Skip to main content
Log in

Biological activities and phytochemicals profiling of different cyanobacterial and microalgal biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Potential uses of methanolic extracts derived from cyanobacterial and microalgal biomass were evaluated as promising sustainable sources of bioactive phytochemicals for nutraceutical, cosmetic, and pharmaceutical applications. Among the cyanobacteria and microalgae tested, cyanobacterium Nostoc sp. AARL C008 biomass exhibited the highest phytochemicals, correlating with high occurrence of antioxidant activities. The antioxidant potential of Nostoc sp. AARL C008 was assessed using 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and potassium ferricyanide reducing antioxidant power (PFRAP) assays, giving ABTS activity of 38.99 mg TE/g extract, DPPH activity of 9.16 mg GAE/g extract and PFRAP activity of 11.48 mg GAE/g extract. Nostoc sp. AARL C008 yielded high levels of total phenolic contents (54.10 mg GAE/g extract) and pigments including chlorophyll (6.42 mg/g DW) and carotenoids (1.56 mg/g DW). Interestingly, Nostoc sp. AARL C008 showed high potent cytotoxic activity against malignant melanoma skin cancer cells (A375 cells), providing IC50 of 0.42 mg/mL. LC-ESI-QTOF-MS/MS tentatively identified 83 phenolic compounds with favorable bioactivities from the methanolic extract of Nostoc sp. AARL C008. Among phytochemical profiles, the most abundant phenolic compound was p-coumaric acid (40.70%), indicating valuable biological activities. Results demonstrated that phytochemicals extracted from cyanobacterial biomass can be used as bioactive ingredients, with potential applications in the nutraceutical, cosmetic, and pharmaceutical industries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pereira AG, Otero P, Echave J, Carreira-Casais A, Chamorro F, Collazo N, Jaboui A, Lourenço-Lopes C, Simal-Gandara J, Prieto MA (2021) Xanthophylls from the sea: algae as source of bioactive carotenoids. Mar Drugs 19:188. https://doi.org/10.3390/md19040188

    Article  Google Scholar 

  2. Van Vliet S, Provenza FD, Kronberg SL (2021) Health-promoting phytonutrients are higher in grass-fed meat and milk. Front Sustain Food Syst 4:555426. https://doi.org/10.3389/fsufs.2020.555426

    Article  Google Scholar 

  3. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H (2018) Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9:1162. https://doi.org/10.3389/fphar.2018.01162

    Article  Google Scholar 

  4. Lauritano C, Andersen JH, Hansen E, Albrigtsen M, Escalera L, Esposito F, Helland K, Hanssen KØ, Romano G, Ianora A (2016) Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. Front Mar Sci 3:68. https://doi.org/10.3389/fmars.2016.00068

    Article  Google Scholar 

  5. Minatel IO, Borges CV, Ferreira MI, Gomez HA, Chen CY, Lima GP (2017) Phenolic compounds: functional properties, impact of processing and bioavailability. Phenolic Compd Biol Act 8:1–24. https://doi.org/10.5772/66368

    Article  Google Scholar 

  6. Safafar H, Van Wagenen J, Møller P, Jacobsen C (2015) Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs 13:7339–7356. https://doi.org/10.3390/md13127069

    Article  Google Scholar 

  7. Jerez-Martel I, García-Poza S, Rodríguez-Martel G, Rico M, Afonso-Olivares C, Gómez-Pinchetti JL (2017) Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual 2017:2924508. https://doi.org/10.1155/2017/2924508

    Article  Google Scholar 

  8. Singh DP, Prabha R, Verma S, Meena KK, Yandigeri M (2017) Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech 7:1–14. https://doi.org/10.1007/s13205-017-0786-6

  9. Besednova NN, Andryukov BG, Zaporozhets TS, Kryzhanovsky SP, Kuznetsova TA, Fedyanina LN, Makarenkova ID, Zvyagintseva TN (2020) Algae polyphenolic compounds and modern antibacterial strategies: current achievements and immediate prospects. Biomedicines 8:342. https://doi.org/10.3390/biomedicines8090342

    Article  Google Scholar 

  10. Monteiro M, Santos RA, Iglesias P, Couto A, Serra CR, Gouvinhas I, Barros A, Oliva-Teles A, Enes P, Díaz-Rosales P (2020) Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. J Appl Phycol 32:349–362. https://doi.org/10.1007/s10811-019-01927-1

    Article  Google Scholar 

  11. Chigayo K, Mojapelo PE, Mnyakeni-Moleele S, Misihairabgwi JM (2016) Phytochemical and antioxidant properties of different solvent extracts of Kirkia wilmsii tubers. Asian Pac J Trop Biomed 6:1037–1043. https://doi.org/10.1016/j.apjtb.2016.10.004

    Article  Google Scholar 

  12. Chandralega G, Ramadas V (2020) Screening of phytochemicals, fatty acid composition and in-vitro analysis of antioxidant property of green edible seaweed Caulerpa lentillifera (family: caulerpaceae). Int J Pharm Sci Res 11:1495–1505. https://doi.org/10.13040/IJPSR.0975-8232

  13. Van Weelden G, Bobiński M, Okła K, Van Weelden WJ, Romano A, Pijnenborg J (2019) Fucoidan structure and activity in relation to anti-cancer mechanisms. Mar Drugs 17:32. https://doi.org/10.3390/md17010032

    Article  Google Scholar 

  14. Zhong B, Robinson NA, Warner RD, Barrow CJ, Dunshea FR, Suleria HA (2020) LC-ESI-QTOF-MS/MS characterization of seaweed phenolics and their antioxidant potential. Mar Drugs 18:331. https://doi.org/10.3390/md18060331

    Article  Google Scholar 

  15. Wali AF, Al Dhaheri Y, Ramakrishna Pillai J, Mushtaq A, Rao PG, Rabbani SA, Firdous A, Elshikh MS, Farraj DAA (2020) LC-MS phytochemical screening, in vitro antioxidant, antimicrobial and anticancer activity of microalgae Nannochloropsis oculata extract. Separations 7:54. https://doi.org/10.3390/separations7040054

    Article  Google Scholar 

  16. Haoujar I, Cacciola F, Abrini J, Mangraviti D, Giuffrida D, Oulad El Majdoub Y, Kounnoun A, Miceli N, Fernanda Taviano M, Mondello L, Rigano F (2019) The contribution of carotenoids, phenolic compounds, and flavonoids to the antioxidative properties of marine microalgae isolated from Mediterranean Morocco. Molecules 24:4037. https://doi.org/10.3390/molecules24224037

    Article  Google Scholar 

  17. Rastogi RP, Incharoensakdi A, Madamwar D (2014) Responses of a rice-field cyanobacterium Anabaena siamensis TISTR-8012 upon exposure to PAR and UV radiation. J Plant Physiol 171:1545–1553. https://doi.org/10.1016/j.jplph.2014.07.011

    Article  Google Scholar 

  18. Wintermans JFGM, De Mots AS (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis 109:448–453. https://doi.org/10.1016/0926-6585(65)90170-6

  19. Saijo Y (1975) A method for determination of chlorophyll. Japanese J Limnology 36:103–109

    Article  Google Scholar 

  20. de Quirós ARB, Costa HS (2006) Analysis of carotenoids in vegetable and plasma samples: a review. J Food Compos Anal 19:97–111. https://doi.org/10.1016/j.jfca.2005.04.004

    Article  Google Scholar 

  21. Chandler SF, Dodds JH (1983) The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Rep 2:205–208. https://doi.org/10.1007/bf00270105

    Article  Google Scholar 

  22. Khan MS, Yusufzai SK, Rafatullah M, Sarjadi MS, Razlan M (2018) Determination of total phenolic content, total flavonoid content and antioxidant activity of various organic crude extracts of Licuala Spinosa leaves from sabah, Malaysia. ASM Sci J 11:53–58

    Google Scholar 

  23. Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N (2019) Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 8:96. https://doi.org/10.3390/plants8040096

    Article  Google Scholar 

  24. Bunea A, Rugina OD, Pintea AM, Sconţa Z, Bunea CI, Socaciu C (2011) Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:70–76. https://doi.org/10.15835/nbha3926265

  25. Sampath M, Vasanthi M (2013) Isolation, structural elucidation of flavonoids from Polyalthia longifolia (Sonn.) Thawaites and evaluation of antibacterial, antioxidant and anticancer potential. Int J Pharm Pharm Sci 5:336–341

    Google Scholar 

  26. Bhadoriya U, Sharma P, Solanki SS (2012) In vitro free radical scavenging activity of gallic acid isolated from caesalpinia decapetala wood. Asian Pac J Trop Dis 2:S833–S836. https://doi.org/10.1016/S2222-1808(12)60274-6

    Article  Google Scholar 

  27. Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J (2018) Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PloS one. 13:e0197359. https://doi.org/10.1371/journal.pone.0197359

  28. Oyaizu M (1986) Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44:307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  Google Scholar 

  29. Mau JL, Lai EY, Wang NP, Chen CC, Chang CH, Chyau CC (2003) Composition and antioxidant activity of the essential oil from Curcuma zedoaria. Food Chem 82:583–591. https://doi.org/10.1016/j.jfca.2005.04.004

    Article  Google Scholar 

  30. Benslama A, Harrar A (2016) Free radicals scavenging activity and reducing power of two Algerian Sahara medicinal plants extracts. Int J Herb Med 4:158–161. https://doi.org/10.22271/flora.2016.v4.i6c.03

  31. Umthong S, Phuwapraisirisan P, Puthong S, Chanchao C (2011) In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines. BMC Complement Altern Med 11:1–8. https://doi.org/10.1186/1472-6882-11-37

    Article  Google Scholar 

  32. Felhi S, Daoud A, Hajlaoui H, Mnafgui K, Gharsallah N, Kadri A (2017) Solvent extraction effects on phytochemical constituents profiles, antioxidant and antimicrobial activities and functional group analysis of Ecballium elaterium seeds and peels fruits. Food Sci Technol 37:483–492. https://doi.org/10.1590/1678-457X.23516

    Article  Google Scholar 

  33. Xu Y, Harvey PJ (2019) Carotenoid production by Dunaliella salina under red light. Antioxidants 8:123. https://doi.org/10.3390/antiox8050123

    Article  Google Scholar 

  34. Tavares RS, Kawakami CM, Pereira KD, do Amaral GT, Benevenuto CG, Maria-Engler SS, Colepicolo P, Debonsi HM, Gaspar LR (2020) Fucoxanthin for topical administration, a phototoxic vs. photoprotective potential in a tiered strategy assessed by In vitro methods. Antioxidants 9:328. https://doi.org/10.3390/antiox9040328

  35. Kula-Maximenko M, Zieliński KJ, Ślesak I. The role of selected wavelengths of light in the activity of photosystem II in Gloeobacter violaceus. Int. J. Mol. Sci 22:4021. https://doi.org/10.3390/ijms22084021

  36. Yacobi YZ, Köhler J, Leunert F, Gitelson A (2015) Phycocyanin-specific absorption coefficient: eliminating the effect of chlorophylls absorption. Limnol Oceanogr-Meth 13:157–168. https://doi.org/10.1002/lom3.10015

    Article  Google Scholar 

  37. Simeonov A, Michaelian K (2017) Properties of cyanobacterial UV-absorbing pigments suggest their evolution was driven by optimizing photon dissipation rather than photoprotection. arXiv Prepr. arXiv:1702.03588

  38. Vega J, Schneider G, Moreira BR, Herrera C, Bonomi-Barufi J, Figueroa FL (2021) Mycosporine-like amino acids from red macroalgae: UV-photoprotectors with potential cosmeceutical applications. Appl Sci 11:5112. https://doi.org/10.3390/app11115112

    Article  Google Scholar 

  39. Abdo SM, Ahmed E, El-Enin SA, El Din RS, El Diwani G, Ali G (2013) Growth rate and fatty acids profile of 19 microalgal strains isolated from river Nile for biodiesel production. J Algal Biomass Util 4:51–59

    Google Scholar 

  40. Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62:794–799. https://doi.org/10.3109/09637486.2011.582460

    Article  Google Scholar 

  41. Babadi FE, Boonnoun P, Nootong K, Powtongsook S, Goto M, Shotipruk A (2020) Identification of carotenoids and chlorophylls from green algae Chlorococcum humicola and extraction by liquefied dimethyl ether. Food Bioprod Process 123:296–303. https://doi.org/10.1016/j.fbp.2020.07.008

    Article  Google Scholar 

  42. Singh DP, Khattar JS, Rajput A, Chaudhary R, Singh R (2019) High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PloS one 14:e0221930. https://doi.org/10.1371/journal.pone.0221930

  43. El-fayoumy EA, Shanab SM, Shalaby EA (2020) Metabolomics and biological activities of Chlorella vulgaris grown under modified growth medium (BG11) composition. CMU J Nat Sci 19:91–123. https://doi.org/10.12982/CMUJNS.2020.0007

  44. Ruiz-Domínguez MC, Espinosa C, Paredes A, Palma J, Jaime C, Vílchez C, Cerezal P (2019) Determining the potential of Haematococcus pluvialis oleoresin as a rich source of antioxidants. Molecules 24:4073. https://doi.org/10.3390/molecules24224073

    Article  Google Scholar 

  45. Stramarkou M, Papadaki S, Kyriakopoulou K, Tzovenis I, Chronis M, Krokida M (2021) Comparative analysis of different drying techniques based on the qualitative characteristics of Spirulina platensis biomass. J Aquat Food Prod Technol 30:498–516. https://doi.org/10.1080/10498850.2021.1900969

    Article  Google Scholar 

  46. El-Fayoumy EA, Shanab SM, Hassan OM, Shalaby EA (2021) Enhancement of active ingredients and biological activities of Nostoc linckia biomass cultivated under modified BG-110 medium composition. Biomass Convers Biorefin 1–18. https://doi.org/10.1007/s13399-021-01509-7

  47. Rastogi RP, Sonani RR, Madamwar D, Incharoensakdi A (2016) Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res 16:110–118. https://doi.org/10.1016/j.algal.2016.03.009

    Article  Google Scholar 

  48. Ijaz S, Hasnain S (2016) Antioxidant potential of indigenous cyanobacterial strains in relation with their phenolic and flavonoid contents. Nat Prod Res 30:1297–1300. https://doi.org/10.1080/14786419.2015.1053088

    Article  Google Scholar 

  49. Assunção MF, Amaral R, Martins CB, Ferreira JD, Ressurreição S, Santos SD, Varejão JM, Santos LM (2017) Screening microalgae as potential sources of antioxidants. J Appl Phycol 29:865–877. https://doi.org/10.1007/s10811-016-0980-7

    Article  Google Scholar 

  50. Sivaramakrishnan T, Swain S, Saravanan KRKS, Sankar K, Roy SD, Biswas L (2017) In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from south Andaman Coast of India. Turkish J Fish Aquat Sci 17:639–648. https://doi.org/10.4194/1303-2712-v17_3_20

    Article  Google Scholar 

  51. Wojtunik-Kulesza KA (2020) Approach to optimization of FRAP methodology for studies based on selected monoterpenes. Molecules 25:5267. https://doi.org/10.3390/molecules25225267

    Article  Google Scholar 

  52. Bahari AN, Saari N, Salim N, Ashar SE (2020) Response factorial design analysis on papain-generated hydrolysates from Actinopyga lecanora for determination of antioxidant and antityrosinase activities. Molecules 25:2663. https://doi.org/10.3390/molecules25112663

    Article  Google Scholar 

  53. Vardhan PV, Shukla LI (2017) Gamma irradiation of medicinally important plants and the enhancement of secondary metabolite production. Int J Radiat Biol 93:967–979. https://doi.org/10.1080/09553002.2017.1344788

    Article  Google Scholar 

  54. Yu M, Gouvinhas I, Rocha J, Barros AI (2021) Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci Rep 11:10041. https://doi.org/10.1038/s41598-021-89437-4

    Article  Google Scholar 

  55. Reyna-Martinez R, Gomez-Flores R, López-Chuken U, Quintanilla-Licea R, Caballero-Hernandez D, Rodríguez-Padilla C, Beltrán-Rocha JC, Tamez-Guerra P (2018) Antitumor activity of Chlorella sorokiniana and Scenedesmus sp. microalgae native of Nuevo León State, México. PeerJ 6:e4358. https://doi.org/10.7717/peerj.4358

  56. Nazir Y, Saeed A, Rafiq M, Afzal S, Ali A, Latif M, Zuegg J, Hussein WM, Fercher C, Barnard RT, Cooper MA (2020) Hydroxyl substituted benzoic acid/cinnamic acid derivatives: tyrosinase inhibitory kinetics, anti-melanogenic activity and molecular docking studies. Bioorg Med Chem Lett 30:126722. https://doi.org/10.1016/j.bmcl.2019.126722

    Article  Google Scholar 

  57. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131:3303–3306. https://doi.org/10.1093/jn/131.12.3303

    Article  Google Scholar 

  58. Bechelli J, Coppage M, Rosell K, Liesveld J (2011) Cytotoxicity of algae extracts on normal and malignant cells. Leuk Res treatment 2011:373519. https://doi.org/10.4061/2011/373519

    Article  Google Scholar 

  59. Moo-Puc R, Robledo D, Freile-Pelegrin Y (2011) Improved antitumoral activity of extracts derived from cultured Penicillus dumetosus. Trop J Pharm Res 10:177–185. https://doi.org/10.4314/tjpr.v10i2.66561

    Article  Google Scholar 

  60. Trabelsi L, Chaieb O, Mnari A, Abid-Essafi S, Aleya L (2016) Partial characterization and antioxidant and antiproliferative activities of the aqueous extracellular polysaccharides from the thermophilic microalgae Graesiella sp. BMC Complement Altern Med 16:1–10. https://doi.org/10.1186/s12906-016-1198-6

    Article  Google Scholar 

  61. Iqbal Y, Ponnampalam EN, Suleria HA, Cottrell JJ, Dunshea FR (2021) LC-ESI/QTOF-MS profiling of chicory and lucerne polyphenols and their antioxidant activities. Antioxidants 10:932. https://doi.org/10.3390/antiox10060932

    Article  Google Scholar 

  62. Farasat M, Khavari-Nejad RA, Nabavi SMB, Namjooyan F (2014) Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iran J Pharm Sci 13:163–170

    Google Scholar 

  63. Agregán R, Munekata PE, Franco D, Carballo J, Barba FJ, Lorenzo JM (2018) Antioxidant potential of extracts obtained from macro-(Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata) and micro-algae (Chlorella vulgaris and Spirulina platensis) assisted by ultrasound. Medicines 5:33. https://doi.org/10.3390/medicines5020033

    Article  Google Scholar 

  64. Babić O, Kovač D, Rašeta M, Šibul F, Svirčev Z, Simeunović J (2016) Evaluation of antioxidant activity and phenolic profile of filamentous terrestrial cyanobacterial strains isolated from forest ecosystem. J Appl Phycol 28:2333–2342. https://doi.org/10.1007/s10811-015-0773-4

    Article  Google Scholar 

  65. Rajauria G (2018) Optimization and validation of reverse phase HPLC method for qualitative and quantitative assessment of polyphenols in seaweed. J Pharm Biomed Anal 148:230–237. https://doi.org/10.1016/j.jpba.2017.10.002

    Article  Google Scholar 

  66. Kim YJ (2007) Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull 30:1052–1055. https://doi.org/10.1248/bpb.30.1052

    Article  Google Scholar 

  67. Chia YC, Rajbanshi R, Calhoun C, Chiu RH (2010) Anti-neoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules 15:8377–8389. https://doi.org/10.3390/molecules15118377

    Article  Google Scholar 

  68. Lo C, Lai TY, Yang JH, Yang JS, Ma YS, Weng SW, Chen YY, Lin JG, Chung JG (2010) Gallic acid induces apoptosis in A375. S2 human melanoma cells through caspase-dependent and-independent pathways. Int J Oncol 37:377–385. https://doi.org/10.3892/ijo_00000686

    Article  Google Scholar 

  69. Ferreira PS, Victorelli FD, Fonseca-Santos B, Chorilli M (2019) A review of analytical methods for p-coumaric acid in plant-based products, beverages, and biological matrices. Crit Rev Anal Chem 49:21–31. https://doi.org/10.1080/10408347.2018.1459173

    Article  Google Scholar 

  70. Kong CS, Jeong CH, Choi JS, Kim KJ, Jeong JW (2013) Antiangiogenic effects of p-coumaric acid in human endothelial cells. Phytother Res 27:317–323. https://doi.org/10.1002/ptr.4718

    Article  Google Scholar 

  71. Raneva V, Shimasaki H, Ishida Y, Ueta N, Niki E (2001) Antioxidative activity of 3, 4-dihydroxyphenylacetic acid and caffeic acid in rat plasma. Lipids 36:1111–1116. https://doi.org/10.1007/s11745-001-0821-6

    Article  Google Scholar 

  72. Marset-Castro A, López-Gallardo Á, López-Muñoz H, Sánchez-Sánchez L, Maya I, López Ó, Fernández-Bolaños JG (2018) Phenolic peptides as antioxidant and anti-proliferative agents. Journal of Molecular and Clinical Medicine 1:237–248. https://doi.org/10.31083/j.jmcm.2018.04.502

  73. Huang WY, Zhang HC, Liu WX, Li CY (2012) Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing. J Zhejiang Univ Sci B 13:94–102. https://doi.org/10.1631/jzus.B1100137

    Article  Google Scholar 

  74. Huang W, Zhu Y, Li C, Sui Z, Min W (2016) Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxid Med Cell Longev 2016:1591803. https://doi.org/10.1155/2016/1591803

    Article  Google Scholar 

  75. Huang W, Yan Z, Li D, Ma Y, Zhou J, Sui Z (2018) Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxid Med Cell Longev 2018:1862462. https://doi.org/10.1155/2018/1862462

    Article  Google Scholar 

  76. Wang Y, Lin J, Tian J, Si X, Jiao X, Zhang W, Gong E, Li B (2018) Blueberry malvidin-3-galactoside suppresses hepatocellular carcinoma by regulating apoptosis, proliferation, and metastasis pathways in vivo and in vitro. J Agric Food Chem 67:625–636. https://doi.org/10.1021/acs.jafc.8b06209

    Article  Google Scholar 

  77. Hashimoto F, Ono M, Masuoka C, Ito Y, Sakata Y, Shimizu K, Nonaka GI, Nishioka I, Nohara T (2003) Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols. Biosci Biotechnol Biochem 67:396–401. https://doi.org/10.1271/bbb.67.396

    Article  Google Scholar 

  78. Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata KC, Nabavi SM, Bishayee A (2016) Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients 8:529. https://doi.org/10.3390/nu8090529

    Article  Google Scholar 

  79. Osawa K, Yasuda H, Maruyama T, Morita H, Takeya K, Itokawa H (1992) Isoflavanones from the heartwood of Swartzia polyphylla and their antibacterial activity against cariogenic bacteria. Chem Pharm Bull 40:2970–2974. https://doi.org/10.1248/cpb.40.2970

    Article  Google Scholar 

  80. Unno T, Tamemoto K, Yayabe F, Kakuda T (2003) Urinary excretion of 5-(3 ‘, 4 ‘-dihydroxyphenyl)-γ-valerolactone, a ring-fission metabolite of (−)-epicatechin, in rats and its in vitro antioxidant activity. J Agric Food Chem 51:6893–6898. https://doi.org/10.1021/jf034578e

    Article  Google Scholar 

  81. Loussouarn M, Krieger-Liszkay A, Svilar L, Bily A, Birtić S, Havaux M (2017) Carnosic acid and carnosol, two major antioxidants of rosemary, act through different mechanisms. Plant Physiol 175:1381–1394. https://doi.org/10.1104/pp.17.01183

    Article  Google Scholar 

  82. Salem MA, Radwan RA, Mostafa ES, Alseekh S, Fernie AR, Ezzat SM (2020) Using an UPLC/MS-based untargeted metabolomics approach for assessing the antioxidant capacity and anti-aging potential of selected herbs. RSC Adv 10:31511–31524. https://doi.org/10.1039/d0ra06047j

    Article  Google Scholar 

  83. Santos-Gomes PC, Seabra RM, Andrade PB, Fernandes-Ferreira M (2003) Determination of phenolic antioxidant compounds produced by calli and cell suspensions of sage (Salvia officinalis L.). J Plant Physiol 160:1025–1032. https://doi.org/10.1078/0176-1617-00831

    Article  Google Scholar 

  84. Zeng HH, Tu PF, Zhou K, Wang H, Wang BH, Lu JF (2001) Antioxidant properties of phenolic diterpenes from Rosmarinus officinalis. Acta Pharmacol Sin 22:1094–1098

    Google Scholar 

  85. Vinha AF, Ferreres F, Silva BM, Valentao P, Gonçalves A, Pereira JA, Oliveira MB, Seabra RM, Andrade PB (2005) Phenolic profiles of Portuguese olive fruits (Olea europaea L.): influences of cultivar and geographical origin. Food Chem 89:561–568. https://doi.org/10.1016/j.foodchem.2004.03.012

    Article  Google Scholar 

  86. Nagao T, Abe F, Okabe H (2001) Antiproliferative constituents in the plants 7. Leaves of Clerodendron bungei and leaves and bark of C. trichotomum. Biol Pharm Bull 24:1338–1341. https://doi.org/10.1248/bpb.24.1338

    Article  Google Scholar 

  87. Quéguineur B, Goya L, Ramos S, Martín MA, Mateos R, Bravo L (2012) Phloroglucinol: antioxidant properties and effects on cellular oxidative markers in human HepG2 cell line. Food Chem Toxicol 50:2886–2893. https://doi.org/10.1016/j.fct.2012.05.026

    Article  Google Scholar 

  88. Lopes-Costa E, Abreu M, Gargiulo D, Rocha E, Ramos AA (2017) Anticancer effects of seaweed compounds fucoxanthin and phloroglucinol, alone and in combination with 5-fluorouracil in colon cells. J Toxicol Environ Health Part A 80:776–787. https://doi.org/10.1080/15287394.2017.1357297

    Article  Google Scholar 

  89. Moal F, Veal N, Vuillemin E, Barrière E, Wang J, Fizanne L, Oberti F, Douay O, Gallois Y, Bonnefont-Rousselot D, Rousselet MC (2006) Hemodynamic and antifibrotic effects of a selective liver nitric oxide donor V-PYRRO/NO in bile duct ligated rats. World J Gastroenterol 12:6639. https://doi.org/10.3748/wjg.v12.i41.6639

    Article  Google Scholar 

  90. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects–a review. J Funct Foods 18:820–897. https://doi.org/10.1016/j.jff.2015.06.018

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Biodiversity-Based Economy Development Office (public organization) and National Research Council of Thailand (NRCT) for financial support.

Funding

This research was financially supported by the Biodiversity-Based Economy Development Office (public organization), National Research Council of Thailand (NRCT), Graduate School and the Post-Doctoral Fellowship program, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeeraporn Pekkoh or Kritsana Duangjan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomakool, S., Ruangrit, K., Jeerapan, I. et al. Biological activities and phytochemicals profiling of different cyanobacterial and microalgal biomass. Biomass Conv. Bioref. 13, 4195–4211 (2023). https://doi.org/10.1007/s13399-021-01974-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01974-0

Keywords

Navigation