Skip to main content

Advertisement

Log in

Catalytic hydrotreatment of triglycerides and various renewable oils into green diesel over metal–organic frameworks derived Ni@C catalyst

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Triglycerides is a kind of natural oil widely existing in animals and plants, and it is also an ideal raw material for preparing biomass liquid fuel. Selectively hydrotreatment of unsaturated glyceride is an important strategy for the production of fuels and chemical feedstocks. In this work, catalytic hydrotreatment of triglycerides over Ni-based catalysts was investigated. Thus, an array of metal–organic frameworks derived Ni@C catalysts synthesized under different temperatures (350 °C, 400 °C, 450 °C) were prepared and applied for hydrotreatment of triglycerides. The highest conversion of triglycerides was 98.9% and the cracking rate could achieve 4.61% over the optimal Ni@C-BTC-400 catalyst in cyclohexane at 320 °C. The physicochemical characterizations were carried out by means of powder X-ray diffraction, scanning electronic microscopy, thermo gravimetric analyzer, N2 adsorption–desorption, and Raman. Based on the optimal reaction condition (320 °C, 3 h, 3.0 MPa H2), five typical vegetable oils and gutter oils were selected for the hydrotreatment study to investigate the adaptability of Ni@C-BTC-400 catalyst. The result indicated that Ni@C-BTC-400 catalyst performed good universality, and could transform oil raw materials with different fatty acid carbon chain structure to desired alkanes. Furthermore, the optimal Ni@C-BTC-400 catalyst could be carried out in next two consecutive recycling runs and could also be regenerated by H2 for the following experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Figure 4
Fig. 5
Fig. 6
Fig. 7
Figure 8.
Fig. 9

Similar content being viewed by others

Abbreviations

HDO:

Hydrodeoxygenation

DCO:

Decarboxylation and decarbonylation

HC:

Hydrocarbons

BTC:

Benzene-1,3,5-tricarboxylic acid

XRD:

Powder X-ray diffraction

TEM:

Transmission electron microscopy

BET:

Brunauer–Emmett–Teller

GC/MS:

Gas chromatograph/mass spectrometer

References

  1. Zakzeski J, Bruijnincx PC, Jongerius AL, Weckhuysen BM (2010) Chem rev 110:3552–3599

    Google Scholar 

  2. Gao F, Webb JD, Hartwig JF (2016) Angew Chem Int Ed 55:1474–1478

    Google Scholar 

  3. Zhu R, Wang B, Cui M, Deng J, Li X, Ma Y, Fu Y (2016) Green Chem 18:2029–2036

    Google Scholar 

  4. Robinson AM, Hensley JE, Medlin JW (2016) ACS Catal 6:5026–5043

    Google Scholar 

  5. Settle AE, Berstis L, Rorrer NA, Roman-Leshkov Y, Beckham GT, Richards RM, Vardon DR (2017) Green Chem 19:3468–3492

    Google Scholar 

  6. Barakos N, Pasias S, Papayannakos N (2008) Bioresource technol 99:5037–5042

    Google Scholar 

  7. Santillan-Jimenez E, Crocker M (2012) J Chem Technol Biotechnol 87:1041e50

    Google Scholar 

  8. Oi LE, Choo MY, Lee HV, Ong HC, Hamid SBA, Juan JC (2016) RSC Adv 6:108741e54

    Google Scholar 

  9. Santillan-Jimenez E, Loe R, Garrett M, Morgan T, Crocker M, Catal M (2018) Today 302:261e71

    Google Scholar 

  10. Huang Z, Ding S, Li Z, Lin H, Li F, Li L (2016) Int J Hydrogen Energy 41:16402e14

    Google Scholar 

  11. Asikin-Mijan N, Lee HV, Juan JC, Noorsaadah AR, Abdulkareem-Alsultan G, Arumugam M (2016) J Anal Appl Pyrolysis 120:110e20

    Google Scholar 

  12. Li W, Gao Y, Yao S, Ma D, Yan N (2015) Green Chem 17:4198e205

    Google Scholar 

  13. Moya-Ramirez I, Fernandez-Arteaga A, Jurado-Alameda E, Garcia-Roman M (2016) J Am Oil Chem Soc 93:1487–1497

    Google Scholar 

  14. Singh P, Kumari S, Guldhe A, Misra R, Rawat I, Bux F (2016) Renew Sust Energ Rev 55:1–16

    Google Scholar 

  15. Asikin-Mijan N, Lee HV, Juan JC, Noorsaadah AR, Ong HC, Razali SM (2018) Appl. Catal A Gen 552:38e48

    Google Scholar 

  16. Kim SK, Han JY, Hong S-A, Lee Y-W, Kim J (2013) Fuel 111:510–518

    Google Scholar 

  17. Veriansyah B, Han JK, Kim SK, Hong S-A, Kim YJ, Lim JS, Shu Y-W, Oh SG, Kim J (2012) Fuel 94:578–585

    Google Scholar 

  18. Silva LN, Fortes ICP, de Sousa FP, Pasa VMD (2016) Fuel 164:329–338

    Google Scholar 

  19. Kubička D, Horáček J, Setnička M, Bulánek R, Zukal A, Kubičková I (2014) Appl Catal B 145:101–107

    Google Scholar 

  20. Shao Y, Xia Q, Liu X, Lu G, Wang Y (2015) Chemsuschem 8:1761–1767

    Google Scholar 

  21. Mironenko RM, Belskaya OB, Lavrenov AV, Likholobov VA, Russ VA (2017) Chem Bull 66:673–676

    Google Scholar 

  22. Ohyama J, Ohira Y, Satsuma A (2017) Catal. Sci Technol 7:2947–2953

    Google Scholar 

  23. Zhou X, Feng Z, Guo W, Liu J, Li R, Chen R, Huang J (2019) Ind Eng Chem Res 58:3988–3993

    Google Scholar 

  24. Shen T, Hu R, Zhu C, Li M, Zhuang W, Tang C, Ying H (2018) RSC Adv 8:37993–38001

    Google Scholar 

  25. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) J Am Chem Soc 129:14176–14177

    Google Scholar 

  26. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Science 300:1127–1129

    Google Scholar 

  27. Xia H, Chen C, Liu P, Zhou M, Jiang J (2020) Sustainable Energy Fuels 4:5709–5720

    Google Scholar 

  28. Liu P, Chen C, Zhou M, Xu J, Xia H, Shang S, Jiang J (2021) Sustain. Energy Fuels 5:1809–1820

    Google Scholar 

  29. Leng Y, Shao H, Wang Y, Suzuki M, Li X (2006) J Nanosci Nanotechnol 6:221–226

    Google Scholar 

  30. Liu X, Liu W, Ko M, Park M, Kim MG, Oh P, Chae S, Park S, Casimir A, Wu G, Cho J (2015) Adv Funct Mater 25:5799–5808

    Google Scholar 

  31. Qiu Y, Lin Y, Yang H, Wang L, Wang M, Wang B (2020) Chem Eng J 383:123207–123219

    Google Scholar 

  32. Israr F, Kim DK, Kim Y, Chun W (2016) Quim Nova 39:669–675

    Google Scholar 

  33. Yin YC, Liu XF, Wei XJ, Li Y, Nie XY, Yu RH, Shui JL, Appl ACS (2017) Mater Inter 9:30850–30861

    Google Scholar 

  34. Chen C, Liu P, Zhou M, Sharma BK, Jiang J (2020) Energies 13:846–858

    Google Scholar 

  35. Chen C, Zhou M, Liu P, Sharma K, Jiang J (2020) New J Chem 44:18906–18916

    Google Scholar 

  36. Chen C, Wu D, Liu P, Xia H, Zhou M, Hou X, Jiang J (2021) React. Chem Eng 6:559–571

    Google Scholar 

  37. Jeong H, Bathula HB, Kim TW, Han GB, Jang JH, Jeong B, Suh YW (2021) ACS Sustainable Chem. Eng 9:1193–1202

    Google Scholar 

  38. Ameen M, Azizan MT, Ramli A, Yusup S, Alnarabiji MS (2019) Ultrasonics-Sonochemistry 51:90–102

    Google Scholar 

  39. Mansue D, Aminuddin A (2020) Int. J. Energy Res 44:7746–7760

    Google Scholar 

  40. Wang F, Zhang W, Jiang J, Xu J, Zhai Q, Wei L, Long F, Liu C, Liu P, Tan W, He D (2020) Chem. Eng J 328:122464

    Google Scholar 

  41. Xu G, Zhang Y, Fu Y, Guo Q (2017) ACS Catal 7:1158–1169

    Google Scholar 

  42. Li F, Jiang J, Liu P, Zhai Q, Wang F, Hse C-Y, Xu J (2018) Sustain. Energy Fuels 2:1206–1215

    Google Scholar 

  43. Chen C, Wu D, Liu P, Li J, Xia H, Zhou M, Jiang J (2021) Green Chem 23:3090–3103

    Google Scholar 

  44. Chen C, Liu P, Xia H, Zhou M, Jiang J (2021) J Chin Chem Soc 68:582–591

    Google Scholar 

  45. Chen C, Liu P, Xia H, Zhou M, Zhao J, Sharma BK, Jiang J (2020) Molecules 25:2109–2125

    Google Scholar 

Download references

Funding

Authors are grateful for the financial support from the National Nonprofit Institute Research Grant of CAFINT (CAFYBB2018SZ011) and the National Natural Science Foundation of China (31770612).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghao Zhou, Shibin Shang or Jianchun Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Xu, J., Li, J. et al. Catalytic hydrotreatment of triglycerides and various renewable oils into green diesel over metal–organic frameworks derived Ni@C catalyst. Biomass Conv. Bioref. 13, 9045–9056 (2023). https://doi.org/10.1007/s13399-021-01746-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01746-w

Keywords

Navigation