrovski S, Egidi E, Franks AE, Muddada S (2020) Comparative analysis of structural variations due to genome shuffling of Bacillus subtilis VS15 for improved cellulase production. Int J Mol Sci 21:1299. https://doi.org/10.3390/ijms21041299

    Article  Google Scholar 

  39. Sapinska E, Balcerek M, Pielech-Przybylska K (2013) Alcoholic fermentation of high-gravity corn mashes with the addition of supportive enzymes. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.4078

    Article  Google Scholar 

  40. Amalia AV, Fibriana F, Widiatningrum T, Hardianti RW (2021) Bioconversion and valorization of cassava-based industrial wastes to bioethanol gel and its potential application as a clean cooking fuel. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2021.102093

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Piyanun Harnpicharnchai for critically reading the manuscript.

Funding

The financial support by Thailand Science Research and Innovation (TSRI) under the spearhead program (SIP6250002) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surisa Suwannarangsee.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

U-thai, P., Poonsrisawat, A., Arnthong, J. et al. Enhanced viscosity reduction efficacy of cassava root mash by Aspergillus aculeatinus mutant enzyme cocktail. Biomass Conv. Bioref. 13, 11803–11812 (2023). https://doi.org/10.1007/s13399-021-02221-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02221-2

Keywords

Navigation