Skip to main content

Characteristics of adapted and non-adapted Candida tropicalis InaCC Y799 during fermentation of detoxified and undetoxified hemicellulosic hydrolysate from sugarcane trash for xylitol production

Abstract

In addition to being effective in extracting xylose from hemicellulose, acid treatment has the potential to produce compounds that inhibit yeast growth during fermentation. Detoxification of hemicellulose hydrolysate and short-term adaptation of yeast to hemicellulose hydrolysate could be applied to overcome this problem in order to increase xylitol production from the hydrolysate. Most studies usually investigated only the effect of detoxification or adaptation of yeast only, and did not compare the two treatments in one particular study. This study investigated and compared the effect of detoxification process and adapting Candida tropicalis InaCC Y799 to sugarcane trash hemicellulose hydrolysate on the production of xylitol during fermentation. The detoxification of hemicellulose hydrolysate was using 1% activated charcoal. The yeast adaptation was conducted by growing the yeast at 50% and 75% diluted sugarcane trash hydrolysate for 24 h. The non-adapted yeast was used in the fermentation of non-detoxified and detoxified hydrolysate, while the adapted yeast was used in the fermentation of non-detoxified hydrolysate. The fermentation was conducted at 30 °C and 150 rpm for 72 h. The yeast adaptation in 75% hydrolysates and detoxification of fermentation medium produced higher xylitol yields (0.54–0.56 g xylitol/g initial xylose; 53.72–54.98% theoretical yield), in a shorter time (24 h) than did the adapted yeast to 50% hydrolysate and non-adapted yeast grown in non-detoxified medium (0.51–0.57 g xylitol/g initial xylose or 50.54–56.59% theoretical yield in 48 h). Therefore, the adaptation of yeast in the higher concentration of hemicellulose hydrolysate (75% hydrolysate) could be used as an alternative strategy to enhance xylitol production beside the detoxification of medium prior to fermentation. Both methods could give the same results in enhancing the xylitol production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. FAO (2019) FAOSTAT. http://www.fao.org/faostat/en/#data/QCL. Accessed 06 Aug 2021

  2. Canilha L, Chandel AK, Dos Santos S, Milessi T et al (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:989572. https://doi.org/10.1155/2012/989572

    Article  Google Scholar 

  3. Jenjariyakosoln S, Gheewala SH, Sajjakulnukit B, Garivait S (2021) Energy for sustainable development energy and GHG emission reduction potential of power generation from sugarcane residues in Thailand. Energy Sustain Dev 23:32–45. https://doi.org/10.1016/j.esd.2014.07.002

    Article  Google Scholar 

  4. Nurhidayati BA (2018) Effect of residue management and N and S fertilisation on cane and sugar yield of plant and ratoon cane. Pertanika J Trop Agric Sci 41:365–378

    Google Scholar 

  5. Hariyono B, Utomo WH, Utami SR, Islami T (2020) Utilization of the trash biochar and waste of sugarcane to improve the quality of sandy soil and growth of sugarcane. IOP Conf Ser Earth Environ Sci 418:8. https://doi.org/10.1088/1755-1315/418/1/012067

    Article  Google Scholar 

  6. Antonio Bizzo W, Lenço PC, Carvalho DJ, Veiga JPS (2014) The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renew Sustain Energy Rev 29:589–603. https://doi.org/10.1016/j.rser.2013.08.056

    Article  Google Scholar 

  7. Jutakanoke R, Tolieng V, Tanasupawat S, Akaracharanya A (2017) Ethanol production from sugarcane leaves by Kluyveromyces marxianus S1.17, a genome-shuffling mediated transformant. BioResources 12:1636–1646

    Article  Google Scholar 

  8. Moutta RO, Chandel AK, Rodrigues RCLB et al (2012) Statistical optimization of sugarcane leaves hydrolysis into simple sugars by dilute sulfuric acid catalyzed process. Sugar Tech 14:53–60. https://doi.org/10.1007/s12355-011-0116-y

    Article  Google Scholar 

  9. Moodley P, Kana EBG (2015) Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. Int J Hydrogen Energy 40:3859–3867. https://doi.org/10.1016/j.ijhydene.2015.01.087

    Article  Google Scholar 

  10. Rodrigues RCLB, Sene L, Matos GS et al (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53:53–59. https://doi.org/10.1007/s00284-005-0242-4

    Article  Google Scholar 

  11. Prakash G, Varma AJ, Prabhune A et al (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour Technol 102:3304–3308. https://doi.org/10.1016/j.biortech.2010.10.074

    Article  Google Scholar 

  12. Kamat S, Khot M, Zinjarde S et al (2013) Coupled production of single cell oil as biodiesel feedstock, xylitol and xylanase from sugarcane bagasse in a biorefinery concept using fungi from the tropical mangrove wetlands. Bioresour Technol 135:246–253. https://doi.org/10.1016/j.biortech.2012.11.059

    Article  Google Scholar 

  13. Vallejos ME, Chade M, Mereles EB et al (2016) Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Ind Crops Prod 91:161–169. https://doi.org/10.1016/j.indcrop.2016.07.007

    Article  Google Scholar 

  14. Parajó JC, Domínguez H, Domínguez J (1998) Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresour Technol 65:191–201. https://doi.org/10.1016/S0960-8524(98)00038-8

    Article  Google Scholar 

  15. Rafiqul ISM, Sakinah a. MM, (2014) Production of xylose reductase from adapted Candida tropicalis grown in sawdust hydrolysate. Biocatal Agric Biotechnol 3:227–235. https://doi.org/10.1016/j.bcab.2014.05.003

    Article  Google Scholar 

  16. Granström TB, Izumori K, Leisola M (2007) A rare sugar xylitol. Part II: Biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 74:273–276. https://doi.org/10.1007/s00253-006-0760-4

    Article  Google Scholar 

  17. De ATL, da Silva IJ, de Macedo GR, Rocha MVP (2014) Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem 49:1779–1789. https://doi.org/10.1016/j.procbio.2014.07.010

    Article  Google Scholar 

  18. Dasgupta D, Bandhu S, Adhikari DK, Ghosh D (2016) Challenges and prospects of xylitol production with whole cell bio-catalysis : a review. Microbiol Res. https://doi.org/10.1016/j.micres.2016.12.012

    Article  Google Scholar 

  19. Dhar KS, Wendisch VF, Nampoothiri KM (2016) Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2016.05.011

    Article  Google Scholar 

  20. Wang L, Yang M, Fan X et al (2011) An environmentally friendly and efficient method for xylitol bioconversion with high-temperature-steaming corncob hydrolysate by adapted Candida tropicalis. Process Biochem 46:1619–1626. https://doi.org/10.1016/j.procbio.2011.05.004

    Article  Google Scholar 

  21. Li Z, Guo X, Feng X, Li C (2015) An environment friendly and efficient process for xylitol bioconversion from enzymatic corncob hydrolysate by adapted Candida tropicalis. Chem Eng J 263:249–256. https://doi.org/10.1016/j.cej.2014.11.013

    Article  Google Scholar 

  22. Kim D (2018) Physico-chemical conversion of lignocellulose : inhibitor effects and detoxification strategies : A mini review. Molecules. https://doi.org/10.3390/molecules23020309

    Article  Google Scholar 

  23. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651. https://doi.org/10.3390/ijms9091621

    Article  Google Scholar 

  24. Qin L, Liu ZH, Li BZ et al (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326. https://doi.org/10.1016/j.biortech.2012.02.134

    Article  Google Scholar 

  25. Lee JW, Jeffries TW (2011) Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour Technol 102:5884–5890. https://doi.org/10.1016/j.biortech.2011.02.048

    Article  Google Scholar 

  26. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46:126–131. https://doi.org/10.1016/j.bej.2009.04.020

    Article  Google Scholar 

  27. Garcıa JF, Bravo V, Cuevas M et al (2011) Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung 65:59–65. https://doi.org/10.1515/HF.2010.113

    Article  Google Scholar 

  28. Hong E, Kim J, Rhie S et al (2016) Optimization of dilute sulfuric acid pretreatment of corn stover for enhanced xylose recovery and xylitol production. Biotechnol Bioprocess Eng 21:612–619. https://doi.org/10.1007/s12257-016-0483-z

    Article  Google Scholar 

  29. Jiang X, He P, Qi X et al (2016) High-efficient xylitol production by evolved Candida maltosa adapted to corncob hemicellulosic hydrolysate. J Chem Technol Biotechnol 91:2994–2999. https://doi.org/10.1002/jctb.4924

    Article  Google Scholar 

  30. Cheng KK, Wu J, Lin ZN, Zhang JA (2014) Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnol Biofuels 7:1–9. https://doi.org/10.1186/s13068-014-0166-y

    Article  Google Scholar 

  31. Mans R, Daran JG, Pronk JT (2018) Under pressure : evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56. https://doi.org/10.1016/j.copbio.2017.10.011

    Article  Google Scholar 

  32. Tomás-Pejó E, Olsson L (2015) Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates. Microb Biotechnol 8:999–1005. https://doi.org/10.1111/1751-7915.12280

    Article  Google Scholar 

  33. Narayanan V, Sànchez V, Van NEWJ, Grauslund MFG (2016) Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express. https://doi.org/10.1186/s13568-016-0234-8

    Article  Google Scholar 

  34. Zhang K, Wells P, Liang Y et al (2019) Effect of diluted hydrolysate as yeast propagation medium on ethanol production. Bioresour Technol 271:1–8. https://doi.org/10.1016/j.biortech.2018.09.080

    Article  Google Scholar 

  35. Nielsen F, Tomás-Pejó E, Olsson L, Wallberg O (2015) Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnol Biofuels 8:1–15. https://doi.org/10.1186/s13068-015-0399-4

    Article  Google Scholar 

  36. Wang S, Li H, Fan X et al (2015) Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genet Biol. https://doi.org/10.1016/j.fgb.2015.04.022

    Article  Google Scholar 

  37. Hermiati E, Laksana RPB, Fatriasari W et al (2020) Microwave-assisted acid pretreatment for enhancing enzymatic saccharification of sugarcane trash. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00971-z

    Article  Google Scholar 

  38. Camargo D, Sene L, Variz DILS, Felipe MGA (2015) Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass. Appl Biochem Biotechnol 175:3628–3642. https://doi.org/10.1007/s12010-015-1531-4

    Article  Google Scholar 

  39. Silva DDV, Arruda PV, Dussán KJ, Felipe MGA (2014) Adaptation of Scheffersomyces stipitis cells as a strategy to the improvement of ethanol production from sugarcane bagasse hemicellulosic hydrolysate. Chem Eng Trans 38:427–432. https://doi.org/10.3303/CET1438072

    Article  Google Scholar 

  40. Kapu NS, Piddocke M, Saddler JJN (2013) High gravity and high cell density mitigate some of the fermentation inhibitory effects of softwood hydrolysates. AMB 3:1–10. https://doi.org/10.1186/2191-0855-3-15

    Article  Google Scholar 

  41. Mardawati E, Andoyo R, Syukra KA et al (2018) Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast. IOP Conf Ser Earth Environ Sci 141:1–19. https://doi.org/10.1088/1755-1315/141/1/012019 (1234567890)

    Article  Google Scholar 

  42. Mareczky Z, Fehér A, Fehér C et al (2016) Effects of pH and aeration conditions on xylitol production by Candida and Hansenula yeasts. Period Polytech Chem Eng 60:54–59. https://doi.org/10.3311/PPch.8116

    Article  Google Scholar 

  43. Harmsen P, Huijgen W, López L, Bakker R (2010) Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. http://www.ecn.nl/docs/library/report/2010/e10013.pdf. Accessed 13 Jul 2017

  44. Gírio FM, Fonseca C, Carvalheiro F et al (2010) Hemicelluloses for fuel ethanol : a review. Bioresour Technol 101:4775–4800. https://doi.org/10.1016/j.biortech.2010.01.088

    Article  Google Scholar 

  45. Yan Y, Zhang C, Lin Q et al (2018) Microwave-assisted oxalic acid pretreatment for the enhancing of enzyme hydrolysis in the production of xylose and arabinose from bagasse. Molecules 23:1–13. https://doi.org/10.3390/molecules23040862

    Article  Google Scholar 

  46. Zhu Z, Rezende CA, Simister R et al (2016) Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenerg 93:269–278. https://doi.org/10.1016/j.biombioe.2016.06.017

    Article  Google Scholar 

  47. Arslan Y, Takac S, Saracoglu NE (2012) Kinetic study of hemicellulosic sugar production from hazelnut shells. Chem Eng J 185–186:23–28. https://doi.org/10.1016/j.cej.2011.04.052

    Article  Google Scholar 

  48. Xia A, Cheng J, Song W et al (2013) Enhancing enzymatic sacchari fi cation of water hyacinth through microwave heating with dilute acid pretreatment for biomass energy utilization. Energy 61:158–166. https://doi.org/10.1016/j.energy.2013.09.019

    Article  Google Scholar 

  49. Liu X, Lu M, Ai N et al (2012) Kinetic model analysis of dilute sulfuric acid-catalyzed hemicellulose hydrolysis in sweet sorghum bagasse for xylose production. Ind Crop Prod 38:81–86. https://doi.org/10.1016/j.indcrop.2012.01.013

    Article  Google Scholar 

  50. Tomas-Pejo E, Ballesteros M, Olivia JM, Olsson L (2010) Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol 37:1211–1220. https://doi.org/10.1007/s10295-010-0768-8

    Article  Google Scholar 

  51. Sturgeon MR, Kim S, Lawrence K et al (2014) A Mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain Chem Eng 2:472–485. https://doi.org/10.1021/sc400384w

    Article  Google Scholar 

  52. Kim S, Park JM, Seo JW, Kim CH (2012) Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour Technol 109:229–233. https://doi.org/10.1016/j.biortech.2012.01.036

    Article  Google Scholar 

  53. Oktaviani M, Hermiati E, Thontowi A et al (2019) Production of xylose, glucose, and other products from tropical lignocellulose biomass by using maleic acid pretreatment. IOP Conf Ser Earth Environ Sci 251(012013):1–9. https://doi.org/10.1088/1755-1315/251/1/012013

    Article  Google Scholar 

  54. Guan N, Liu L (2020) Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 104:51–65. https://doi.org/10.1007/s00253-019-10226-1

    Article  Google Scholar 

  55. Tang X, Sousa LDC, Jin M et al (2015) Designer synthetic media for studying microbialcatalyzed biofuel production. Biotechnol Biofuels 8:1. https://doi.org/10.1186/s13068-014-0179-6

    Article  Google Scholar 

  56. Zhao X, Peng F, Du W et al (2012) Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosyst Eng 35:993–1004. https://doi.org/10.1007/s00449-012-0684-6

    Article  Google Scholar 

  57. Li M, Meng X, Du F (2012) Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J Chem Technol Biotechnol 87:387–392. https://doi.org/10.1002/jctb.2732

    Article  Google Scholar 

  58. Njoku SI, Iversen JA, Uellendahl H, Ahring BK (2013) Production of ethanol from hemicellulose fraction of cocksfoot grass using Pichia stipitis. Sustain Chem Process 1:1–13. https://doi.org/10.1186/2043-7129-1-13

    Article  Google Scholar 

  59. Gu H, Zhu Y, Peng Y et al (2019) Physiological mechanism of improved tolerance of Saccharomyces cerevisiae to lignin-derived phenolic acids in lignocellulosic ethanol fermentation by short-term adaptation. Biotechnol Biofuels 12:1–14. https://doi.org/10.1186/s13068-019-1610-9

    Article  Google Scholar 

  60. Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb Technol 19:220–225. https://doi.org/10.1016/0141-0229(95)00237-5

    Article  Google Scholar 

  61. Zhang J, Geng A, Yao C et al (2012) Effects of lignin-derived phenolic compounds on xylitol production and key enzyme activities by a xylose utilizing yeast Candida athensensis SB18. Bioresour Technol 121:369–378. https://doi.org/10.1016/j.biortech.2012.07.020

    Article  Google Scholar 

  62. Kremling A, Geiselmann J, Ropers D, de Jong H (2015) Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol 23:99–109. https://doi.org/10.1016/j.tim.2014.11.002

    Article  Google Scholar 

  63. Chu D, Barnes DJ (2016) The lag-phase during diauxic growth is a trade-off between fast adaptation and high growth rate. Sci Rep 6:1–15. https://doi.org/10.1038/srep25191

    Article  Google Scholar 

  64. Lee WJ, Kim MD, Ryu YW et al (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191. https://doi.org/10.1007/s00253-002-1085-6

    Article  Google Scholar 

  65. Farias D, Maugeri FF (2019) Co-culture strategy for improved 2G bioethanol production using a mixture of sugarcane molasses and bagasse hydrolysate as substrate. Biochem Eng J 147:29–38. https://doi.org/10.1016/j.bej.2019.03.020

    Article  Google Scholar 

  66. Monteiro de Oliveira P, Aborneva D, Bonturi N, Lahtvee PJ (2021) Screening and growth characterization of non-conventional yeasts in a hemicellulosic hydrolysate. Front Bioeng Biotechnol 9:1–13. https://doi.org/10.3389/fbioe.2021.659472

    Article  Google Scholar 

  67. Gutiérrez-Rivera B, Waliszewski-Kubiak K, Carvajal-Zarrabal O, Aguilar-Uscanga MG (2011) Conversion efficiency of glucose/xylose mixtures for ethanol production using Saccharomyces cerevisiae ITV01 and Pichia stipitis NRRL Y-7124. J Chem Technol Biotechnol 87:263–270. https://doi.org/10.1002/jctb.2709

    Article  Google Scholar 

  68. Yewale T, Panchwagh S, Rajagopalan S et al (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6(1):10. https://doi.org/10.1007/s13205-016-0388-8

    Article  Google Scholar 

  69. Gao M, Ploessl D, Shao Z (2019) Enhancing the co-utilization of biomass-derived mixed sugars by yeasts. Front Microbiol 9:1–21. https://doi.org/10.3389/fmicb.2018.03264

    Article  Google Scholar 

  70. Huang C, Jiang Y, Guo G, Hwang W (2011) Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresour Technol 102:3322–3329. https://doi.org/10.1016/j.biortech.2010.10.111

    Article  Google Scholar 

  71. Villarreal MLM, Prata AMR, Felipe MGA, Silva AE, JB, (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24. https://doi.org/10.1016/j.enzmictec.2005.10.032

    Article  Google Scholar 

  72. Silva SS (2001) Metabolic study of the adaptation of the yeast Candida guilliermondii to sugarcane bagasse hydrolysate. Appl Microbiol Biotechnol 57:738–743. https://doi.org/10.1007/s002530100816

    Article  Google Scholar 

  73. Wu J, Elliston A, Gall GL et al (2017) Yeast diversity in relation to the production of fuels and chemicals. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-14641-0

    Article  Google Scholar 

  74. Kahr H, Helmberger S, Jäger AG (2011) Yeast adaptation on the substrate straw. Bioenergy Technol 057:492–499. https://doi.org/10.3384/ecp11057492

    Article  Google Scholar 

  75. da Silva DDV, De MIM, da Silva SS, Felipe M, das G de A, (2007) Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in Sugarcane bagasse hydrolysate. Braz Arch Biol Technol 50:207–215

    Article  Google Scholar 

  76. Misra S, Raghuwanshi S, Saxena RK (2013) Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr Polym 92:1596–1601. https://doi.org/10.1016/j.carbpol.2012.11.033

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge PT PG Rajawali II, Subang, West Java, Indonesia, for providing the sugarcane trash. The authors also would like to thank Prof. Takashi Watanabe and Dr. Sadat M. R. Khattab for facilitating HPLC analysis at Laboratory of Biomass Conversion, Kyoto University, Uji Campus, Kyoto, Japan.

Funding

The authors received funding from the Ministry of Research and Technology of the Republic of Indonesia through Insentif Riset Sistem Inovasi Nasional (INSINAS) project entitled “Pengembangan Teknologi Proses Pembuatan Biosurfaktan dan Xilitol dari Bahan Lignoselulosa sebagai Ko-Produk pada Produksi Bioetanol Generasi 2” in the FY of 2019. This research is also part of Japan-ASEAN Science, Technology, and Innovation Platform (JASTIP) project “Utilization of hemicellulose fraction from acid pretreatment of lignocellulose for production of xylitol” 2019-2020 and e-ASIA project “Integrated biorefinery of sugarcane trash” 2019-2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maulida Oktaviani.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oktaviani, M., Mangunwardoyo, W. & Hermiati, E. Characteristics of adapted and non-adapted Candida tropicalis InaCC Y799 during fermentation of detoxified and undetoxified hemicellulosic hydrolysate from sugarcane trash for xylitol production. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-02087-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-021-02087-4

Keywords

  • Adaptation
  • Detoxification
  • Hemicellulosic hydrolysate
  • Sugar cane trash
  • Xylitol production