Skip to main content
Log in

Photobiostimulation of green microalga Chlorella sorokiniana using He–Ne red laser radiation for increasing biodiesel production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Microalga would be the paramount resource of biodiesel able of satisfying the world requirements for transportation fuels, which could fully replace the petrodiesel. Therefore, the research studies focus on developing novel biodiesel production methods. The present study investigates the effect of monochromatic light such as red light-emitting diodes (LEDs) and He–Ne red laser radiation on the accumulated lipid and the growth of the green microalgae Chlorella sorokiniana. The irradiation of microalgal cells with He–Ne red laser source which has a wavelength of 632.8 nm was hypothesized to enhance the accumulation of lipid inside the algal cells, which ultimately increases the biodiesel production. The photobiostimulating effects of laser irradiation on biodiesel was investigated by irradiating the microalga for a duration of 2 h with 632.8 nm He–Ne red laser source compared with 2 h irradiation with red LEDs and 2 h irradiation with white light (the control). The results showed that the oil content inside the algal cells irradiated with He–Ne red laser was 3.1 times the algal cells irradiated with white light (the control). Similarly, the biodiesel yielded from the algal cells irradiated with He–Ne red laser was 3.1 times the biodiesel yielded from the algal cells irradiated with white light (the control). However, the oil content and the biodiesel yield from algal cells irradiated with red LEDs were only 0.82 times those of the control. Therefore, it was concluded that the irradiation of microalga with red laser increases the biodiesel yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

LEDs:

Light-emitting diodes

DW:

Dry weight

FW:

Fresh weight

PBR:

Photobioreactor

LMS:

Longitudinal mode spacing

CURP:

Cairo University Research Park

AOAC:

Association of Official Agricultural Chemists

ANOVA:

Analysis of variance

PCA:

Principle component analysis

Mean diff:

Mean difference

SEM:

Standard error of mean

Prob:

Probability

Sig:

Significance

LCL:

Lower control limit

UCL:

Upper control limit

References

  1. Natarajan Y, Nabera A, Salike S, Tamilkkuricil VD, Pandian S, Karuppan M, Appusamy A (2019) An overview on the process intensifcation of microchannel reactors for biodiesel production. Chem Eng Process 136:163–176

    Article  Google Scholar 

  2. Martínez VMO, Martínez PA, Martíneza NG, de los Ríos AP, Fernández FJH, Medina JQ (2019) Approach to biodieselproduction from microalgae under supercritical conditions by the PRISMA method. Fuel Process Technol 191:211–222

    Article  Google Scholar 

  3. Fulke AB, Krishnamurthi K, Giripunje MD, Devi SS, Chakrabarti T (2015) Biosequestration of carbon dioxide, biomass, calorific value and biodiesel precursors production using a novel flask culture photobioreactor. Biomass Bioenergy 72:136–142

    Article  Google Scholar 

  4. Faried M, Samer M, Abdelsalam E, Yousef RS, Attia YA, Ali AS (2017) Biodiesel production from microalgae: processes, technologies and recent advancements. Renew Sustain Energy Rev 79:893–913

    Article  Google Scholar 

  5. Sun B, Fan X, Ye H, Fan H, Qian C, Driel WV, Zhang G (2017) A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation. Reliab Eng Syst Saf 163:14–21

    Article  Google Scholar 

  6. Budžaki S, Miljić G, Sundaram S, Tišma M, Hessel V (2018) Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors. Appl Energy 210:268–278

    Article  Google Scholar 

  7. Shah SH, Raja IA, Rizwan M, Rashid N, Mahmood Q, Shah FA, Pervez A (2018) Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan. Renew Sustain Energy Rev 81:76–92

    Article  Google Scholar 

  8. Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sustain Energy Rev 90:316–335

    Article  Google Scholar 

  9. Politaeva N, Smyatskaya Y, Slugin V, Toumi A, Bouabdelli M (2018) Microalgae as feedstock for biodiesel production under ultrasound treatment – a review. Earth Environ Sci 59:534–653

    Google Scholar 

  10. Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev 55:909–941

    Article  Google Scholar 

  11. Thiruvenkadam S, Izhar S, Hiroyuki Y, Harun R (2019) One-step microalgal biodiesel production from Chlorellapyrenoidosa using subcritical methanol extraction (SCM) technology. Biomass Bioenergy 120:265–272

    Article  Google Scholar 

  12. Laamanen CA, Ross GM, Scott JA (2016) Flotation harvesting of microalgae. Renew Sustain Energy Rev 58:75–86

    Article  Google Scholar 

  13. Hallenbeck PC, Grogger M, Mraz M, Veverka D (2016) Solar biofuels production with microalgae. Appl Energy 179:136–145

    Article  Google Scholar 

  14. Al-Ameri M, Al-Zuhair S (2019) Using switchable solvents for enhanced, simultaneous microalgae oil extraction-reaction for biodiesel production. Biochem Eng J 141:217–224

    Article  Google Scholar 

  15. Zhang H, Gao Z, Li Z, Du H, Lin B, Cui M, Yin Y, Lei F, Yu C, Meng C (2017) Laser radiation induces growth and lipid accumulation in the seawater microalga Chlorella pacifica. Energies 10:1671–1684

    Article  Google Scholar 

  16. Mohd-Noor CW, Noor MM, Mamat R (2018) Biodiesel as alternative fuel for marine diesel engine applications: a review. Renew Sustain Energy Rev 94:127–142

    Article  Google Scholar 

  17. Lee J, Kim J, Sik Ok Y, Kwon EE (2017) Rapid biodiesel synthesis from waste pepper seeds without lipid isolation step. Biores Technol 239:17–20

    Article  Google Scholar 

  18. Sivaramakrishnan R, Incharoensakdi A (2018) Microalgae as feedstock for biodiesel production under ultrasound treatment – a review. Biores Technol 250:877–887

    Article  Google Scholar 

  19. Shomal R, Hisham H, Mlhem A, Hassan R, Al-Zuhair S (2019) Simultaneous extraction–reaction process for biodiesel production from microalgae. Energy Rep 5:37–40

    Article  Google Scholar 

  20. Adesanya VO, Cadena E, Scott SA, Smith AG (2014) Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Biores Technol 163:343–355

    Article  Google Scholar 

  21. Kiran B, Kumar R, Deshmukh D (2014) Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers Manag 88:1228–1244

    Article  Google Scholar 

  22. Li M, Hu D, Liu H (2014) Photobioreactor with ideal light–dark cycle designed and built from mathematical modeling and CFD simulation. Ecol Eng 73:162–167

    Article  Google Scholar 

  23. Taleb A, Pruvost J, Legrand J, Marec H, Le-Gouic B, Mirabella B, Legeret B, Bouvet S, Peltier G, Li-Beisson Y, Taha S, Takache H (2015) Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis. Biores Technol 177:224–232

    Article  Google Scholar 

  24. Tercero EAR, Domenicali G, Bertucco A (2014) Autotrophic production of biodiesel from microalgae: an updated process and economic analysis. Energy 76:807–815

    Article  Google Scholar 

  25. Ra CH, Kang CH, Jung JH, Jeong GT, Kim SK (2016) Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Biores Technol 212:254–261

    Article  Google Scholar 

  26. Severes A, Hegde S, D’Souza L, Hegde S (2017) Use of light emitting diodes (LEDs) for enhanced lipid production in microalgae based biofuels. J Photochem Photobiol B 170:235–240

    Article  Google Scholar 

  27. Duarte JH, Costa JAV (2018) Blue light emitting diodes (LEDs) as an energy source in Chlorella fusca and Synechococcus nidulans cultures. Biores Technol 247:1242–1245

    Article  Google Scholar 

  28. Hun-Ra C, Sirisuk P, Jung JH, Jeong GT, Kim SK (2018) Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess Biosyst Eng 41:457–465

    Article  Google Scholar 

  29. Sirisuk P, Hun Ra C, Jeong GT, Kim SK (2018) Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Biores Technol 253:175–181

    Article  Google Scholar 

  30. Ma R, Hall SRT, Chua ET, Eltanahy E, Netzel ME, Netzel G, Lua Y, Schenk PM (2018) LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Biores Technol 252:118–126

    Article  Google Scholar 

  31. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35(2):171–205

    Article  Google Scholar 

  32. Trinh DM, Nguyen TT, Nguyen PK, Tran NQA, Vo CT (2019) The effect of nutrients on the growth of microalgae Haematococcuslacustris (Girod-chantrans) Rostafinski 1875. Int J Curr Res Biosci Plant Biol 6(4):17–23

    Article  Google Scholar 

  33. Ho SH, Chen CNN, Lai YY, Lu WB, Chang JS (2014) Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation. Biores Technol 163:128–135

    Article  Google Scholar 

  34. Lam MK, Lee KT (2014) Cultivation of Chlorella vulgaris in a pilot-scale sequential-baffled column photobioreactor for biomass and biodiesel production. Energy Convers Manag 88:399–410

    Article  Google Scholar 

  35. Santos CA, Nobre B, Lopes da Silva T, Pinheiro HM, Reis A (2014) Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. J Biotechnol 184:74–83

    Article  Google Scholar 

  36. AOAC (1990) Method 988.05. In: Helrich, K., Ed., 15th Edition, Official Methods of Analysis, The Association of Official Analytical Chemists, Inc., Arlington, USA

  37. AOAC (2000) Methods 925.10. 17th Edition, Official Methods of Analysis, The Association of Official Analytical Chemists, Gaithersburg, USA

  38. Onay M, Sonmez C, Oktem HA, Yucel AM (2014) Thermo-resistant green microalgae for effective biodiesel production: isolation and characterization of unialgal species from geothermal flora of Central Anatolia. Biores Technol 169:62–71

    Article  Google Scholar 

  39. Rahman MA, Aziz MA, Al-khulaidi RA, Sakib N, Islam M (2017) Biodiesel production from microalgae Spirulina maxima by two step process: optimization of process variable. J Radiat Res Appl Sci 10(2):140–147

    Google Scholar 

  40. Alleman TL, McCormick RL, Christensen ED, Fioroni G, Moriarty K, Yanowitz J (2016) Biodiesel handling and use guide (Fifth Edition), National renewable energy laboratory, United States. https://www.osti.gov/servlets/purl/1347103

  41. Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) An overview of biodiesel and petroleum diesel life cycles. Report of national renewable energy laboratory (NREL) and US Department of Energy (DOE), United States. https://doi.org/10.2172/1218368

  42. Judd S, van den Broeke LJP, Shurair M, Kuti Y, Znad H (2015) Algal remediation of CO2 and nutrient discharges: a review. Water Res 87:356–366

    Article  Google Scholar 

  43. Dickinson S, Mientus M, Frey D, Hajibashi AA, Ozturk S, Shaikh F, Sengupta D, El-Halwagi MM (2017) A review of biodiesel production from microalgae. Clean Technol Environ Policy 19:637–668

    Article  Google Scholar 

  44. Schulze PSC, Barreira LA, Pereira HGC, Perales JA, Varela JCS (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32:422–430

    Article  Google Scholar 

  45. Karu T, Tiphlova OA, Letokhov VS, Lobko VV (1983) Stimulation of E. coli growth by laser and incoherent red light. NuovoCimento 2:1138–1144

    Google Scholar 

  46. Kim DG, Lee C, Park SM, Choi YE (2014) Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Biores Technol 159:240–248

    Article  Google Scholar 

  47. Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: A review. Renew Sustain Energy Rev 50:431–444

    Article  Google Scholar 

  48. Kushibiki T, Hirasawa T, Okawa S, Ishihara M (2013) Blue laser irradiation generates intracellular reactive oxygen species in various types of cells. Photomed Laser Surg 31(3):95–104

    Article  Google Scholar 

  49. Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliellasalina strain. PLoS One 9(3):e91957. https://doi.org/10.1371/journal.pone.0091957

    Article  Google Scholar 

  50. Fernandes B, Teixeira J, Dragone G, Vicente AA, Kawano S, Bišová K et al (2013) Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorellakessleri. Biores Technol 144:268–274

    Article  Google Scholar 

  51. Zhang H, Gao Z, Li Z, Du H, Lin B, Cui M, Yin Y, Lei F, Yu C, Meng C (2017) Laser radiation induces growth and lipid accumulation in the seawater microalga Chlorella pacifica. Energies 10(10):1671

    Article  Google Scholar 

  52. Kuwahara SS, Cuello JL, Myhre G, Pau S (2011) Growth of the green algae Chlamydomonasreinhardtii under red and blue lasers. Opt Lasers Eng 49:434–438

    Article  Google Scholar 

  53. Abdelsalam E, Samer M, Abdel-Hadi MA, Hassan HE, Badr Y (2018) Influence of laser irradiation on rumen fluid for biogas production from dairy manure. Energy 163:404–415

    Article  Google Scholar 

  54. Abdelsalam E, Samer M, Attia Y, Abdel-Hadi MA, Hassan HE, Badr Y (2019) Effects of laser irradiation and Ni nanoparticles on biogas production from anaerobic digestion of slurry. Waste Biomass Valorization 10(11):3251–3262

    Article  Google Scholar 

  55. Abdelsalam EM, El-Hussein A, Samer M (2021) Photobiostimulation of anaerobic digestion by laser irradiation and photocatalytic effects of trace metals and nanomaterials on biogas production. Int J Energy Res 45:141–150

    Article  Google Scholar 

  56. Faried M, Ali AS, Ahmed RH, Moselhy MA, Abdelsalam E, Yousef RS, Marrez DA, Samer M (2021) Photobiostimulation of Chlorella sorokiniana using light emitting diodes (LEDs) for increasing lipid and biodiesel production. Egypt J Chem. https://doi.org/10.21608/EJCHEM.2021.75349.3696

    Article  Google Scholar 

  57. Abdelqader A, Abdelsalam E, Attia YA, Moselhy MA, Ali AS, Arisha AH, Samer M (2021) Application of helium-neon red laser for increasing biohydrogen production from anaerobic digestion of biowastes. Egypt J Chem. https://doi.org/10.21608/EJCHEM.2021.65932.3423

    Article  Google Scholar 

  58. Attia YA, Samer M, Moselhy MA, Arisha AH, Abdelqader AA, Abdelsalam E (2021) Influence of laser photoactivated graphitic carbon nitride nanosheets and nickel nanoparticles on purple non-sulfur bacteria for biohydrogen production from biomass. J Clean Prod 299:126898

    Article  Google Scholar 

  59. Samer M, Hijazi O, Abdelsalam EM, El-Hussein A, Attia YA, Yacoub IH, Bernhardt H (2021) Life cycle assessment of using laser treatment and nanomaterials to produce biogas through anaerobic digestion of slurry. Environ Dev Sustain. https://doi.org/10.1007/s10668-021-01264-9

    Article  Google Scholar 

  60. Abdelsalam E, Samer M, Moselhy MA, Arisha AH, Abdelqader AA, Attia YA (2021) Effects of He–Ne red and green laser irradiation on purple non-sulfur bacteria for biohydrogen production from food wastes. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-02084-7

    Article  Google Scholar 

  61. Samer M, Abuarab ME (2014) Development of CO2 balance for estimation of ventilation rate in naturally cross-ventilated dairy barns. Trans ASABE 57(4):1255–1264

    Google Scholar 

  62. Samer M, Müller H-J, Fiedler M, Berg W, Brunsch R (2014) Measurement of ventilation rate in livestock buildings with radioactive tracer gas technique: theory and methodology. Indoor Built Environ 23(5):692–708

    Article  Google Scholar 

  63. Samer M, Fiedler M, Müller H-J, Gläser M, Ammon C, Berg W, Sanftleben P, Brunsch R (2011) Winter measurements of air exchange rates using tracer gas technique and quantification of gaseous emissions from a naturally ventilated dairy barn. Appl Eng Agric 27(6):1015–1025

    Article  Google Scholar 

  64. Samer M (2013) Emissions inventory of greenhouse gases and ammonia from livestock housing and manure management. Agric Eng Int CIGR J 15(3):29–54

    Google Scholar 

Download references

Funding

This study is funded by the Science and Technology Development Fund (STDF) of Egypt through the research project number 26272.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Samer or E. M. Abdelsalam.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Effects of He–Ne red laser on accumulated lipid and algae growth were studied

• Algae irradiation by red laser with a wavelength of 632.8 nm raises biodiesel yield

• Algae irradiation by He–Ne red laser raises oil content 3.1 times the control

• Algae irradiation by He–Ne red laser raises biodiesel yield 3.1 times the control

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faried, M., Samer, M., Moselhy, M.A. et al. Photobiostimulation of green microalga Chlorella sorokiniana using He–Ne red laser radiation for increasing biodiesel production. Biomass Conv. Bioref. 14, 117–131 (2024). https://doi.org/10.1007/s13399-021-02220-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02220-3

Keywords

Navigation