Skip to main content

Advertisement

Log in

Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The sequential process of polyphenol extraction from agro-industrial bio-wastes and pyrolysis/gasification of the residual solid fraction (RSF) constitutes an upgrading of the bio-waste to fuel and chemicals processes in the frame of the biorefinery conception. This process can be conducted based on sustainability concepts for bio-waste management, following the premises of the circular economy and the objective of reaching almost zero waste conditions. After the extraction process of apple pomace, grape marc, and grape stalk bio-wastes, three extracts rich in sugar, organic acids, and bioactive compounds were obtained. The polyphenol content was higher in extracts from grape wastes (4990 ± 55 mg gallic acid/100 g in grape marc and 6997 ± 70 mg gallic acid/100 g in grape stalk). However, the apple pomace extraction process was more efficient, since the RSF did not exhibit residual antioxidant capacity. The pyro-gasification kinetics of the RSF was investigated. The results indicated that the Flynn–Wall–Ozawa method presented the best R2, RSME, and SSE values. The Coats–Redfern method was applied to determine the reaction mechanism. For both pyrolysis and gasification processes, it was found that the first-order reaction and three-dimensional diffusion (Ginstling–Brounstein) models properly described the second and third process stages, respectively. The resulting values of the thermodynamic parameters, ΔG, ΔH, and ΔS, were 148.55 kJ/mol, 73.66 kJ/mol, and − 0.11 kJ/K mol, respectively, for pyrolysis and 110.91 kJ/mol, 105.44 kJ/mol, and − 0.01 kJ/K mol for gasification, respectively. According to bioenergy indicators, the RSF from the three bio-wastes had acceptable characteristics as a biofuel feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A:

Pre-exponential Arrhenius’ factor, 1/s

a:

Compensation parameter, mol/kJ

AC:

Antioxidant capacity, mg GAE/100 g d.b.

ACR :

Pre-exponential Arrhenius’ factor by Coats—Redfern, 1/s

ACE :

Pre-exponential Arrhenius’ factor by Compensation Effect, 1/s

aw :

Water activity, dimensionless

b:

Compensation parameter, 1/s

ASH:

Ash content, a percentage of weight

BDLHV, BDHHV :

Bioenergy density on LHV or HHV, respectively, MJ/m3

C:

Content of carbon, wt%

C1 :

Constant depending on the reaction stage and the kinetic model, -

CHL:

Cellulose > hemicellulose > lignin, wt%

CLH:

Cellulose > lignin > hemicellulose, wt%

E:

Activation energy, J/kmol

EDff :

Energy density of gaseous fossil fuel, MJ/m3

EFff :

Emission factor of fossil fuel, kg of CO2/L

ER:

Equivalence ratio, dimensionless

f(α):

Differential function describing the solid mass changes, -

FFE:

Fossil fuel equivalence, m3 fossil fuel/m3 biomass

g(α):

Integral function describing the solid mass changes, -

ΔG:

Free energy of Gibbs change, kJ/mol

H:

Content of hydrogen, wt%

ΔH:

Enthalpy change, kJ/mol

HHV:

Higher heating value, MJ/kg

HCL:

Hemicellulose > cellulose > lignin, wt%

HLC:

Hemicellulose > lignin > cellulose, wt%

k:

Kinetic coefficient, dimension depending on the model expression

LCH:

Lignin > cellulose > hemicellulose, wt%

LHC:

Lignin > hemicellulose > cellulose, wt%

LHV:

Lower heating value, MJ/kg

m:

Mass of the sample at a given time t,

m0 :

Initial mass of the sample,

mf :

Final mass of the sample,

n:

Reaction order, -

PCOR:

Potential CO2 retention, kg of CO2

R:

Universal gas constant, = 8.314 J/(mol K)

RM :

Reactivity, %/°C min

O:

Content of oxygen, = C-H-Ash wt%

ΔS:

Entropy change, kJ/kmol

T:

Temperature, K

TPC:

Total polyphenolic content, mg GAE/100 g d.b.

t:

Time, s

w:

Weight loss at 378 K, total wt

α:

Degree of conversion, -

β:

Heating rate, K/min or K/s

ρ:

Absolute density of bio-waste, kg/m3

References

  1. Sette P, Fernandez A, Soria J, Rodriguez R, Salvatori D, Mazza G (2020) Integral valorization of fruit waste from wine and cider industries. J Clean Prod 242:118486. https://doi.org/10.1016/J.JCLEPRO.2019.118486

    Article  Google Scholar 

  2. Sousa-Zomer TT, Magalhães L, Zancul E, Campos MLS, Cauchick-Miguel PA (2018) Cleaner production as an antecedent for circular economy paradigm shift at the micro-level: evidence from a home appliance manufacturer. J Clean Prod 185:740–748. https://doi.org/10.1016/j.jclepro.2018.03.006

    Article  Google Scholar 

  3. Bai F, Sun Y, Liu Y, Li Q, Guo M  (2015) Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Convers Manag 97:374–381. https://doi.org/10.1016/j.enconman.2015.03.007

    Article  Google Scholar 

  4. Alves JLF, Da Silva JCG, da Silva Filho VF, Alves RF, Ahmad MS, Ahmad MS, de Araujo Galdino WV, De Sena RF (2019) Bioenergy potential of red macroalgae Gelidium floridanum by pyrolysis: evaluation of kinetic triplet and thermodynamics parameters. Bioresour Technol 291:121892. https://doi.org/10.1016/j.biortech.2019.121892

    Article  Google Scholar 

  5. Alves JLF, Da Silva JCG, da Silva Filho VF, Alves RF, de Araujo Galdino WV, Andersen SLF, De Sena RF (2019) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. Bioenergy Res 12:168–183. https://doi.org/10.1007/s12155-019-9964-1

    Article  Google Scholar 

  6. Fernandez A, Soria J, Rodriguez R, Baeyens J, Mazza G (2019) Macro-TGA steam-assisted gasification of lignocellulosic wastes. J Environ Manage 233:626–635. https://doi.org/10.1016/j.jenvman.2018.12.087

    Article  Google Scholar 

  7. Gupta A, Thengane SK, Mahajani S (2018) CO2 gasification of char from lignocellulosic garden waste: experimental and kinetic study. Bioresour Technol 263:180–191. https://doi.org/10.1016/J.BIORTECH.2018.04.097

    Article  Google Scholar 

  8. Skreiberg A, Skreiberg O, Sandquist J, Sørum L (2011) TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel 90:2182–2197. https://doi.org/10.1016/j.fuel.2011.02.012

    Article  Google Scholar 

  9. Coats AW, Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201:68–69. https://doi.org/10.1038/201068a0

    Article  Google Scholar 

  10. Fernandez A, Rodriguez-Ortiz L, Asensio D, Rodriguez R, Mazza G (2020) Kinetic analysis and thermodynamics properties of air/steam gasification of agricultural waste. J Environ Chem Eng 8:103829. https://doi.org/10.1016/j.jece.2020.103829

    Article  Google Scholar 

  11. Casazza AA, Aliakbarian B, Lagazzo A, Garbarino G, Carnasciali MM, Perego P, Busca G (2016) Pyrolysis of grape marc before and after the recovery of polyphenol fraction. Fuel Process Technol 153:121–128. https://doi.org/10.1016/j.fuproc.2016.07.014

    Article  Google Scholar 

  12. Garrido Makinistian F, Sette P, Gallo L, Bucalá V, Salvatori D (2019) Optimized aqueous extracts of maqui (Aristotelia chilensis) suitable for powder production. J Food Sci Technol 56:3553–3560. https://doi.org/10.1007/s13197-019-03840-4

    Article  Google Scholar 

  13. AOAC IM 1990 (2010) <Aoac.Methods.1.1990.Pdf>. In: official methods of analysis, eighteenth ed. 2010

  14. D1102–84 ASTM (2001) Standard test method for ash in wood. ASTM Int. 2

  15. E872 - 82 ASTM (1998) Standard test method for volatile matter in the analysis of particulate wood fuels. ASTM Int. 14–16

  16. ISO 13503–2 (2006) Petroleum and natural gas industries — completion fluids and materials — Part 2: Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations

  17. Sheng C, Azevedo JLT (2005) Estimating the higher heating value of biomass fuels from basic analysis data. Biomass Bioenerg 28:499–507. https://doi.org/10.1016/j.biombioe.2004.11.008

    Article  Google Scholar 

  18. de Paula Protásio T, Bufalino L, Tonoli GHD et al (2013) Brazilian lignocellulosic wastes for bioenergy production: characterization and comparison with fossil fuels. BioResources 8:1166–1185. https://doi.org/10.15376/biores.8.1.1166-1185

    Article  Google Scholar 

  19. Echegaray M, Zalazar-García D, Mazza G, Rodriguez R (2019) Air-steam gasification of five regional lignocellulosic wastes: exergetic evaluation. Sustain Energy Technol Assess 31:115–123. https://doi.org/10.1016/j.seta.2018.12.015

    Article  Google Scholar 

  20. Brems A, Baeyens J, Beerlandt J, Dewil R (2011) Thermogravimetric pyrolysis of waste polyethylene-terephthalate and polystyrene: a critical assessment of kinetics modelling. Resour Conserv Recycl 55:772–781. https://doi.org/10.1016/J.RESCONREC.2011.03.003

    Article  Google Scholar 

  21. Romero Millán LM, Sierra Vargas FE, Nzihou A (2019) Steam gasification behavior of tropical agrowaste: a new modeling approach based on the inorganic composition. Fuel 235:45–53. https://doi.org/10.1016/J.FUEL.2018.07.053

    Article  Google Scholar 

  22. Vyazovkin S, Burnham AK, Criado JM, Pérez Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  23. Levenvrg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168. https://doi.org/10.2307/43633451

    Article  MathSciNet  Google Scholar 

  24. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441. https://doi.org/10.1137/0111030

    Article  MathSciNet  MATH  Google Scholar 

  25. Mishra RK, Mohanty K, Wang X (2020) Pyrolysis kinetic behavior and Py-GC–MS analysis of waste dahlia flowers into renewable fuel and value-added chemicals. Fuel 260:116338. https://doi.org/10.1016/J.FUEL.2019.116338

    Article  Google Scholar 

  26. Carranza Concha J (2009) Influence of the processing on the nutritional and functional value of white grape. Doctoral Thesis. Polytechnic University of Valencia, Spain

  27. Akagić A, Vranac A, Gaši F, Drkenda P, Spaho N, Oručević Žuljević S, Kurtović M, Musić O, Murtić S, Hudina M (2019) Sugars, acids and polyphenols profile of commercial and traditional apple cultivars for processing. Acta Agric Slov 113:239–250. https://doi.org/10.14720/aas.2019.113.2.5

    Article  Google Scholar 

  28. Van Alkemade MMC, Loo S, Sulilatu WF (1999) Exploratory investigation into the possibilities of processing ash produced in the combustion of reject wood. Netherl Organ Appl Sci Res Apeldoorn 1–45

  29. Martínez-Meza Y, Pérez-Jiménez J, Rocha-Guzmán NE, Rodríguez-García ME, Alonzo-Macías M, Reynoso-Camacho R (2021) Modification on the polyphenols and dietary fiber content of grape pomace by instant controlled pressure drop. Food Chem 360:130035. https://doi.org/10.1016/J.FOODCHEM.2021.130035

    Article  Google Scholar 

  30. Pérez-Jiménez J, Saura-Calixto F (2015) Macromolecular antioxidants or non-extractable polyphenols in fruit and vegetables: intake in four European countries. Food Res Int 74:315–323. https://doi.org/10.1016/J.FOODRES.2015.05.007

    Article  Google Scholar 

  31. Obernberger I, Thek G (2004) Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behaviour. Biomass Bioenerg 27:653–669. https://doi.org/10.1016/j.biombioe.2003.07.006

    Article  Google Scholar 

  32. Chin KL, H’ng PS, Go WZ, Wong WZ, Lim TW, Maminski M, Paridah MH, Luqman AC (2013) Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia. Ind Crops Prod 49:768–774. https://doi.org/10.1016/j.indcrop.2013.06.007

    Article  Google Scholar 

  33. Van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenerg 35:3748–3762. https://doi.org/10.1016/j.biombioe.2011.06.023

    Article  Google Scholar 

  34. Li X, Yin C (2019) A drying model for thermally large biomass particle pyrolysis. Energy Procedia 158:1294–1302. https://doi.org/10.1016/j.egypro.2019.01.322

    Article  Google Scholar 

  35. Völker S, Rieckmann T (2002) Thermokinetic investigation of cellulose pyrolysis - Impact of initial and final mass on kinetic results. J Anal Appl Pyrolysis 62:165–177. https://doi.org/10.1016/S0165-2370(01)00113-9

    Article  Google Scholar 

  36. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  37. Fu P, Hu S, Xiang J, Li P, Huang D, Jiang L,  Zhang A, Zhang J (2010) FTIR study of pyrolysis products evolving from typical agricultural residues. J Anal Appl Pyrolysis 88:117–123. https://doi.org/10.1016/J.JAAP.2010.03.004

    Article  Google Scholar 

  38. Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis 82:170–177. https://doi.org/10.1016/J.JAAP.2008.03.007

    Article  Google Scholar 

  39. Lv D, Xu M, Liu X , Zhan Z, Li Z, Yao H (2010) Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol 91:903–909. https://doi.org/10.1016/J.FUPROC.2009.09.014

    Article  Google Scholar 

  40. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33. https://doi.org/10.1016/J.FUEL.2011.09.030

    Article  Google Scholar 

  41. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933. https://doi.org/10.1016/J.FUEL.2009.10.022

    Article  Google Scholar 

  42. Munir S, Daood SS, Nimmo W, Cunliffe AM, Gibbs BM (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418. https://doi.org/10.1016/j.biortech.2008.07.065

    Article  Google Scholar 

  43. Zhang J, Ma P, Zhang X, Wang B, Wu J, XIng X (2018) Isothermal drying kinetics of paddy using thermogravimetric analysis. J Therm Anal Calorim 134:2359–2365. https://doi.org/10.1007/s10973-018-7716-7

    Article  Google Scholar 

  44. Radojević M, Janković B, Jovanović V, Stojiljković D, Manić N (2018) Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE 13:1–25. https://doi.org/10.1371/journal.pone.0206657

    Article  Google Scholar 

  45. Fernandez-Lopez M, Pedrosa-Castro GJ, Valverde JL, Sanchez-Silva L (2016) Kinetic analysis of manure pyrolysis and combustion processes. Waste Manag 58:230–240. https://doi.org/10.1016/j.wasman.2016.08.027

    Article  Google Scholar 

  46. Amutio M, Lopez G, Aguado R et al (2012) Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel 95:305–311. https://doi.org/10.1016/j.fuel.2011.10.008

    Article  Google Scholar 

  47. Jayaraman K, Gökalp I (2015) Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energy Convers Manag 89:83–91. https://doi.org/10.1016/j.enconman.2014.09.058

    Article  Google Scholar 

  48. Okoroigwe EC, Enibe SO, Onyegegbu SO (2016) Determination of oxidation characteristics and decomposition kinetics of some Nigerian biomass. J Energy South Africa 27:39. https://doi.org/10.17159/2413-3051/2016/v27i3a1554

    Article  Google Scholar 

  49. Gai C, Dong Y, Zhang T (2013) The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol 127:298–305. https://doi.org/10.1016/J.BIORTECH.2012.09.089

    Article  Google Scholar 

  50. Alwani M, Alwani M, H.P.S AK, Sulaiman O, Nazrul Islam Md, Dungani R (2013) An approach to using agricultural waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. Bio Resources 9. https://doi.org/10.15376/biores.9.1.218-230

  51. Sheng J, Ji D, Yu F, Cui L, Zeng Q, Ai N, Ji J (2014) Influence of chemical treatment on rice straw pyrolysis by TG-FTIR. IERI Procedia 8:30–34. https://doi.org/10.1016/J.IERI.2014.09.006

    Article  Google Scholar 

  52. Xu Y, Chen B (2013) Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresour Technol 146:485–493. https://doi.org/10.1016/J.BIORTECH.2013.07.086

    Article  Google Scholar 

  53. Yuan X, He T, Cao H, Yuan Q (2017) Cattle manure pyrolysis process: kinetic and thermodynamic analysis with isoconversional methods. Renew Energy 107:489–496. https://doi.org/10.1016/j.renene.2017.02.026

    Article  Google Scholar 

  54. Ruvolo-Filho A, Curti PS (2006) Chemical kinetic model and thermodynamic compensation effect of alkaline hydrolysis of waste poly(ethylene terephthalate) in nonaqueous ethylene glycol solution. Ind Eng Chem Res 45:7985–7996. https://doi.org/10.1021/ie060528y

    Article  Google Scholar 

  55. Vlaev LT, Markovska IG, Lyubchev LA (2003) Non-isothermal kinetics of pyrolysis of rice husk. Thermochim Acta 406:1–7. https://doi.org/10.1016/S0040-6031(03)00222-3

    Article  Google Scholar 

  56. Dhyani V, Kumar J, Bhaskar T (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour Technol 245:1122–1129. https://doi.org/10.1016/J.BIORTECH.2017.08.189

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the support of the following Argentine institutions: the University of San Juan (PDTS Res. 1054/18); the University of Comahue (PIN 2017-04/I223); CONICET -National Scientific and Technical Research Council (PUE PROBIEN 22920150100067); IDEA (Res. 0279/2019); ANPCYT-FONCYT (PICT JI 2017-2047 and PICT-2019-01810) and SYNSOLGAS Project developed in the frame of the Argentinean-French CAFCI collaboration (CNRS-CONICET-MINCyT). Anabel Fernandez has a post-doctoral fellowship from CONICET. Paula Sette, José Soria, Daniela Salvatori, Rosa Rodriguez, and Germán Mazza are Research Members of CONICET, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Germán Mazza or Rosa Rodriguez.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 81 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, A., Sette, P., Echegaray, M. et al. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass Conv. Bioref. 13, 12509–12526 (2023). https://doi.org/10.1007/s13399-021-02197-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-02197-z

Keywords

Navigation