Skip to main content

Thermal analysis of the physicochemical properties of organic waste to application in the compost process

Abstract

The thermal and physicochemical characteristics of the husk of rice, pineapple, banana, potato, papaya, and lettuce were studied to evaluate their effectiveness in a composting process as a harvesting alternative. Thermogravimetry (TGA) was used to assess the thermal stability of the shells, mass spectrometry (MS) to identify volatile compounds, differential scanning calorimetry (DSC) to find the possible phase transitions caused by the increase of temperature, and elemental analysis to determine the C/N ratio. In the composting process, four mixtures were made through the quantitative balance of nitrogen, carbon, and humidity, and the process was controlled and monitored until the compost was obtained. The results in the TGA showed three characteristic stages present in organic materials that absorb heat: the dehydration of the samples in a temperature range between 25 and 230 °C, the decomposition in a range of temperatures that occurred between 240 and 370 °C, and degradation in a temperature range between 380 and 600 °C. DSC showed the endothermic processes were associated with melting followed by the evaporation of the aqueous content, and decomposition and a degradation of the samples associated with volatile contents. The exothermic processes were associated with the oxidation of the elements released during evaporation of the aqueous content, and the enthalpies of the processes varied between 5.90 and 91.60 J/g. Mass spectrometry identified that the volatile compounds released were H2O, CO2, CO, CH4, and N. In the composting, the effective mixture was a 20% concentration of each of the biowastes that demonstrated better conditions for decomposition, where alkaline pH and acid indicated the decomposition of fatty acids, nitrogen, and carbon. Finally, it was concluded that the thermal stability of the shells is associated with the presence of lignin, cellulose, and hemicellulose. In addition, the compost obtained is a fertilizer applicable to soils and plants.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Khiari B, Jeguirim M (2018) Pyrolysis of grape marc from Tunisian wine industry: feedstock characterization, thermal degradation and kinetic analysis. Energies 11(4). https://doi.org/10.3390/en11040730

  2. Gunasee SD, Carrier M, Gorgens JF, Mohee R (2016) Pyrolysis and combustion of municipal solid wastes: evaluation of synergistic effects using TGA-MS. J Anal Appl Pyrolysis 121:50–61. https://doi.org/10.1016/j.jaap.2016.07.001

    Article  Google Scholar 

  3. Deaquiz Y, Moreno B (2016) Producción y biosíntesis de fibras vegetales una revisión. Conex Agropecu 6:29–42 https://www.jdc.edu.co/revistas/index.php/conexagro/article/view/53

    Google Scholar 

  4. Gómez RB (2006) Compostaje de residuos sólidos orgánicos. aplicación de técnicas respirométricas en el seguimiento del proceso. Tesis Dr 80:1–315. https://www.tdx.cat/handle/10803/5307#page=1.

  5. Sarkar S, Pal S, Chanda S (2016) Optimization of a vegetable waste composting process with a significant thermophilic phase. Procedia Environ Sci 35:435–440. https://doi.org/10.1016/j.proenv.2016.07.026

    Article  Google Scholar 

  6. Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A (2018) Composting of food wastes: status and challenges. Bioresource Technology 248:57–67. https://doi.org/10.1016/j.biortech.2017.06.133

  7. Márquez PB, Díaz Blanco MJ, Cabrera Capitán F (2005) Factores que afectan al proceso de Compostaje. Univ Huelva Fac Ciencias Exp, p 16. http://hdl.handle.net/10261/20837.

  8. Ngo HTT, Cavagnaro TR (2018) Interactive effects of compost and pre-planting soil moisture on plant biomass, nutrition and formation of mycorrhizas: a context dependent response. Sci Rep 8:1509. https://doi.org/10.1038/s41598-017-18780-2

  9. Dadi D, Beyene GDA, Van Der Bruggen PLB (2019) Composting and co - composting of coffee husk and pulp with source - separated municipal solid waste: a breakthrough in valorization of coffee waste. Int J RecyLL Org Waste Agric 8(3):263–277. https://doi.org/10.1007/s40093-019-0256-8

    Article  Google Scholar 

  10. Tinio MMR, Rollon AP, Moya TB (2019) Synergy in the urban solid waste management system in Malolos City, Philippines. 148:73–97. https://philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol148no1/synergy_in_the_urban_solid_waste_management_with_APPENDIX.pdf

  11. Setyowati M, Kusumawanto A, Prasetya A (2018) Study of waste management towards sustainable green campus in Universitas Gadjah Mada. https://iopscience.iop.org/article/10.1088/1742-6596/1022/1/012041.

    Book  Google Scholar 

  12. Sepúlveda Villada LA, Alvarado Torres JA (2013) Manual de compostaje doméstico. Manual de aprovechamiento de residuos orgánicos a través de sistemas de compostaje y lombricultura en el Valle de Aburrá

  13. Mia S et al (2018) Pyrolysis and co-composting of municipal organic waste in Bangladesh: a quantitative estimate of recyLLable nutrients, greenhouse gas emissions, and economic benefits. Waste Manag 75:503–513. https://doi.org/10.1016/j.wasman.2018.01.038. https://doi.org/10.1016/j.wasman.2018.01.038

  14. Alwani MS, Khalil HPSA, Sulaiman O, Islam MN, Dungani R (2014) Waste fibres in biocomposites application: thermogravimetric analysis and activation energy study. BioResources 9(1):218–230 https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/4718

    Google Scholar 

  15. Singh S, Wu C, Williams PT (2012) Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. J Anal Appl Pyrolysis 94:99–107. https://doi.org/10.1016/j.jaap.2011.11.011

    Article  Google Scholar 

  16. Stępień P, Pulka J, Serowik M, Białowiec A (2018) Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis Waste Biomass Valoriz 10:1669–1677. https://doi.org/10.1007/s12649-017-0169-6

  17. ASTM D3302/D3302M-17 (2017) Standard test method for total moisture in coal, ASTM International, West Conshohocken. https://www.astm.org/Standards/D3302.htm

  18. ASTM D5373–16 (2016) Standard test methods for determination of carbon, hydrogen and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke. ASTM International, West Conshohocken. https://www.astm.org/Standards/D5373.htm

  19. Veeramachineni AK, Sathasivam T, Muniyandy S (2016) Applied sciences optimizing extraction of cellulose and synthesizing pharmaceutical grade Carboxymethyl sago cellulose from Malaysian sago pulp. Appl Sci 6:18. https://doi.org/10.3390/app6060170

    Article  Google Scholar 

  20. Gait J, Moya (2018) Differential scanning calorimetry analyses of biomass of tropical plantation species of Costa Rica torrefied at different temperatures and times. Energies 11:26. https://doi.org/10.3390/en11040696

  21. Chávez M, Domine M, Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial lignin, structure and applications: depolymerization methods. Av en Cienc e Ing. 4(4):15–46. https://www.redalyc.org/articulo.oa?id=323629266003

  22. Prieto Ruíz JA, Bustamante García V, Corral-Rivas JJ, Hernández Díaz JC, Carrillo Parra A (2018) Química de la biomasa vegetal y su efecto en el rendimiento durante la torrefacción: revisión. Rev Mex Ciencias For 7(38):5–24. https://doi.org/10.29298/rmcf.v7i38.8

  23. Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q (2015) Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Manag 46:247–256. https://doi.org/10.1016/j.wasman.2015.08.025

    Article  Google Scholar 

  24. Pineda Gomez P, Bedoya Hincapié MC, Rosales Rivera A (2011) Kinetic parameters and lifetime estimation of rice husk and LLay by using the thermogravimetric analysis (TGA). Dyna 78:207–214 https://dialnet.unirioja.es/servlet/articulo?codigo=7761305

    Google Scholar 

  25. Sarria Bienvenido MJVA (2007) Análisis comparativo de las características fisicoquímicas de la cascarilla de arroz. Scientia et Technica 37:6. https://doi.org/10.22517/23447214.4055

  26. Moya M, Sibaja M, Durán M, Vega J (1995) Obtención potencial de polímeros biodegradables. Estudio de la disolución de la cascara de piña en PEG. UNICIENCIA 12(1):39–43 https://dialnet.unirioja.es/servlet/articulo?codigo=5381239

    Google Scholar 

  27. González-Velandia K-D, Daza-Rey D, Caballero-Amado PA, Martínez-González C (2016) Evaluación de las propiedades físicas y químicas de residuos sólidos orgánicos a emplearse en la elaboración de papel. Luna Azul 43:499–517. https://doi.org/10.17151/luaz.2016.43.21

  28. Medina Arroyo HH, Martínez Guardia M, Bonilla Flórez JA (2007) Caracterización Bromatológica de Materias Primas Y Subproductos en Quibdó, Chocó. Rev Inst Univ TecnoLLógica del Chocó Investig Biodivers y Desarro 26(2):9–12 https://dialnet.unirioja.es/servlet/articulo?codigo=2544417

    Google Scholar 

  29. Soto V (2010) Cuantificación de almidón total y de almidón resistente en harina de plátano verde (Musa Cavendishii) y banana verde (Musa paradisíaca). Rev Boliv Química 27(2):94–99 https://www.redalyc.org/articulo.oa?id=426339674004

    Google Scholar 

  30. Soto N, Ruiz W, Lopez (2010) Determinación de los parámetros cinéticos en la pirólisis del pino ciprés,” vol. 33(7):1500–1505. https://doi.org/10.1590/S0100-40422010000700014

  31. Huang S, Sheng JJ (2017) An innovative method to build a comprehensive kinetic model for air injection using TGA/DSC experiments. FueL 210:98–106. https://doi.org/10.1016/j.fuel.2017.08.048

  32. Paricaguán B et al (2013) Thermal degradation of fibers of coconut with chemical treatment from mixtures of I make concrete (kinetic study). https://www.redalyc.org/articulo.oa?id=70732655008

  33. Fan H, Liao J, Abass OK, Liu L, Huang X, Wei L (2019) Efects of compost characteristics on nutrient retention and simultaneous pollutant immobilization and degradation during co-composting process. Bioresour Technol 275:61–69. https://doi.org/10.1016/j.biortech.2018.12.049

  34. Pérez-godínez EA, Lagunes-zarate J, Corona-hernández J, Barajas-aceves M (2017) Growth and reproductive potential of Eisenia foetida (Sav) on various zoo animal dungs after two methods of pre-composting followed by vermicomposting. 64:67–78. https://doi.org/10.1016/j.wasman.2017.03.036

  35. Esmaeili A, Reyahi M, Gholami M, Eslami H (2020) Pistachio waste management using combined composting- vermicomposting technique: physico-chemical changes and worm growth analysis. J Lean Prod 242:118523. https://doi.org/10.1016/j.jLLepro.2019.118523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Natalia Carmona Pardo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of Novelty

This research was carried out to determine the behavior of different biomass during thermal processes in a range of specific temperatures, in this way the stages of the composting process could be associated with the stages found in the thermal analysis. This study makes it possible to design a standardized composting process before applying it, based on thermal analysis that allows farmers to optimize the composting process and minimize the use of fertilizers.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pardo, R.N.C., Rojas, G.M.A. & Florez, L.M. Thermal analysis of the physicochemical properties of organic waste to application in the compost process. Biomass Conv. Bioref. (2021). https://doi.org/10.1007/s13399-021-01786-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-021-01786-2

Keywords

  • Compost
  • Composting process
  • Organic waste
  • Thermal analysis
  • Thermal degradation
  • Thermogravimetry
  • Differential scanning calorimetry
  • Mass spectrometry
  • Biomass